
Optimizing OSPF Routing Using Accelerated Iterative Heuristic

Sadiq M. Sait, Mohammed H. Sqalli, and Syed Asadullah
Computer Engineering Department

King Fahd University of Petroleum & Minerals
Dhahran 31261, Saudi Arabia

{sadiq,sqalli,sasad}@kfupm.edu.sa

Abstract: The problem of setting Open Shortest Path First (OSPF) weights on links such that congestion can be
avoided is proved to be NP-hard. Many iterative heuristics have been applied to solve the OSPF weight setting
(OSPFWS) problem. As the size of any combinatorial optimization problem increases, it becomes more diffi-
cult to find an optimum solution using sequential algorithms. In this paper, we investigate the parallelization of
Tabu Search and apply two variants of a Parallel Tabu Search (PTS) heuristic on the OSPFWS problem. It is
shown through experimental results that both PTS approaches produced better solutions quality compared to the
sequential heuristics; specifically for larger topologies. In one approach, we propose a new design for our parallel
cooperative search algorithm, which performs better than the conventional parallel heuristic.

Key–Words: Open Shortest Path First (OSPF), OSPF Weight Setting Problem, NP-hard, Iterative Heuristics, Par-
allel Tabu Search.

1 Introduction

Open Shortest Path First (OSPF) is an intra au-
tonomous system routing protocol which computes
the shortest paths based on the weights assigned to
the links. Routing on the Internet defines the traf-
fic flows over the selected shortest paths. Traffic en-
gineering aims at providing the required Quality of
Service (QoS) to the users by efficiently utilizing the
available resources and managing these traffic flows.

OSPF uses the link weights as its routing met-
ric. The major networking vendor Cisco, assigns the
link weights inversely proportional to the link capac-
ity. This is termed as inverse capacity OSPF in the
literature [1, 2]. Other methods of weight assignment
such as unit OSPF and random OSPF also exist. Given
a set of traffic demands between each source and des-
tination node, the OSPF weight setting problem con-
sists of determining suitable OSPF link weights so as
to optimize a certain criterion (cost function), aiming
at avoiding congestion in the network. This Problem
is NP-hard [1].

The application of iterative heuristics to solve the
OSPFWS problem was first attempted by Fortz and
Thoroup [3]. They applied tabu search using their
proposed cost function [1]. We call this cost function
FortzCF. Sqalli et al. proposed a new cost function
(NewCF) and applied Simulated Annealing [4], Sim-
ulated Evolution [5], and Tabu Search [6] using both
cost functions. They proved experimentally that the
new cost function minimizes the number of congested

links. Ericsson et al. attempted Genetic Algorithm [2]
as well as hybrid GA for the same problem.

In this paper, we investigate parallelizing the Tabu
Search iterative heuristic to solve the OSPFWS prob-
lem which, to our knowledge, has not been attempted
yet. Enormous work has been done in the area of par-
allelization of iterative heuristics in general and Par-
allel Tabu Search (PTS) [7, 8] in particular to solve a
range of combinatorial optimization problems. Differ-
ent implementation strategies are also proposed in the
literature which include, using dynamic Tabu Search
parameters at different processors, using a cluster in
some hierarchical architecture to enhance the search,
integration of different parallelization strategies, etc.
A detailed survey of various parallelization strategies
and their application to one or more classical or spe-
cific optimization problems can also be found in the
literature [9].

In this paper, we present a Parallelized Tabu
Search (PTS) [10] heuristic using two strategies to
solve the OSPFWS problem by using the two cost
functions available in the literature. The objective is to
achieve better solutions quality in a given time, which
could not be achieved by sequential heuristics; specif-
ically for larger topologies and higher traffic demands.

The rest of the paper is organized as follows; The
OSPFWS problem statement and the cost functions
proposed in the literature are presented in Section 2.
The two Parallel Tabu Search algorithms are discussed
in Section 3. This is followed by the experimental
results and conclusion.



