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Abstract. Topology design of enterprise networks is a hard combina-
torial optimization problem. It has numerous constraints, several objec-
tives, and a very noisy solution space. Besides the NP-hard nature of
this problem, many of the performance metrics of the network can only
be estimated, given their dependence on many of the dynamic aspects of
the network, e.g., routing and number and type of traffic sources. Fur-
ther, many of the desirable features of a network topology can best be
expressed in linguistic terms, which is the basis of fuzzy logic. In this
paper, we present a fuzzy evolutionary hybrid metaheuristic for network
topology design. This approach is dominance preserving and scales
well with larger problem instances and a larger number of objective cri-
teria. Experimental results are provided.

1 Introduction

A typical enterprise network provides communication services to a large num-
ber of hosts, such as mainframe computers, mini systems, workstations, PCs,
printers, etc., [1]. Network active elements such as routers, switches, and hubs
are used to interconnect these computers and peripherals. The network topology
is governed by several constraints. Geographical constraints dictate the break-
down of such internetworks into smaller parts or groups of nodes, where each
group makes up what is called a LAN. A LAN consists of all network elements
which do not include routers or layer-3 switches. Routers delineate the bound-
aries of LANs. Communication services of a modern organization are centered
around a structured campus network, which consists of a backbone interconnect-
ing a number of LANs via routers or layer-3 switches. Further, the nodes of a
LAN may be subdivided into smaller parts, called LAN segments (see Fig. 1).
Overdimensioning a network is easy; however, designing a cost-optimized net-
work is always very hard. Hardness is a function of the size, the constraints, and
obviously the cost parameters to tradeoff. Furthermore, with many cost param-
eters and constraints, the notion of optimality is not clear. A more reasonable
approach is to seek a solution that possesses a set of desirable properties and do
not violate some well established design principles. Examples of these principles
are:
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Fig. 1. A typical Campus Network (WS represents workgroup switch).

– There is a physical path between any two nodes.
– The number of hops between any two stations does not exceed a given thresh-

old.
– Only a given small fraction of links have utilization levels below some thresh-

old.

A category of algorithms that were found to be effective for such problems
are iterative metaheuristics. These allow you to walk the state space of solutions
while evaluating each solution against any desirable set of properties. These
meta-heuristics are characterized by hill climbing property that allows occa-
sional acceptance of inferior solutions [2]. Heuristics like genetic algorithm [3],
simulated annealing [4], tabu search [5], simulated evolution [6], and stochastic
evolution [7] are examples of stochastic iterative heuristics. Detailed description
of these heuristics can be found in [2], and an interesting classification of some
of them is given in [5].

In this work we propose a hybrid meta-heuristic for the topology design prob-
lem which follows the search strategy of Simulated Evolution (SE) algorithm. SE
is a memoryless meta-heuristic, where the walk through the state space is heav-
ily influenced by the allocation operator. The memoryless nature of the search
usually results in partial revisiting of areas of the state space. To minimize the
effect of such undesirable behavior, the allocation step of SE is implemented
while following tabu search approach.

2 Background

Many combinatorial optimization problems can be formulated as follows [7]:
Given a finite set M of distinct movable elements and a finite set L of locations,
a state is defined as an assignment function S : M → L satisfying certain con-
straints. The topology design problem fits this generic model. For this problem,
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given a set of links E = {e1, e2, ..., en} and a set of locations L = {0, 1}, where
L(ei) = 1 iff link ei belongs to the topology and L(ei) = 0 otherwise. We seek
to find an assignment S : E → L which corresponds to feasible topology of
desirable properties.

Unlike constructive algorithms, which produce a solution only at the end of
the design process, iterative algorithms produce numerous solutions during the
course of their search. In order to compare alternative topologies, the cost of
each topology is estimated for the objectives under consideration. Important ob-
jectives are the minimization of monetary cost, network latency, and maximum
number of hops between any source-destination pair. Most of the objectives and
constraints depend on several aspects such as network flow dynamics, technology
trends, strategic commercial goals, etc., that can best be expressed in linguistic
terms, which is the basis of fuzzy logic. In this work, the cost function, con-
straints, as well as some of the SE algorithm operators are implemented using
fuzzy algebra [8].

2.1 SE Algorithm

Simulated Evolution (SE) is a stochastic evolutionary search strategy that falls
in the general category of meta-heuristics. It was first proposed by Kling and
Banerjee in [6]. SE adopts the generic state model described above, where a
solution is seen as a population of movable elements.

