
Fuzzified Ant Colony Optimization Algorithm for Efficient Combinational
Circuits Synthesis

Bambang A. B. Sarif, Mostafa Abd-El-Barr, Sadiq M. Sait , Uthman AI-Saiari
Computer Engineering Department

KFUPM, Dhahran-31261
{sarif, mostafa, sadiq, saiarios} @ccse.ktipm.edu.sa

45

40

35

Abstract- With the increasing demand for high qual-
ity, more efficient, less areaand less power circuits, the
problem of logic circuit design has become a multiobjec-
tive optimization problem. In this paper, multiobjective
optimization of logic circuits based on a fnzzified Ant
Colony (ACO) algorithm is presented. The results ob-
tained using the proposed algorithm are compared to
those obtained using SIS in terms of area, delay and
power for some known circuits. It is shown that the cir-
cuits produced by the proposed algorithm are better as
compared to those obtained by SIS.

1 Introduction

Synthesis of digital circuits can be stated as the process of
assembling a collection of logic components to perform a
specified function using a target technology. The obtained
circuits are optimized for a number of objectives and subject
to some constraints. such as area, delay and power.

The classical logic synthesis algorithms include the opti-
mization of two quality measures, namely: area and perfor-
mance [I]. The design objective can be either minimizing
the area or maximizing the performance. Optimization can
be subject to constraints, such as upper bound on area, as
well as upper bounds on performance and lower bound on
delay.

The possible configurations of a circuit are many. These
different feasible implementations of a circuit define its de-
sign space. Figure l shows an example design space of a 2-
bit adder circuit obtained using SIS, considering delay and
area of the circuit.

The design space consists of a finite set of design points.
If the size of the circuit as well as the design objectives
are increased, the number of design points could be huge.
This will increase the difficulty in finding the optimal struc-
ture for a given circuit. Hence, current available techniques
divide the circuit design problem into a number of sub-
problems with lower dimensionality. However, this ap-
proach is somehow constrained both by the training and
experience of the designer and by the amount of domain
specific knowledge available. On the other hand, iterative
heuristics can work on a larger space, and through the pro-
cess of assemble and test, candidate solutions can be built
and evaluated. An optimal solution could evolve from this

.................

..................

.................

30

...................... . . r

. . i Delay . .
b

2 4 6 8

Figure 1: Design space: areddelay trade-off for a 2-bit
adder,

process.
A number of researchers have worked on evolutionary

logic design. Louis [2] , Miller [3,4] and Colleo [5], to name
a few. They have used different heuristics such as: Genetic
Algorithm, Ant Colony and Simulated Evolution. This pa-
per is a continuation of our previous work in [6]. In this
paper, a multiobjective evolutionary logic design based on
Ant Colony Optimization (ACO) is proposed. Fuzzy logic
is used to model the multiobjective cost function. The goal
is to find functionally correct circuits optimized in terms of
area, delay and power. This paper is organized as follows.
Section 1 gives a brief introduction to the problem of evo-
lutionary logic synthesis. Section 2 describes some back-
ground material on fuzzy logic. The proposed fuzzy fitness
function is given in Section 3. Section 4 describes the pro-
posed approach, Experimental results and comparison are
given in Section 5. Finally, conclusion is given in Section 6.

2 Fuzzy Logic

Fuzzy Logic was introduced by Lofti A. Zadeh in [71. Dur-
ing the past decades, fuzzy logic has found numerous ap-
plications in the field of engineering and control [SI. .In
the field of VLSI design, several techniques based on fuzzy
logic are reported in the literature 19, IO].

A fuzzy set A of universe of discourse X is defined as
A = {(z, P A ($)) I all 2 E X}, where X is a space point
and pa(%) is a membership function of z being an element

0-7803-8515-2/04/$20.00 02004 IEEE 1317

of A. A membership function ~ A (z) is a mapping of 2 in A
that maps X to the membership space M. The range of the
membership function is a subset of the non-negative real
numbers whose boundaries are finite. Elements with zero
degree of membership are normally not listed.

Fuzzy logic establishes approximate truth value of
propositions based on linguistic variables and inference
rules [l l] . A linguistic variable is a variable whose values
are words or sentences in natural or artificial language. It
is concerned with the use of fuzzy values that captures the
meaning of words, human reasoning and decision-making.
An example of linguistic variable is circuit’s area. This vari-
able can be expressed by linguistic values like very small,
small, average, large and very large circuit, rather than crisp
values such as 20 pmZ, 30 50 bm’, 75 bm’, and 100
pm*.