2 Problem Statement

The OSPF weight setting problem can be stated as
follows: Given a directed network of nodes and arcs
G = (N, A), a demand matrix D, and capacity Ca for
each arc a ∈ A, determine a positive integer weight
wa ∈ [1, wmax] for each arc a ∈ A such that the
objective function or cost function Φ is minimized.
When routing is perfromed using OSPF, the assigned
link weights completely determine the shortest paths,
and hence the traffic flows. Based on these traffic
flows, the partial loads on each arc for a given des-
tination are computed. This is done for all destina-
tion nodes. The aggregated partial loads for all des-
tinations on a particular arc give the total load la on
that arc. The cost of sending traffic through this arc is
given by Φa(la). The cost value depends on the uti-
lization of the arc and is given by the linear function
proposed by Fortz and Thoroup [1].

Φ
′
a(l) =





1 for 0 ≤ l/ca < 1/3,
3 for 1/3 ≤ l/ca < 2/3,
10 for 2/3 ≤ l/ca < 9/10,
70 for 9/10 ≤ l/ca < 1,
500 for 1 ≤ l/ca < 11/10,
5000 for 11/10 ≤ l/ca < infinity

(1)

The Fortz cost function is given in equation 2.

Φ =
∑

a∈A

Φa(la) (2)

The objective is to minimize Φ, subject to these
constraints:

la =
∑

(s,t)∈NXN

f (s,t)
a a ∈ A, (3)

f (s,t)
a ≥ 0 (4)

In constraint 3, for traffic between a source and
a destination pair (s,t), f

(s,t)
a indicates the amount of

traffic flow that goes over arc a. The detailed steps
showing the formulation of this cost function can be
found in the literature [1, 4].

The New cost function [4] is shown in equation 5,

Φ = MU +
∑

a∈SetCA (la − ca)
E

(5)

This function contains two terms. The first term
is the maximum utilization (MU) in the network. The
second term represents the extra load on the network
divided by the number of edges present in the network
to normalize the entire cost function.

We have applied our proposed parallel heuristics
on both cost functions presented in this section.

3 Parallel Tabu Search (PTS)

In conventional parallel implementations of tabu
search, all the processors including the master inde-
pendently generate an initial solution and compute its
cost. After searching its part of the current neighbor-
hood, repeatedly for a certain number of iterations,
each slave process reports its best move back to the
master. The master process selects the best among the
received best moves (subject to tabu conditions). If the
stopping criteria are met then the search stops; other-
wise the master broadcasts the selected move back to
the slaves. The selection criterion for the best move
and also the slaves to which this best move is broad-
casted, depend on the implementation strategy. The
search continues, where each processor sets the re-
ceived solution from the master as its current solu-
tion and explores the neighborhood. The master also
broadcasts the tabu list pertaining to the selected solu-
tion and all slaves update their individual tabu lists.

Two strategies, namely, PTS-Star and PTS-Ring
were implemented to parallelize Tabu Search. The
implementation aspects of the two strategies mainly
differ in the way the processors coordinate during the
periodic solution exchanges. From the functional as-
pect, they differ in the search space each processor
works on after each solution exchange. In this sec-
tion, we discuss the two strategies in detail.

3.1 PTS-Star

In the PTS-Star strategy, the parallel cluster consists
of n + 1 processors with 1 master and n slave proces-
sors/nodes. Each processor starts by generating a ran-
dom initial solution. Due to the independent random
number generation by each entity the initial solution
generated by a processor is different from the other.
Each slave processor starts Tabu Search and contin-
ues for K iterations. After each move the current and
best cost are computed. At the end of the Kth itera-
tion, the best cost and solution are sent to the master.
The master waits to receive the cost and solution from
all slaves, after which it compares the received costs
and picks the best cost among the n slaves. Once the
comparison is done and the best cost is selected, the
master broadcasts the corresponding best solution to
all slaves. Each slave processor receives the new best
solution from the master and sets this received solu-
tion as the current solution. With this current solution,
Tabu Search is started for another K iterations.

This process of parallel Tabu Searches with pro-
cessor coordination by periodic solution exchange
continues until the termination criterion is met. The
master is the central point of coordination between
all slaves, which means that all communications go



through the master and each processor is directly con-
nected only to the master. The processor arrangement
resembles a star topology and hence the name PTS-
Star. The structure of the PTS-Star algorithm is shown
in Figure 1.