Starting from a given initial solution, SE repetitively executes the following
three steps in sequence: evaluation, selection, and allocation, until certain
stopping conditions are met. The pseudo-code of the SE algorithm is given in
Fig. 2. The evaluation step estimates the goodness of each element in its
current location. The goodness of an element is a ratio of its optimum cost to its
actual cost estimate, and therefore belongs to the interval [0,1]. It is a measure
of how near each element is to its optimum position. The higher the goodness
of an element, the closer is that element to its optimum location with respect
to the current configuration. In selection step, the algorithm probabilistically
selects elements for relocation. Elements with low goodness values have higher
probabilities of getting selected. A selection bias (B) is used to compensate for
errors made in the estimation of goodness. Its objective is to inflate or deflate the
goodness of elements. A high positive value of bias decreases the probability of
selection and vice versa. Large selection sets also degrade the solution quality due
to uncertainties created by large perturbations. Similarly, for high bias values
the size of the selection set is small, which degrades the quality of solution due
to limitations of the algorithm to escape local minima. A carefully tuned bias
value results in good solution quality and reduced execution time [6].

Elements selected during the selection step are assigned to new locations
in the allocation step with the hope of improving their goodness values, and
thereby reducing the overall cost of the solution. Allocation is the step that has
most impact on the quality of the search performed by the SE algorithm. A com-
pletely random allocation makes the SE algorithm behave like a random walk.
Therefore, this operator should be carefully engineered to the problem instance
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Simulated Evolution(B, Φinitial, StoppingCondition)
NOTATION
B= Bias Value.
Φ= Complete Solution.
ei= Individual link in Φ.
Oi= Lower bound on cost of ith link.
Ci= Current cost of ith link in Φ.
gi= Goodness of ith link in Φ.
S= Queue to store the selected links.
ALLOCATE(ei, Φi)=Function to allocate ei in partial solution Φi

Begin
Repeat

EVALUATION: ForEach ei ∈ Φ DO
begin

gi = Oi
Ci

end
SELECTION: ForEach ei ∈ Φ DO

begin
IF Random > Min(gi + B, 1)
THEN

begin
S = S ∪ ei; Remove ei from Φ.

end
end

Sort the elements of S
ALLOCATION: ForEach ei ∈ S DO

begin
ALLOCATE(ei, Φi)

end

Until Stopping Condition is satisfied
Return Best solution.
End (Simulated Evolution)

Fig. 2. Structure of the simulated evolution algorithm.

and must include domain-specific knowledge. Different constructive allocation
schemes are proposed in [6].

Though SE falls in the category of meta-heuristics such as simulated anneal-
ing (SA) and genetic algorithm (GA), there are significant differences between
these heuristics (see [2]). A classification of meta-heuristics proposed by Glover
and Laguna [5] is based on three basic features: (1) the use of adaptive memory
where the letter A is used if the meta-heuristic employs adaptive memory and
the letter M is used if it is memoryless; (2) the kind of neighborhood explo-
ration, where the letter N is used if the meta-heuristic performs a systematic
neighborhood search and the letter S is used if stochastic sampling is followed;
and (3) the number of current solutions carried from one iteration to the next,
where the digit 1 is used if the meta-heuristic maintains a single solution, and the
letter P is used if a parallel search is performed with a population of solutions
of cardinality P . For example, according to this classification, Genetic algorithm
is M/S/P, tabu search is A/N/1, and both simulated annealing and simulated
evolution are M/S/1. The heuristic proposed in this work is A/S/1.
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2.2 Fuzzy Logic

Fuzzy Logic is a mathematical discipline invented to express human reasoning
in rigorous mathematical notation. Unlike classical reasoning in which a propo-
sition is either true or false, fuzzy logic establishes approximate truth value of
proposition based on linguistic variables and inference rules. A linguistic vari-
able is a variable whose values are words or sentences in natural or artificial
language [8]. By using hedges like ‘more’, ‘many’, ‘few’ etc., and connectors like
AND, OR, and NOT with linguistic variables, an expert can form rules, which
will govern the approximate reasoning.