2.1 Multiobjective Optimization Using Fuzzy Logic

Approximate reasoning can be made based on linguistic
variables and their values. Rules can be generated based on
previous experience. The rules are expressed as If ... Then
statements. Connectives such as AND and OR can be used
in approximate reasoning to join two or more linguistic val-
ues.

In optimization problems, the linguistic value used in the
consequent part identifies the fuzzy subset of good solu-
tions. Therefore, the result of evaluation of the antecedent
part identifies the degree of membership in the fuzzy subset
of good solutions according to the fuzzy rule in question.
If more than one rule is used to perform decision-making,
each rule can be evaluated to generate a numerical value.
Then, these numerical values from various evaluations of
different rules can be combined to generate a crisp value on
a higher level of hierarchy.

Consider, for example, the circuit design problem target-
ing minimization of area, delay, and power consumption.
Three linguistic variables area, delay and power introduced.
Good solutions can be characterized by the following fuzzy
rule.

Ifthe circuit has (small area) and (less delay)
and (less power consumption) then it is a good
solution.

2.2 Ordered Weighted Averaging (OWA) Operator

In the traditional fuzzy logic, the minmax operators are used
to build the above fuzzy rule. However, it was shown in [121
that these operators can lead to undesirable behavior. This
behavior has led to the development of other fuzzy oper-
ators such as the Ordered Weighted Averaging (OWA) op-
erator. This operator allows easy adjustment of the degree
of “AND-ing” and “OR-ing” embedded in the aggregation.

According to [131, “OR-like” and “AND-like” OWA for two
fuzzy sets A and B are implemented as given in Equations 1
and 2 respectively.

1
P A ~ Z) = Xxmin(ba,Pg)+(l - -X)x- i (b~+P~) (2)

where X is a constant parameter in the range [0,1] and rep-
resents the degree to which OWA operator resembles a pure
“OR’ or pure “AND” respectively.

3 Fuzzy Fitness Function

In this section, a fuzzy-based fitness function is formulated.
Similar to the weighted sum approach proposed in [6]. the
overall fitness of a solution consists of two parts: functional
fitness and objective fitness. In this approach, membership
functions are used and these membership functions will be
aggregated into a single function using a fuzzy operator.

Recall to the formulation of functional fitness used in [6],
FF lies in the range [0.5, 11. Thus, the membership func-
tion for functional fitness is shown in Equation 3.

(3)
FF
0 otherwise

if 0.5 5 FF 5 1
PFF =

Area as Optimization Objective

The lower bound on area can be estimated by referring to
the VLSI circuit design and logic synthesis principles. For
any n-input single-output circuit, the minimum area for the
circuit is equal to the area of (n - 1) 2-input gates repre-
senting binary tree structure. Since any circuit can be im-
plemented using NAND gates and NAND gates happen to
be the smallest among other primitives gates (except NOT
gate), then the minimum area is:

min,,,, = (n - 1) x Area(NAND gate)

In order to guide the search intelligently, a maximum value
must be carefully estimated. For this purpose, SIS tools [I]
are used to obtain circuits with minimum area. In this con-
text. rugged.script is used to generate the circuits’ netlist
files. These files are then fed to our own tool to obtain the
estimated value for area, delay and power consumption. The
reason behind this is twofold. Firstly, because the delay op-
timization in SIS does not consider switching delay. Sec-
ondly, SIS does not consider power optimization.

Since our objective is to obtain circuits with better per-
formance than those obtained using SIS, the estimated val-
ues of area, delay and power of circuits obtained using SIS
are used as the target values. In the case of area as optimiza-
tion objectives, the target area is equal to the mea of circuits

1318

obtained using SIS and denoted as tgOreal (see Figure 2) .
Thus, the membership function for area as optimization ob-
jectives is:

The shape of the membership function is depicted as the
bold line shown in Figure 2.

P

t

Area as Constraint

I n this case, the area of a circuit obtained from SIS is
used as target value. For this purpose, the mazareo and
tgaFeaz should be defined. The following settings are ap-
plied. tgoreoz = kl x tg,,,,l and maz,,, , = kz x tgoreol .
kl, kz E 91, 0 < k~ 5 1, kz 2 1. In this case, the mem-
bership function is given by:

0 I area < tg.,..l
PareLCon = 1 - P2 1 I area < maz,,.,

otherwise {: (5)
with

area - kl p2 =
mazap... - kl

The shape of the membership function is depicted as
dashed line shown in Figure 2.

Delay as Optimization Objective

The minimum delay (minderay) is estimated as the delay of
two-level logic consisting of NAND gates without consid-
ering the switching delay. The tgdelnyl is estimated from

circuit generated using SIS with de1ay.scripr executed. The
membership function for delay as optimization objectives
is:

0 5 delay < nindel.,
mindel,, 5 delay < tgdeloyl
otherwise

(6)

The shape of the membership function is depicted as
bold line shown in Figure 3.

