
FAST FORCE-DIRECTED/SIMULATED EVOLUTION HYBRID FOR MULTIOBJECTIVE
VLSI CELL PLACEMENT

Sadiq M. Sait

Dept. of Computer Engineering,
King Fahd University of Petroleum & Minerals,

Dhahran-31261, Saudi Arabia.
email: sadiq@ccse.kfupm.edu.sa

Junaid Asim Khan

Dept. of Electrical & Computer Engineering,
The University of British Columbia,

Vancouver, Canada.
email: junaidk@ece.ubc.ca

ABSTRACT

VLSI Standard Cell Placement is a hard optimization prob-
lem, which is further complicated with new issues such as
power dissipation and performance. In this work, a fast
hybrid algorithm is designed to address this problem. The
algorithm employs Simulated Evolution (SE), an iterative
search heuristic that comprises three steps: evaluation, se-
lection and allocation. Solution quality is a strong function
of the allocation procedure which is both time consuming
and difficult. In this work a force directed approach in the
allocation step of SE is used to both accelerate and improve
the solution quality. Due to the imprecise nature of design
information at the placement stage, objectives to be opti-
mized are expressed in the fuzzy domain. The search evolves
towards a vector of fuzzy goals. The proposed heuristic is
compared with a previously presented SE approach. It ex-
hibits significant improvement in terms of runtime for the
same quality of solution.

1. INTRODUCTION

In VLSI physical design, the standard cell placement step
consists of assigning modules (typically several thousands)
to locations on the silicon surface under numerous design
constraints while trading-off several objectives. In general,
placement in VLSI physical design is a multiobjective op-
timization problem [1]. The most important objectives are
power dissipation, delay, wirelength and area (width) of the
chip [2, 3]. Several attempts using SE (Simulated Evolu-
tion) as a search heuristic and fuzzy logic to cope with the
multiobjective nature of the problem have been attempted
[4, 5, 6]. However, these exhibited unreasonably large run-
time requirements.

In this paper, we revisit the algorithm from [6] and show
how it can be accelerated in order to run on large circuits in
a reasonable amount of time. The basic SE algorithm com-
prises three steps: evolution, selection, and allocation. Of
these, the allocation step is the slowest, with a complexity of

�����. In this paper we integrate a new allocation scheme
into SE based on a force-directed algorithm that has a com-
plexity of ����. We show that this hybrid approach gives
results that are comparable (or of better quality especially
for large test cases) but with much smaller runtimes [6].

The paper is organized as follows. Section 2 covers the
problem formulation. In Section 3 the proposed algorithm
is discussed. Experimental results are presented in Section 4
and conclusions in Section 5.

2. PROBLEM FORMULATION

SE has proved to be an excellent heuristic for standard cell
placement problem in terms of solution quality. However,
in terms of runtime, it is not as efficient as other well known
deterministic placement algorithms. In this paper we have
targeted the problem of decreasing the runtime of SE with-
out degrading the overall solution quality. After inspect-
ing the previous SE-based techniques it is observed that the
main time consuming step is the allocation step [7, 4, 6].
The asymptotic time complexity of this step in these algo-
rithms is �����. The runtime of SE can be considerably
decreased if the allocation step is modified to consume only
���� time. In this work, we present a fuzzy, forced-directed
approach to solve allocation in ���� time. For comparison
we target the same standard cell placement problem and cost
function presented in [1, 4, 6].

3. PROPOSED ALGORITHM

In this section we describe our Simulated Evolution based
hybrid search algorithm. We begin with a brief discussion
of the basic SE heuristic.

3.1. Basic Simulated Evolution (SE)

The general SE algorithm is illustrated in Figure 1 and com-
prises three main steps: evaluation, selection, and alloca-

ALGORITHM ��������� 	
������������������ ������������������
NOTATION
= Bias Value. �= Complete solution.
��= Module �. ��= Goodness of��.
�������	�������=Function to allocate�� in partial solution��

Begin
Repeat

EVALUATION:
ForEach�� � � evaluate �� ;
/* Only elements that were affected by moves of previous */
/* iteration get their goodnesses recalculated*/

SELECTION:
ForEach�� � � DO

begin
IF ������ � ���������
THEN

begin
� � � � ��; Remove�� from�

end
end

Sort the elements of S
ALLOCATION:

ForEach�� � � DO
begin

�������	�������
end

Until Stopping Condition is satisfied
Return Best solution.
End ���������� 	
��������

Fig. 1. Structure of the Simulated Evolution algorithm [7].

tion. In the evaluation step the goodness of each cell in its
current location, in the range ��� ��, is computed using some
measure.