During the topology design process, some desirable objectives, such as the
delay, can only be imprecisely estimated. Fuzzy logic provides a rigorous al-
gebra for dealing with imprecise information. Furthermore, it is a convenient
method of combining conflicting objectives and expert human knowledge. From
the pseudocode of the SE algorithm given in Fig. 2, it is clear that there are two
phases of the algorithm which could be modeled to include multiple objectives.
These phases are evaluation and allocation. We have used fuzzy logic based
reasoning in these two phases.

3 Assumptions and Notation

In this work, we have assumed the following:

– The (x, y) location of each host is given.
– All hosts have either Ethernet (10 or 100 Mbps) or Token Ring (4 or 16

Mbps) interfaces.
– The traffic rates generated among pairs of hosts are assumed known.
– Vertical cabling (interconnection of local sites to backbone switches) is im-

plemented with fiber optic cables.
– Horizontal cabling portion (cabling within the work area/local site) is im-

plemented with Category 5 UTP (or STP for Token-Ring).
– The root node is a switch acting as a collapsed backbone with given required

interfaces.
– There is a user specified limit on the number of network addresses per subnet.
– Maximum allowed utilization of any link should not exceed a desired thresh-

old (e.g. 60 %).

For the following sections, we shall use the notation given below:

n number of clusters/local sites.
m number of LAN segments in a cluster.
T n × n local site topology matrix where tij = 1, if local sites i and j

are connected and tij = 0 otherwise.
λi traffic on link i.
λmax,i capacity of link i.
L number of links of the proposed topology.
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Dnd average delay between any source destination pair.
Pi maximum number of clusters which can be connected to device i.
γij external traffic between clusters i and j.
γ overall external traffic.

4 Problem Statement

We seek to find a feasible topology of near optimum overall cost. A feasible
topology is one that satisfies design constraints. Optimality of a topology is
measuredwith respect to three objectives: monetary cost, average network delay
per packet (network latency), and maximum number of hops between any source-
destination pair.

Three important constraints are considered.

1. The first set of constraints is dictated by bandwidth limitation of the links.
A good network would be one in which links are “reasonably” utilized, oth-
erwise this would cause delays, congestion, and packet loss. Thus the traffic
flow on any link i must never exceed a threshold value:

λi < λmax,i i =1, 2, ..., s (1)

where s is the total number of links present in the topology.
2. The second constraint is that the number of clusters attached to a network

device i must not be more than the port capacity Pi of that device.

n∑

j=1

tij < Pi i = 1, 2, ...,n ∀i 6= j (2)

3. The third set of constraints express the designer’s desire to enforce certain
hierarchies on the network devices. For example, one might not allow a hub
to be the parent of a router or backbone device.

Below, we describe the objective criteria used to measure the goodness of a given
topology.

Monetary cost: The goal is to find the topology with minimum possible cost,
while meeting all the requirements and constraints. The cost of the cable and
the cost of the network devices are the two main entities affecting the monetary
cost, therefore:

cost =(l × ccable) + (cnd) (3)

where l represents the total length of cable, ccable represents the cost per unit of
the cable used, and cnd represents the combined costs of all the routers, switches,
and hubs used.
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Average Network Delay: The second objective is to minimize the average
network delay, while considering the constraints and requirements.To devise a
suitable function for average network delay, we approximate the behavior of a
link and network device by an M/M/1 queue [9].The delay per bit due to the
network device between local sites i and j is Bi,j = µbi,j , where 1

µ is the average
packet size in bits and bi,j is the delay per packet. If γij is the total traffic
through the network device between local sites i and j, then the average delay
due to all network devices is:

Dnd =
1
γ

d∑

i=1

d∑

j=1

γijBij (4)

where d is the total number of network devices in the network.Thus, the total
average network delay is composed of delays of links and network devices and is
given by [9]

D =
1
γ

L∑

i=1

λi

λmax,i − λi
+

1
γ

d∑

i=1

d∑

j=1

γijBij (5)

Maximum number of hops between any source-destination pair: The
maximum number of hops between any source-destination pair is also another
objective to be optimized. A hop is counted as the packet crosses a network
device.

5 Proposed Algorithm and Implementation Details

This section describes our proposals of fuzzification of different stages of the SE
algorithm. We confine ourselves to tree design. Trees are minimal and provide
unique path between every pair of local sites. Further, the design of a general
mesh topology usually starts from a near optimal constrained spanning tree.

5.1 Initialization

The initial spanning tree topology is generated randomly, while keeping into
account the feasibility constraints mentioned earlier.