Algorithm: PTS-Star
Begin:

Slave:
1: Generate Initial Solution.
2: Continue TS for K Iterations.
3: Send the bestsol and bestcost to master.
Master:
4: Receive individual bestcost from each slave.
5: Compare the received costs.
6: Select the bestsol among all slaves.
7: if termination criteria is met: then

Save the results.
Stop.

8: else:
Broadcast bestsol to all slaves.

9: GoTo: 4
Slave:
10: Receive the solution from master.
11: Update current solution based on the received solution.
12: if termination criteria is met: Stop.
13: else: GoTo: 2

End:

Figure 1: Structure of the PTS-Star algorithm

With multiple processors working on the solution
and exploring the search space, the convergence is ex-
pected to be faster and the final solution quality is also
expected to be better by visiting more points (solu-
tions) in the search space.

This technique however has the limitation that,
after every periodic solution exchange, all processors
start Tabu Search with the same current solution, and
hence searching in similar regions of the search space.
To prevent this redundant search, some technique is
required where different processors can coordinate to
explore a larger search space. The next strategy PTS-
Ring addresses this issue.

3.2 PTS-Ring

The primary objective of devising this new strategy
is to improve the solution quality by making the pro-
cessors work in different regions of the search space.
This is done by making different set of processors
start the search from different starting points (solu-
tions) after each solution exchange, thereby diversify-
ing the search considerably. It is practically important
to search a new region when the neighborhood search
fails to improve the best solution for a while; and di-
versification techniques can help achieve this goal. In
the PTS-Ring strategy, the parallel cluster consists of
n+1 processors with 1 master and n slaves. Each slave
node Si has a rank i associated with it. A node ex-
changes its solution only with its neighbors. Neigh-
borhood is defined as a set of three nodes with ranks

i − 1, i, i + 1; hence the neighbors of node Si are
(Si−1, Si+1). Further, the neighbors of the last node
Sn are (Sn−1, S1) while the neighbors of the first node
S1 are (Sn, S2). This arrangement of nodes, with the
first and last node being neighbors, completes a ring
structure. The implementation logic of the PTS-Ring
strategy is explained below.

Each processor starts by generating a random ini-
tial solution. Each slave processor starts Tabu Search
and continues for K iterations (moves). After every
move, the current and best cost are computed and at
the end of K moves, the best cost and solution are sent
to the master. The master receives the cost and solu-
tion from all slaves. For each slave processor, the mas-
ter compares the slave’s cost with its neighbors and
sends the best solution in its (slave’s) neighborhood
to this slave processor. Hence, any slave Si receives
the best solution among the three processors (Si−1,
Si, Si+1). Each slave processor receives the new best
solution from the master and sets this received solu-
tion as the current solution. With this current solu-
tion, Tabu Search is started for another K iterations.
The process continues until the termination criterion
is met.

The structure of the PTS-Ring algorithm is shown
in Figure 2.

Algorithm: PTS-Ring
Begin:

M=Master.
S={ S1, S2,...Sn }; n=No. of Slave Processors.
N(s): Neighbour of s.
Ring Arrangement:
N(Si)=(Si−1, Si+1).
N(S1)=(Sn, S2).
N(Sn)=(Sn−1,S1).
Slave:
1: Generate Initial Soln.
2: continue TS for K Iterations.
3: Send the bestsol and bestcost to M.
Master:
4: Receive costs from all slaves.
5: if termination criteria is met: then

Save the results.
Stop

6: else:
for each slave Si. do

7: Compare cost of Si and N(Si).
8: Select the best solution.
9: Send the bestsol to Si.

EndFor
EndIf GoTo: 4

Slave:
10: Receive the solution from master.
11: Update current solution based on the received solution.
12: if termination criteria is met: Stop
13: else: GoTo: 2

End:

Figure 2: Structure of the PTS-Ring algorithm



4 Results

In this section, we present the experimental results
for the two Parallel Tabu Search algorithms. The test
cases and demand matrices are the same as used in the
literature [1].

Experimental results have been recorded for the
following four performance metrics: Cost, Maxi-
mum Utilization (MU), Percentage of Extra Load
(PXLoad), and Number of Congested Links (NOCL).