In the selection step, the algorithm probabilistically se-
lects unfit elements. Elements with low goodness values
have higher probabilities of getting selected for relocation.
These selected elements are identified as the selection set
and are removed from the solution. These selected elements
are one by one reassigned to new locations in a constructive
allocation step. The objective of this step is to improve
their goodness values, thereby reducing the overall cost of
the solution.

Different constructive allocation schemes are proposed
in literature [8, 7]. One such scheme is sorted individual
best fit, where all the selected elements are sorted in de-
scending order with respect to their connectivity with the
partial solution and placed in a queue. The sorted elements
are removed one at a time and trial moves are carried out
for all the available empty positions. The element is fi-
nally placed in a position where maximum reduction in cost
for the partial solution is achieved. This process is con-
tinued until the selected queue is empty. The overall com-
plexity of this algorithm is ����� where � is the number
of selected elements. Other more elaborate schemes are
weighted bipartite matching allocation and branch-and-
bound search allocation [8]. However, these allocation
strategies are more complex than “sorted individual best
fit”, while the quality of solution remains comparable [8].
In summary, selection and allocation steps determine and
dictate the search strategy, while evaluation provides feed-
back to the search scheme.

1.0

a
wµ

ijwXamin_w amax_w

Near optimal
wire-length

1.0

a
pµ

ijpX
amin_p amax_p

Near optimal
power

1.0

a
netµ

ijnetXamin_net amax_net

Near optimal
net-delay

1.0

a
pathµ

ijpathX1.0 2.0

Tmax(ij) is much
smaller than

Tmax

Fig. 2. Membership functions used in fuzzy allocation.

The main contribution in this paper is a new ����������

scheme; this will be discussed in Section 3.2. However, the
evaluation and selection schemes are same as in [6], except
that OWA-operators for fuzzy aggregation are replaced by
the new fuzzy aggregating functions proposed in [9].

3.2. Fuzzy Force Directed Allocation

In the allocation stage, the selected cells are to be reassigned
to best available locations. We consider selected cells as
movable modules and remaining cells as fixed modules. In
previous works [4, 5, 6], sorted individual best fit scheme
was employed. For large circuits the run time was unreason-
ably high. To address this problem, a force directed alloca-
tion is proposed in this work. According to this approach
optimal 	-position and
-position of the cell under consid-
eration are found. The
-position indicates the row to which
the cell should be relocated. If the
-position is in between
two rows then the row nearest to
-position is selected. In
order to satisfy the width constraint, if the width of selected
row after adding the cell is more than the maximum allow-
able width then the next nearest row that satisfies the width
constraint is chosen. The 	-position indicates the exact lo-
cation of the cell in the selected row.

The basic idea behind the force directed method is that
cells connected by a net exert forces on each other. Suppose
a cell � is connected to another cell � by a net of weight
���. Let �� represents the distance between � and �. Then
the force of attraction between the cells is proportional to
the product ��� � ��. A cell � connected to several cells �
at distance �� by wires of weights ���, experiences a total
force �� given by

�� �
�

�

��� � �� (1)

The best location for a cell � is where the 	-component

0 200 400 600 800 1000 1200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Execution time in seconds

O
ve

ra
ll

m
em

be
rs

hi
p

of
 th

e
so

lu
tio

n

FFSE

0 200 400 600 800 1000 1200

2

3

4

5

6

7

x 10
6

Execution time in seconds

W
ire

 L
en

gt
h

C
os

t (
µ

m
)

FFSE

(a) (b)

0 200 400 600 800 1000 1200
2000

3000

4000

5000

6000

7000

8000

Execution time in seconds

D
el

ay
 C

os
t (

ps
)

FFSE

0 200 400 600 800 1000 1200

2

3

4

5

6

x 10
5

Execution time in seconds

P
ow

er
 D

is
si

pa
tio

n
C

os
t (

µ
m

)
FFSE

(c) (d)

Fig. 3. (a) Overall membership; (b) Wirelength; (c) Delay;
and (d) Power; versus execution time in Seconds (S15850).

and �-component of �� are both zero. We can write these
conditions as follows,
�

�

��� � ��� � ��� � �� �
�

�

��� � ��� � ��� � � (2)

Solving the above equations for �� and �� we have

�� �

�
� ��� � ��
�

� ���

�� �

�
� ��� � ��
�

� ���

(3)

Values �� and �� are the optimal �-position and �-position
for a cell � with respect to current � and � positions of all the
cells � connected to it [1]. They point to the new location
that is better in terms of all objectives. For this purpose,
proper weights to each of the nets connecting cell � and cell
� are to be chosen. A good way to choose these weights is
to use fuzzy logic. The following fuzzy rule is used to find
these weights:

Rule R1: IF a net is good in wire-length AND good in
power AND good in delay THEN it has a low weight.