P

t

mini,lay tg.iclr,z tgdelayl Iwx delay

Figure 3: Membership function for delay.

Delay as Constraint

In this case, the following settings are applied,

k l , kz E 91, 0 < k1 5 1, kz 2 1. In this case, the
membership function is given by:

tgdeIay2 = kl X t g d e l a y l and maZdeloy = 52 X t g d e h y l .

0 I delay < tgdelayl
1 5 delay'< mazdeloy
otherwise

(7)
with

delay - 1 p2 =
mazdelay - 1

The shape of the membership function is depicted as
dashed line shown in Figure 3.

Power as Optimization Objective

The minimum power (minpo,J is estimated as the power
consumption of minimum area circuit in which each gate
has the least switching activity. It is assumed that for a given
truth table, the output of each gate will be '1' only once.

1319

With L = length of truth table, the minimum power con-
sumption (switching activity) can be estimated as follows.

minpowe7 = 2 . - capacitance(NAND)
L - 1

L2
The tgpOwl is estimated from minimum area circuit gen-

erated by SIS. The membership function for power as opti-
mization objectives is:

0 5 power < min,,,

otherwise
Ppower-obj = 1 -PI minpow I w e ? < tgpowl {: (8)
with

m e r - min,,,, p l =
tg,,, - minpow

The shape of the membership function is depicted as
bold line shown in Figure 4.

P

t

Input I

tgpavrd max -,
Figure 4 Membership function for power.

Input 2 Gate type

Power as Constraint

The following settings are applied, tgpowz = kl x tgpOwl
and mazpow = kz x tg,,,,, k l , kz E 92, 0 < kl 5
1, kz 2 1. In this case, the membership function is given
by:

0 6 power < tgpowl
1 6 power < mazpo.,,
otherwise

(9)
with

power - 1
mazpow - 1

p2 =

The shape of the membership function is depicted as
dashed line shown in Figure 4.

The type of membership function (as objective or con-
straint) for each merit determine the goal of the heuris-
tics. For example, optimization or area can be performed

by using ~ , ~ ~ ~ - ~ b j (area as objective), P L ~ ~ I ~ ~ - ~ ~ ~ (delay as
constraint) and ppower.con. Then, these three membership
functions are aggregated into one unit (the objective fitness)
using the OWA operator [12] as follows:

POF = x M 4 P a v e u b j 2 ~ d a i a y - c o n ~ Ppower-con)

(10)
+ (1 - A) x +(fiavea.obj + ~ d e i o y - c o n + ~poweT-con)

The overall fitness of a cell is formulated as follows.

Fit = Wf ' P F F + (1 - wf) ' POP (11)

Where Wf is the weight for functional fitness. The value
of Wf must be large enough in order to have better func-
tionality of the circuit. However, it should not be too large
in order to get better quality solutions in terms of design
objectives.

4 Proposed Approach

A circuit is modelled as a matrix M of size n x m. Each
cell of the matrix contains a triplet of attributes consisting
of the type of gate used and its corresponding inputs, i.e.,
the row indices of the preceding column (see Figure 5).

XOR

NOR
7 NAND

9 XNOR

Table 1: Gate ID, gate name and output of the gate. consid-
ering input a and b.

The values in input 1 and input 2 indicate the row
indices from which the current cell is getting its input
from. The value of the gate type indicates the type of the
gate being assigned to that cells assuming a predetermined
set of gate types (see Table I). The input of a gate at
position (i, j) can only be connected to the output of a cell

1320

at (i', (j - 1)) and a' can be any row index in column (j - 1).

0.0.0 0.4.1

1.0.0 0.34

2.0.0 2.3.0 EH 1.1 ID)

Figure 6: Example of a circuit and its encoding.

Consider the example shown in Figure 6. Ce11(1,2)
whose attribute is (0,3,4) is an AND gate (according to Ta-
ble l). The first input of the AND gate in this cell is con-
nected to the output of cell(O,l), which is a WIRE, and the
second input is connected to the output of celI(2,l).

4.1 Solution Construction

In the beginning, the cells of the matrix A4 are filled with
randomly generated attributes. The ants originate from a
dummy cell called nest (see Figure 7), and traverse each
state (a cell in a column) until it reaches the last column or
a cell that has no successor.

...... S(1.m-I)

......

Figure 7: Nest cell and matrix M for ant to be traversed.