5.2 Proposed Fuzzy Evaluation Scheme

The goodness of each individual is computed as follows. In our case, an
individual is a link which interconnects the devices of two local sites (at the
backbone level) or two network devices (at the local site level). In the fuzzy
evaluation scheme, monetary cost and optimum depth of a link (with respect
to the root) are considered fuzzy variables. Then the goodness of a link is
characterized by the following rule.
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Rule 1: IF a link is near optimum cost AND near optimum depth
THEN it has high goodness.

Here, near optimum cost, near optimum depth, and high goodness are linguistic
values for the fuzzy variables cost, depth, and goodness. Using and-like compen-
satory operator [10], Rule 1 translates to the following equation for the fuzzy
goodness measure of a link li.

gli = µe(li) = αe × min(µe
1(li), µ

e
2(li)) + (1 − αe) × 1

2

2∑

i=1

µe
i (li) (6)

The superscript e stands for evaluation and is used to distinguish similar
notation in other fuzzy rules. In (6), µe(li) is the membership in the fuzzy set
of high goodness links and αe is a constant. The µe

1(li) and µe
2(li) represent

memberships in the fuzzy sets near optimum monetary cost and near optimum
depth.

In order to find the membership of a link with respect to near optimum
monetary cost, we proceed in following manner. From the cost matrix, which
gives the costs of each possible link, we find the minimum and maximum costs
among all the link costs. We take these minimum and maximum costs as the lower
and upper bounds and call them “LCostMin” and “LCostMax” respectively and
then find the membership of a link with respect to these bounds. Furthermore, in
this work, we have normalized the monetary cost with respect to “LCostMax”.
The required membership function is represented as depicted in Fig. 3, where
x − axis represents LCost

LCostMax , y − axis represents the membership value, A =
LCostMin
LCostMax , and B = LCostMax

LCostMax = 1. This normalization enables us to use the
same membership function for all topology design instances.

1.0

0.8

0.6

0.4

0.2

0

µ

A B

Fig. 3. Membership function for the objective to be optimized.

In the same manner, we can find the membership of a link with respect
to near optimum depth. The lower limit, which we call “LDepthMin” is taken
to be a depth of 1 with respect to the root. The upper bound, which we call
“LDepthMax” is taken to be 1.5 times of the maximum depth generated in the
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initial solution or a maximum of a user specified limit.1 For example, if in the
initial solution, the maximum depth turns out to be 4, then “LDepthMax” for
the depth membership function would be 6. This is done to give chance to links
which may have more depth than the one in the initial solution. If we take the
initial solution maximum depth as “LDepthMax”, then in the following iterations
some links with higher depths will have a membership value of zero (with respect
to depth membership function) and thus they will not be able to play any role
as far as depth is concerned. However, due to technological limitations, we have
limited the maximum possible depth to 7, in the case when “LDepthMax” turns
out to be more than 4. The reason for having the maximum depth of 7 is that
the hop limit for RIP is 15. This means that if a maximum depth of 7 is taken,
then in the worst case we would have a total of 14 hops from a source to a
destination. The membership function with respect to near optimum depth can
be represented as illustrated in Fig. 3, where x−axis represents LDepth, y−axis
represents the membership value, A = LDepthMin, and B = LDepthMax.

5.3 Selection

In this stage of the algorithm, for each link li in current tree topology, where i
= 1,2,..., n-1, a random number RANDOM ∈ [0, 1] is generated and compared
with gi + B, where B is the selection bias. If RANDOM > gi +B , then link li is
selected for allocation and considered removed from the topology. Bias B is used
to control the size of the set of links selected for removal. A bias methodology
called variable bias [11] has been used in this paper. The variable bias is a
function of quality of current solution. When the overall solution quality is poor,
a high value of bias is used, otherwise a low value is used. Average link goodness
gi is a measure of how many “good” links are present in the topology. The bias
value changes from iteration to iteration depending on the quality of solution.
The variable bias is calculated as follows:

Bk = 1 − Gk

where Bk is the bias for k th iteration and Gk is average goodness of all the
links at the beginning of iteration k.