The utilization of the link is the ratio of load on
the link to its capacity. If the utilization of the link is
more than one, the link is congested. The Maximum
Utilization is the utilization of the maximum utilized
link in the network. In other words, it is the utiliza-
tion of the link having the highest degree of conges-
tion. The extra load on a particular link is the load
present in excess to its capacity. If the load on the link
is less than its capacity (utilization < 1), then the
extra load on that link is zero. The percentage of extra
load is the sum of the extra load present in the network
divided by the sum of capacities of congested links.
The statistics for these performance metrics are plot-
ted with respect to both parallel strategies PTS-Star
and PTS-Ring, using the two cost functions: FortzCF
and NewCF.

4.1 PTS-Star

In this section, we first present the results of the PTS-
Star strategy in which we show the Cost comparison
versus the number of processors for four test cases.
In Figure 3, the results for the maximum demand are
shown. It can be seen here that the cost improves with
the number of processors for all cases but this im-
provement for the cases h100N360a and w100N476a
is very minimal. The total demand and also the aver-
age load per arc (Total Demand/Number of Links) on
these topologies is less when compared to the random
graphs (r100N403a, r100N503a). The cost of a solu-
tion is dependent on the utilization of the links, and
lower input demands lead to lesser utilization. Hence,
when the input demands are low, a large set of solu-
tions (weight combinations) will result in links with
low utilization and hence, a lower cost. These solu-
tion sets representing a good solution, form a slightly
bigger fraction of the search space and can also be
explored by sequential heuristics. Hence, for topolo-
gies with lower input demands, the improvement due
to parallelization is not significant when compared to
sequential heuristics.

The other two cost curves for r100N403a and
r100N503a graphs show a significant improvement in
cost with the increase in the number of processors.
The same trend is also observed for Demand-11. The

random graphs used in this work are the graphs with
large sizes and higher demands when compared to any
other topology. None of the sequential heuristics men-
tioned in this paper have achieved results close to PTS
for these topologies. The final costs achieved using
PTS are even upto one third of the best achieved using
the sequential Tabu Search heuristic (TS). TS has also
the best results among all sequential heuristics [6].

PTS-Star
Cost vs No. of Processors (Demand12)

0

10

20

30

40

50

60

1 2 3 4 5 6

No. of Processors

C
o

st

h100N280a

w 100N476a

r100N403a

r100N503a

 

Figure 3: Cost vs. # of Processors Using PTS-Star.

Time comparison for the PTS-Star strategy is
shown in Figure 4 for Demand-12. The target cost
is the best cost achieved by the sequential heuristic
in 1 hour (3600 sec). The runtime for the parallel
heuristics is also 1 hour. With the increase in the
number of processors, the parallel heuristics gener-
ally take lesser time to reach the target cost. The time
taken by the parallel heuristic to achieve the target cost
is recorded for different number of processors. The
h100N280a topology shows an almost linear speedup
with the increase in the number of processors. Other
topologies show faster convergence with the increase
in the number of processors when compared to the
sequential heuristic, but the speedup is not linear. It
was observed that the average time consumed in syn-
chronization and message passing between processors
was about 25% of the total time. Hence, the com-
munication overhead could be one of the reasons for
not achieving faster speedups. However, further in-
vestigation is required to make a conclusive statement
about the same.

PTS-Star
Time vs No. of Processors (Demand12)

0

500
1000

1500
2000

2500

3000
3500

4000

2P 3P 4P 5P 6P

No. of Processors

Ti
m

e 
(S

ec
) h100N280a

w100N476a

r100N403a

r100N503

 

Figure 4: Time vs. # of Processors Using PTS-Star.

4.2 PTS-Ring

Cost comparison for the above mentioned four topolo-
gies is shown here for the PTS-Ring strategy. The re-
sults for Demand-12 are shown in Figure 5. It can be



seen that, with the increase in the number of proces-
sors, the cost improves considerably for the two test
cases r100N403a, r100N503a. The PTS-Ring strat-
egy also could not achieve a linear speedup with the
increase in the number of processors, but was again
able to achieve costs which are about three times bet-
ter than the sequential heuristics.