The selection of edges to traverse is determined by
a stochastic probability function. It depends on the
pheromone value (T) and the heuristic value (q) of the
edge. The probability of selecting next cell is formulated
below [14]:

The value of a and B imply the preference of the search,
whether it depends more on the pheromone value or the
heuristic value, respectively. Every newly created cell will
be given an initial and small amount of pheromone value.
This value will be updated every iteration by the ant. The
heuristic value (q) between cell i and j is formulated as fol-
lows.

17 = 0.5 + (P F F (~) - P F F (~)) (13)

Algorithm Modified ACO (MACO)

Begin
For 0 < i < iteration

Fill ingfhe-Matris
Ant-Activity
Remouing-Un fit.Cells

EndFor
End

Figure 8: Modified ACO algorithm for logic design

The addition of 0.5 in the calculation of q is meant to
normalize the value of q into [0,1]. A decrease in functional
fitness means that the value of q is in the range of [0,0.5),
while an increase in the functional fitness makes the value
of q in the range of (0.5, 11

After the ant finish its tour, pheromone update is per-
formed using the following equation:

T(t) = (1 - p) * T (t) + Fit (t) (14)

where Fit (t) denotes the overall fitness of the solution that
the ants built, p i s pheromone evaporation rate.

When all ants finish their tours, the solutions provided
will be evaluated. All cells that are included in the best
solution of the current matrix will be kept. Note that, this
solution may not represent the intended function. All un-
needed cells will be removed. These empty cells will be
filled up again in the next iteration. The ants will then tra-
verse the new matrix and return the best possible solution. If
the stopping criteria is not met, the same procedure will be
repeated. Figure 8 shows the pseudocode of the approach.

4.2 The Intelligent Ant

The Filling and Removing cells procedures in MACO al-
gorithm shown in Figure 8 are performed to handle the lim-
itation of ACO algorithm due to the huge search space of
circuit design problem. To further accommodate some im-
provements the Intelligent Ant is proposed.

The original ACO algorithm works on a clearly defined
graph where the number of nodes and/or edges is mostly
static and the quality of best solution is unknown. On the
other hand, the result of evolutionary logic synthesis must
be a functionally correct circuit optimized according to the
cost function. While traversing the matrix, each ant must
seek good solution in terms of circuit's functionality first.
Since the length of the tour'is limited by the size of the ma-
trix, the ant should have intelligence to select which part of
its tour that provides the best solution in terms of functional
fitness. The remaining path will be removed from its mem-
ory. Using this approach, the ant will provide better partial

1321

....... ,.... ~,. . .

I '

L,---,------------ L
~ ~L 8~ .I . .

(a) (b) (C)

Figure 9: Example of intelligent ant (a) First solution found, F1 (b) F1 ,F2, and F3 are good solutions. F1 is the best solution
(c) Quality of FI can be improved by discarding the path after the arrow sign

Table 2: Comparison with SIS in area optimization.

solution in every iteration and that the best solution would 5.1 Case 1: Area Optimization
emerge at the end of the iterative process.

Consider the example shown in Figure 9. The required
Boolean function is a 3-bit odd parity circuit. Figure 9 (a)
shows one possible solution in the current matrix, denoted
as F1 = ((X @ Y) f3 Z) . Z. However, there are 2 other
existing solutions in the matrix, namely F2 = ((X @ Y) .
2) + XYZ' and F3 = ((X @ Y) '2) + XYZ'. Note that
F2 and F3 are basically the same function, but since they
are found by different ants (hence different path), they are
treated as different solutions. From these three solutions,
we can easily find that F1 is the best solution. However,
the quality of F1 can be improved by discarding some part
of its path, since the 3-bit odd parity circuit is F = X f3
Y. 2. Hence, the intelligent ant will detect the solution and
record the required path only (from input until the arrow
sign) shown in Figure 9 (c) .

The rugged.script is used in order to get the area minimized
circuits in SIS. The obtained circuits are then mapped for
area minimization. Table 4.2 shows the results for area
optimization for both techniques. The table shows that
for single-output circuits, the highest improvements are ob-
tained in the case of 8-bit and 9-bit odd parity circuits.
The parity circuits are best represented using XOR (XNOR)
gates. Unfortunately, SIS is unable to perform XOR de-
composition. Thus, the parity circuits obtained by SIS re-
quires larger area as compared to the ones obtained using
the proposed algorithm. For multiple-output circuits, the
improvement in area varies. The highest improvements are
observed in the case of 2-bit and 3-bit multiplier circuits.
However, the proposed algorithm failed to deliver better cir-
cuit in terms of area in the case of add3 circuit, which is the
largest circuit used as test case.