5.4 Proposed Fuzzy Allocation Scheme

During the allocation stage of the algorithm, the selected links are removed
from the topology one at a time. For each removed link, new links are tried
in such a way that they result in overall better solution. Before the allocation
step starts, the selected links are sorted according to their goodness values in
ascending order.
1 This user specified limit may be a design constraint, e.g., if each hop represents a

router that uses Routing Information Protocol (RIP) then a limit would be 7, i.e.,
a branch of the tree should not have more than 7 routers.
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In the fuzzy allocation scheme, the three criteria to be optimized are combined
using fuzzy logic to characterize a good topology. The reason for using fuzzy logic
is that the characterization of a good topology with respect to several criteria is
usually based on heuristic knowledge which is acquired through experience. Such
knowledge is most conveniently expressed in linguistic terms, which constitute
the basis of fuzzy logic. For the problem addressed in this paper, a good topology
is one that is characterized by a low monetary cost, low average network delay,
and a small maximum number of hops. In fuzzy logic, this can easily be stated
by the following fuzzy rule:

Rule 2: IF a solution X has low monetary cost AND low average network
delay AND low maximum number of hops between any source-
destination pair THEN it is a good topology.

The words “low monetary cost”, “low average network delay”, “low maximum
number of hops”, and “good topology” are linguistic values, each defining a fuzzy
subset of solutions. For example, “low average network delay” is the fuzzy subset
of topologies of low average network delays. Each fuzzy subset is defined by a
membership function µ. The membership function returns a value in the interval
[0,1] which describes the degree of satisfaction with the particular objective
criterion. Using the and-like ordered weighted averaging operator [10], the above
fuzzy rule reduces to the following equation.

µa(x) = βa × min(µa
1(x), µa

2(x), µa
3(x)) + (1 − βa) × 1

3

3∑

i=1

µa
i (x) (7)

where µa(x ) is the membership value for solution x in the fuzzy set good
topology and βa is a constant in the range [0,1]. The superscript a stands for
allocation. Here, µa

i for i = {1,2,3} represents the membership values of solution x
in the fuzzy sets low monetary cost, low average network delay, and low maximum
number of hops between any source-destination pair respectively. The solution
which results in the maximum value for (7) is reported as the best solution found
by the SE algorithm.

Below we describe how to get the membership functions for the three criteria
mentioned above.

Membership Function for Monetary Cost. First, we determine two ex-
treme values for monetary cost, i.e., the minimum and maximum values.
The minimum value, “TCostMin”, is found by using the Esau-Williams algo-
rithm [12], with all the constraints completely relaxed. This will surely give us
the minimum possible monetary cost of the topology. The maximum value of
monetary cost,“TCostMax”, is taken to be the monetary cost generated in the
initial solution. The monetary cost is normalized with respect to “TCostMax”.
The corresponding membership function is shown in Fig. 3, where x − axis rep-
resents TCost

TCostMax , y − axis represents the membership value, A = TCostMin
TCostMax ,

and B = TCostMax
TCostMax = 1.



410 H. Youssef, S.M. Sait, and S.A. Khan

Membership Function For Average Network Delay. We determine two
extreme values for average network delay. The minimum value, “TDelayMin”, is
found by connecting all the nodes to the root directly, ignoring all the constraints
and then calculating the average network delay using (5). The maximum value
of average delay,“TDelayMax”, is taken to be the average delay generated in
the initial solution. The average delay is normalized with respect to “TDelay-
Max”. The membership function is shown in Fig. 3, where x − axis represents

TDelay
TDelayMax , y − axis represents the membership value, A = TDelayMin

TDelayMax , and
B = TDelayMax

TDelayMax = 1.

Membership Function For Maximum Number of Hops. Again, two ex-
treme values are determined. The minimum value, “THopsMin”, is taken to
be 1 hop, which will be the minimum possible in any tree. The maximum
value,“THopsMax”, is taken to be the maximum number of hops between any
source-destination pair generated in the initial solution. The membership func-
tion is shown in Fig. 3, where x − axis represents THops, y − axis represents
the membership value, A = THopsMin, and B = THopsMax.