PTS-Ring
Cost vs No. of Processors (Demand12)

0

10

20

30

40

50

60

1P 4P 5P 6P

No. of Processors

C
o

st

h100N280a

w100N476a

r100N403a

r100N503a

 

Figure 5: Cost vs. # of Processors Using PTS-Ring.

4.3 PTS-Star Versus PTS-Ring

Results for the Fortz cost function show that the costs
achieved by PTS-Ring are slightly better than PTS-
Star for all the test cases and demands. This improve-
ment is expected and can be attributed to the diversifi-
cation feature of the Ring approach. The slave proces-
sors, in PTS-Ring, start from slightly different solu-
tions after every solution exchange; thereby covering
a wider search space and achieving better solutions
when compared to the ring approach. The cost curves
for the FortzCF are shown in Figure 6 for Demand-12.

Cost Comparison - Star vs Ring
Demand-12

0

10

20

30

40

50

60

1P 4P 5P 6P

No. of Processors

C
o

st
 (

F
o

rt
zC

F
)

r100N403a-Ring

r100N403a-Star

r100N503a-Ring

r100N503a-Star

 

Figure 6: Cost Results of PTS For FortzCF.

Figure 7 shows the cost curves for Demand-
12 using the new cost function (NewCF). The PTS-
Ring Strategy, with a better diversification mecha-
nism, again produced better results than the PTS-Star
Strategy for the NewCF which can be seen from these
results.

Cost Comparison - Star vs Ring 
Demand-11

0

1

2

3

4

5

6

1P 4P 5P 6P

No. of Processors

C
o

st
 (

 N
ew

C
F

 )

r100N403a-Star-NC

r100N403a-Ring-NC

r100N503a-Star-NC

r100N503a-Ring-NC

 

Figure 7: Cost Results of PTS For NewCF.

The comparisons of other performance metrics
for both cost functions are shown in the following sub-
sections.
4.4 Number of Congested Links

The comparison of the Number of Congested Links
(NOCL) for both cost functions for the topology
r100N403a is shown in Figure 8. It can be ob-
served that for FortzCF, there is no improvement of
the NOCL with the increase in the number of proces-
sors. We have seen in previous results that there is
a significant improvement in cost with the number of
processors. Hence, we can conclude that the improve-
ment in cost is due to reducing the extra load on the
network at the expense of the number of congested
links. FortzCF attempts to load balance the conges-
tion on the network among all links by reducing the
load from the more congested links and placing it on
the lesser congested links. However, for the NewCF,
there is a minimization in the NOCL. Among the two
strategies, the PTS-Ring minimizes the NOCL better
than the PTS-Star for the same cost function, as it also
minimizes the overall cost better for both cost func-
tions. The best results for the NOCL were obtained
when optimizing weights using the NewCF and the
Ring Topology.

Number of Congested Links (r100N403a) 
Demand-12

0

20

40

60

80

100

120

1P 4P 5P 6P

No. of Processors

N
o

. 
o

f 
C

o
n

g
es

te
d

 L
in

ks

Star-FC

Ring-FC

Star-NC

Ring-NC

 

Figure 8: NOCL Results of PTS Using Both CFs.

4.5 Percentage of Extra Load

We now discuss the results for the Percentage of ex-
tra load (PXLoad). In the case of Demand-12 as
shown in Figure 9, the values of PXLoad are bet-
ter for FortzCF when optimized using the PTS-Ring
strategy compared to the NewCF; and PTS-Ring per-
forms better than PTS-Star. Hence, it can be said that
when weights are optimized using the FortzCF, the
links which are over-utilized are not highly congested;
while with the NewCF, a lesser number of links are
congested but each individual congested link has a
higher load.

4.6 Maximum Utilization

The results for the Maximum Utilization (MU) are
shown in Figure 10. From this figure, it can be seen
that the Maximum Utilization in the case of FortzCF
is better than that of the NewCF.



Percentage of Extra Load (r100N403a)
Demand-12

0

2

4

6

8

10

1P 4P 5P 6P

No. of Processors

P
X

L
o

ad

Star-FC

Ring-FC

Star-NC

Ring-NC

 

Figure 9: PXLoad Results of PTS Using Both CFs.
Maximum Utilization (r100N403a)

Demand-12

0

0.5

1

1.5

2

1P 4P 5P 6P

No. of Processors

M
ax

im
um

 U
til

iz
at

io
n

Star-FC

Ring-FC

Star-NC

Ring-NC

 

Figure 10: MU Results of PTS Using Both CFs.