5 Experiments and Results

In this section. comparison of the results obtained using the
proposed algorithm with the results obtained using SIS is
presented. However, since SIS does not perform power op-
timization, the comparison is made only for area and delay
optimization.

5.2 Case 2: Delay Optimization

For delay optimization, the results from SIS are obtained by
executing delqscripr mapped for delay minimization. The
test cases used are the same circuits used for area optimiza-
tion.

1322

d

(a) (b)

Figure 10: 2-bit multiplier circuit (a) Using area optimization (b) Using delay optimization

5.3 Case Study: 2-bit Multiplier Circuit

Figure LO shows the result obtained using area and delay
optimization for a 2-bit multiplier circuit. As we can see
from the figure, in area optimization, the proposed approach

“Iterative Heuristics for the Design of Combinational Logic
Circuits”.

prefers the-use of NANb and NOR gates (Figure-10 (a)).
This results to circuit with minimum area. However, the
longest delay of this circuit is bigger as compared to the
one produced using delay minimization (see Figure 10 (b)).
This delay is attributed to the load factor caused by fan-out
existing in the circuit (see [6] for delay cost function).

[l] E. M. Sentovic, K. J. Singh, L. Lavagno, C. Moon,
R. Murgai, A. Saldanha, H. Savoj, P. R. Stephan, R. K.
Brayton, and A. L. Sangiovanni-Vincentelli. SIS: A
System for Sequential Circuit Synthesis. Technical
Report UCB/ERL M9U41, University of California,
Berkeley, May 1992.

6 Conclusion

In this paper, an ACO-based evolutionary logic synthesis
technique have been proposed. Comparison of the proposed
approach with SIS is shown. The proposed approach has
shown that it is capable of producing optimized combina-
tional circuits. In addition, the results obtained by the pro-
posed algorithm are better in terms of area, delay and power
as compared to SIS.

Acknowledgment: We would like to acknowledge
the continued support for our research from King Fahd
University of Petroleum & Minerals under project entitled

[2] Sushi1 J. Louis. Genetic Algorithms as a Computa-
tional Tool for Design. PhD thesis, Department of
Computer Science. Indiana University, Aug 1993.

[3] J. E Miller, D. Job, and Vassilev V. K. Principles in the
Evolutionary Design of Digital Circuits - Part I. Jour-
nal ofGenetic Pmgmmming and Evolvable Machines,
1(1):8-35,2000.

[4] J. E Miller and I? Thomson. A Developmental Method
for Growing Graphs and Circuits. Fifth International
Conference on Evolvable Systems: From Biology to
Hardware, 2606:93-104, Mar 2003.

1323

[SJ C. A. Coello, A. D. Christiansen, and A. H. Aguirre.
Towards Automated Evolutionary Design of Combi-
national Circuits. Computers and Electrical Engineer-
ing, Pergamon Press, 27(1):1-28, Jan. 2001.

161 Bambang A. B. Sarif. A Modified Ant Colony Al-
gorithm for Evolutionary Design of Digital Circuits.
IEEE 2003 International Conference on Evolutionary
Computation, pages 708-715, December 2003.

[7] L.A. Zadeh. Fuzzy sets. Informtion and Control,
8(3):338-353. June 1965.

[8] J. M. Mendel. Fuzzy logic systems for engineering: A
tutorial. IEEE Proceeding, 83(3):345-377, Mar. 1995.

[9] E. Shragowitz, Jun-Yong Lee, and E. Q. Kang. Appli-
cation of fuzzy logic in computer aided design. IEEE
Trans. on Fuzzy Systems, 6(1):163-172, Feb. 1998.

[IO] Sadiq M. Sait and Youssef, H. and J. A. Khan and El-
Maleh, A. Fuzzy simulated evolution for power and
performance optimization of VLSI placement. Pro-
ceedings of International Joint Conference on Neural
Nehvorkr, IJCNN 'Ol., 1338 -743, July 2001.

L. A. Zadeh. Outline of a new approach to the analy-
sis of complex systems and decision processes. IEEE
Transaction Systems Man. Cybern, SMC-3(1) : 2 8 4 ,
1973.

[12] Ronald R. Yager. On Ordered Weighted Averaging
Aggregation Operators in Multicriteria Decision Mak-
ing. IEEE Transaction on Systems, MAN, and Cyber-
netics, 18(1):183-190, Jan 1988.

[I31 R. Yager. Second Order Structures in multi-criteria de-
cision making. International Journal ofMan-Machine
Studies, pages 3633-570, 1992.

[141 M. Dorigo and G. Di Caro. New Ideas in Optimisarion.
McGraw Hill, London, UK, 1999.

1324