In the proposed allocation scheme, all the selected links are removed one at
a time and trial links are placed for each removed link. We start with the head-
of-line link, i.e. the link with the worst goodness. We remove this link from the
topology. This divides the topology into two disjoint trees. Now the placing of
trial links begins. In this work, the approach to place trial links is as follows. At
most ten trial moves (i.e., trial links) are evaluated for each removed link. One
point to mention is that for the ten moves, some moves may be invalid. However,
we search for only four “valid” moves. Whenever we find four valid moves, we
stop, otherwise we continue until a total of ten moves are evaluated (whether
valid or invalid). The removal of a link involves two nodes P and Q, of which
node P belongs to the subtree which contains the root node and node Q belongs
to the other subtree. For the ten moves we make, five of them are greedy and
five are random. For the greedy moves, we start with node Q and five nearest
nodes in the other subtree are tried. For the random moves, we select any two
nodes in the two subtrees and connect them. If all the ten moves are invalid,
in which case the original link is placed back in its position. The valid moves
are evaluated based on (7) and the best move among the ten moves is made
permanent. This procedure is repeated for all the links that are present in the
set of selected links.

We have implemented two variations of allocation schemes. The first one is
the same as has been described above, which we call SE. In the second variation,
Tabu Search characteristics have been introduced, details of which follow.

5.5 Tabu Search Based Allocation

Tabu Search (TS) is a general iterative heuristic that is used for solving combina-
torial optimization problems. The algorithm was first presented by F. Glover [5].
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Table 1. Characteristics of test cases used in our experiments. LCostMin, LCostMax,
and TCostMin are in dollars. TDelayMin is in milliseconds. Traffic is in Mbps.

Name # of Local Sites LCostMin LCostMax TCostMin TDelayMin Traffic
n15 15 1100 9400 325400 2.14296 24.63
n25 25 530 8655 469790 2.15059 74.12
n33 33 600 10925 624180 2.15444 117.81
n40 40 600 11560 754445 2.08757 144.76
n50 50 600 13840 928105 2.08965 164.12

A key feature of TS is that it imposes restrictions on the search process, pre-
venting it from moving in certain directions to drive the process through regions
desired for investigation [5]. It searches for the best move in the neighborhood
of the current solution.

In this work, we have modified the SE algorithm by introducing Tabu Search
characteristics in the allocation phase. Recall that in the allocation phase, cer-
tain number of moves are made for each link in the selection set and the best
move is accepted, making the move (i.e., link) permanent. This newly accepted
link is saved in a tabu list. Thus our attribute is the link itself. The aspiration
criterion adopted is that if the link that had been made tabu produces a higher
membership value than the current one in the membership function “good topol-
ogy”, then we will override the tabu status of the link and make it permanent.
This strategy prevents the selection and allocation operators from repetitively
removing the same link and replacing it with a link of equal or worse goodness.

5.6 Stopping Criterion

In our experiments, we have used a fixed number of iterations as a stopping
criterion. We experimented with different values of iterations and found that for
all the test cases, the SE algorithm converges within 4000 iterations or less.

6 Results and Discussion

The SE algorithm described in this paper has been tested on several randomly
generated networks. For each test case, the traffic generated by a typical local
site was collected from real sites. Other characteristics, such as the number of
ports on a network device, its type, etc. were assumed. However, the costs of
the network devices and links were collected from vendors. The characteristics of
test cases are listed in Table 1. The smallest test network has 15 local sites and
the largest has 50 local sites. The hierarchies in which the devices are connected
are that backbone switch is at the top, followed by routers, then workgroup
switches, and then hubs.
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Table 2. Best solution for different tabu list sizes. Monetary cost is in dollars, delay
is in milli seconds per packet, and execution time is in minutes.

Test Case Tabu list size Monetary Cost Avg. Delay Max. Hops

1 298200 2.935 4
2 297100 2.78 4

n15 3 294350 3.448 6
4 298100 3.037 5
5 296900 3.278 6
3 481745 4.219 8
4 478690 4.189 9

n25 5 483210 3.537 6
6 479915 4.275 9
7 488400 4.608 9
3 655715 5.772 11
5 652785 4.77 8

n33 6 682465 4.19 6
7 652310 5.95 10
9 667100 5.087 7
5 785795 4.746 10
6 798695 8.019 12

n40 7 783970 4.441 9
8 786950 5.478 9
9 790645 5.136 8
4 958995 6.739 14
5 967110 9.279 14

n50 7 983020 5.245 11
8 1075450 5.725 9
9 971965 7.13 12

6.1 Effect of Tabu Search Based Allocation and Tabu List Size

Table 2 shows the results obtained for the test cases using different tabu list
sizes. In this table, monetary cost, average delay, and maximum hops of best
solutions are reported along with the respective tabu list size. In the table we
notice that as the test case size increases, the tabu list that gives the best solution
also increases. For example, in n15, tabu list size of 2 gives the best solution.
Similarly, best solutions are achieved by tabu list sizes of 5, 6, 7, and 7 in n25,
n33, n40, and n50 respectively.