From the above results it was observed that the
PTS-Ring strategy produced better results for both
cost functions and the NewCF produced very good re-
sults for minimizing the Number of congested links.
The percentage of extra load was found to be best
(Minimum) using the FortzCF and the Ring topology.
However, in many cases, the NewCF also produced
values close to the FortzCF. For both topologies, a sig-
nificant improvement in the performance metrics was
observed using parallelization.

As the size of any combinatorial optimization
problem increases, not only its search space increases
exponentially but also it becomes more complex as the
fraction of solutions that are close to the optimal one
becomes smaller. Sequential heuristics often fail to
explore this small fraction from the huge search space.
Having seen the results of sequential heuristics, PTS-
Star, and PTS-Ring in terms of speedup and final cost,
it is evident that, as the size and routing complexity of
the network increases, there is a significant improve-
ment in the solution quality with parallelized heuris-
tics.

5 Conclusion

Two different Parallel Tabu Search iterative heuristics
were implemented on several networks using two cost
functions. Results for four performance metrics are
reported for FortzCF and NewCF. Both PTS heuris-
tics produced the desired results in the case of large
topologies in terms of cost. The PTS-Ring strategy
which was designed to induce diversification into the
search was found to achieve better cost than any other
approach including the PTS-Star for the same run
time. However, linear speedup could not be achieved
in any strategy. Both the strategies produced better re-

sults for smaller topologies also, but did not provide
a significant improvement in cost as achieved for the
larger topologies. Hence, it can be concluded that if
the problem size is large, parallel Tabu Search or any
other parallel algorithm can be efficiently applied to
the OSPFWS problem to achieve a solution quality
which can not be achieved by using sequential algo-
rithms within the same or comparable time frame.

Acknowledgements: Acknowledgement goes to
KFUPM for supporting this research work. This ma-
terial is based in part on work supported by a KFUPM
project under Grant No. SAB-2006-10. The authors
wish to thank Bernard Fortz and Mikkel Thorup for
sharing the test problems.

References:

[1] Bernard Fortz and Mikkel Thorup. Increasing
internet capacity using local search. Technical
Report IS-MG, 2000.

[2] M Resende Ericsson and P Pardalos. A ge-
netic algorithm for the weight setting problem in
ospf routing. Combinatorial Optimisation con-
ference, 2002.

[3] B. Fortz, J. Rexford, and M. Thorup. Traffic en-
gineering with traditional ip routing protocols.
IEEE Communicatoins Magazine, 2002.

[4] Mohammed H. Sqalli, Sadiq M. Sait, and Mo-
hammed Aijaz Mohiuddin. An enhanced estima-
tor to multi-objective ospf weight setting prob-
lem. NOMS, 2006.

[5] Sadiq M. Sait, Mohammed H. Sqalli, and Mo-
hammed Aijaz Mohiuddin. Engineering evolu-
tionary algorithm to solve multi-objective ospf
weight setting problem. Australian Conference
on Artificial Intelligence, 2006.

[6] Mohammed H. Sqalli, Sadiq M. Sait, and Syed
Asadullah. Minimizing the Number of Con-
gested Links in OSPF Routing. ATNAC, 2008.

[7] A. Bortfeldt, H. Gehring, and D. Mack. A par-
allel tabu search algorithm for solving the con-
tainer loading problem. Parallel Computing 29,
2003.

[8] Ahmad Al-Yamani, Sadiq M. Sait, Habib
Youssef, and Hassan Barada. Parallelizing tabu
search on a cluster of heterogenous worksta-
tions. Journal of Metaheuristics, May 2002.

[9] T.G. Crainic, M. Toulouse, and M. Gendreau.
Towards a taxonomy of parallel tabu search
heuristics. INFORMS Journal of Computing,
9(1), 1997.

[10] Sadiq M. Sait and Habib Youssef. Iterative Com-
puter Algorithms and their Application to Engi-
neering. IEEE Computer Society Press, 1999.