Table 3 gives the results for different test cases considering the frequency of
tabu moves, and the respective tabu list size that gave the best solutions with
their execution times. By frequency of tabu moves we mean the number of times
a link was found tabu. We record this through a counter called tabu counter. The
tabu counter only includes the number of tabu links which could not pass the
aspiration criteria. It does not count the frequency of links which were actually
tabu but managed to pass the aspiration criteria. From this figure, it can be seen
that the percentage of tabu moves varies between 1% and 10%.

6.2 Comparison of SE and SE TS

In this section, the results of SE TS with SE are compared. Table 4 shows the
results for SE and best tabu list size SE TS. The percentage gain shows the
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Table 3. Results for best tabu list size. Execution time is in minutes.

Test case Tabu list size Total moves Tabu moves % Tabu moves Exec. time
for best solution

n15 2 1241 45 3.62 2.25
n25 5 2496 39 1.56 4
n33 6 1352 93 6.878 8
n40 7 4223 233 5.51 26
n50 7 3995 328 8.21 65

improvement achieved by SE TS when compared to SE. From this table, it is
seen that SE TS performs better than SE as far as monetary cost objective is
concerned. In all the test cases, a gain is achieved by SE TS. For example, a
gain of 5.67 % is achieved in case of n50. A similar behavior is seen for average
network delay metric, where SE TS achieves gain in all the cases. Similarly, for
maximum number of hops metric, a gain is achieved for all the cases except n50.
However, the loss in maximum hops for n50 is compensated by the improvement
in the monetary cost and delay metrics. As far as the execution time is concerned,
it is also comparable.

To compare the quality of search space between SE and SE TS , we plot dif-
ferent optimization parameters versus iteration count of the algorithms for the
test case n40 (best tabu list size=7 in SE TS). Fig. 4(a) compares the current
monetary cost. From this plot it is clear that SE TS converges a little faster
towards a better solution. Somewhat similar behavior is seen with respect to av-
erage network delay and maximum hops parameters in Figs. 4(b) and (c), where
we see that SE TS performs better than SE. The reason SE TS has better perfor-
mance than SE is the following. In SE, since the search space for valid solutions
is limited, it happens that after some iterations, same moves are repeated and
thus the algorithm keeps searching in the same search space most of the time,
while in SE TS, more search space is covered because previous moves remain
tabu for some time, causing the algorithm to diversify the search into another
subarea. Recall that in the allocation phase, four valid moves are evaluated for
each link in selection set and the best move (link) is made permanent. This new
link is also saved in the tabu list simultaneously. However, it may happen that
this new link may become “bad” (in terms of evaluation function) in the follow-
ing iterations, upon which it is removed. But it may be possible that this link
may become good again after one or more iterations, but since it is in the tabu
list, it will not be chosen to be placed again, thus giving room to other links to
be chosen. In general we see that SE TS achieves better quality solution than
SE.

7 Conclusion

In this paper we have presented a novel approach for topology design of campus
networks based on fuzzy simulated evolution algorithm with two variations in
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Fig. 4. Comparison of SE and SE TS for n40.

Table 4. Comparison of SE and SE TS. C = Cost in dollars, D = Delay in milli seconds
per packet, H = hops, T = execution time in minutes, TL= Tabu list size. Percentage
gain shows improvement achieved by SE TS compared to SE.

Case SE SE TS % Gain
C D H T TL C D H T C D H

n15 305500 4.135 7 1 2 297100 2.78 4 2.25 2.7 32.8 42.8
n25 512415 4.37 7 4.4 5 483210 3.537 6 4 5.7 19.1 14.28
n33 702815 5.319 7 17 6 682465 4.19 6 8 2.89 21.2 14.28
n40 789625 5.529 9 42 7 783970 4.441 9 26 0.72 19.7 0
n50 1042080 8.236 10 62 7 983020 5.245 11 65 5.67 36.3 -9.1

the allocation scheme. Results obtained for the test cases considered suggest
that fuzzy simulated evolution algorithm with tabu search allocation is a robust
approach to this problem, and was always able to find good quality feasible
solutions.
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