According to this rule, a net will have a smaller weight
only if it is good in terms of all the objectives. In fact weight
signifies a badness factor (opposite of goodness in evalua-
tion). The cell will try to move in the directions of those
nets that have higher weight (higher badness). We use the
membership functions in Figure 2, with the following base
values.

������� �
����

���
������ �

����

�� � ���� ���

�������� �
	
�

��

	
��

��
�������� �

�	�

�	�
����
(4)

where ��� represents wire-length of a net �� and ���� is its
estimated lower bound. ��� is its switching probability (re-
quired to estimate power in CMOS circuits). 	
�� is in-
terconnect delay of net �� and 	
�

�� is its estimated lower
bound. �	�
 is the delay of longest path and �	�
���� is
the delay of longest path traversing net ��.

Using these base values and corresponding��� where su-
perscript denotes allocation, we find a goodness factor ���,
using AFA and OFA operators proposed in [9], for the net
connecting cells � and �, as follows,

��� � ���� � ��

�
������

���������
������

�������
(5)

where

����� �
��������� � ����������

�������� � ��
�������

(6)

Now the weight of the net ��� is calculated as follows,

��� � �� ��� (7)

In this proposed allocation schemes it is clear that for
each cell we have to find the best location only once, there-
fore the complexity of the proposed allocation scheme is
���� where � is the number of cells selected in selection
stage of the algorithm. All other issues such as already oc-
cupied zero-force locations, cells already in their zero-force
locations, etc., are resolved using the previous ad-hoc ap-
proaches available in the literature [1].

4. EXPERIMENTS AND RESULTS

Fast Fuzzy Force Directed Simulated Evolution (FFSE) and
Biasless Fuzzy Simulated Evolution (BLFSE) [6], were ap-
plied on �	 ISCAS benchmark circuits. In BLFSE, execu-
tion is aborted when no improvement is observed in the last
500 iterations (maximum of 5000 iterations), whereas for
FFSE the algorithm is run for a fixed 5000 iterations. The
0.25 micron CMOS digital low power standard cell library
for MOSIS is used.

Table 1 compares the quality of the final solution gener-
ated by BLFSE and FFSE. The circuits are listed in order of
their size (136-10383 modules). From the results, it is clear
that FFSE outperformed BLFSE for all circuits in terms of
execution time. Also, in most cases, FFSE shows minimal
degradation in terms of solution quality but with a signif-
icant improvement in runtime. For larger circuits (S3330
& S5378), FFSE performed better than BLFSE in terms of
both the final solution quality and the runtime.

Observe that the algorithm converges very fast. This
behavior can be observed in Figure 3, where convergence
is achieved after approximately 400 seconds (6.6 minutes),
and the remaining time is spent in fine tuning the solution

Circuit BLFSE FFSE
of Cells L (��) P (��) D (ps) T (s) L (��) P (��) D (ps) T(s)

S298 136 4548 915 139 46 4975 999 135 4.8
S386 172 8357 2036 203 117 9422 2169 213 6.8
S832 310 23140 5251 416 192 26112 5863 400 11
S641 433 12811 3072 687 175 12485 2897 674 24
S953 440 29576 5025 223 351 29988 4683 244 17
S1238 540 41318 12303 363 699 41362 12934 377 20
S1196 561 35810 11276 360 613 38282 12363 350 22
S3330 1961 183288 24797 459 5351 163756 24112 483 87
S5378 2993 326840 48360 435 11823 243721 41560 376 149
S9234 5844 UH UH UH UH 655370 114231 908 440
S13207 8651 UH UH UH UH 1339837 144189 1604 885
S15850 10383 UH UH UH UH 1477662 115049 2006 1202

Table 1. Layout found by BLFSE, and FFSE. ‘L’, ‘P’ and ‘D’ represent the wire-length, power, and delay costs respectively.
‘T’ is the execution time in Seconds. The last 3 circuits were not tested for BLFSE because of large runtime requirement.
‘UH’ indicates Unreasonably High runtime requirement.

quality. It is also obvious from these results that FFSE to-
tally avoids early random walk, which is a problem in other
non-deterministic heuristics such as Simulated Annealing.
Memory requirement of SE is also considerably low when
compared to other iterative heuristics such as Genetic algo-
rithm as SE keeps only one solution in its memory at a time.

5. CONCLUSION

In this paper, we have proposed Fuzzy Force Directed Simu-
lated EvolutionAlgorithm for multiobjective VLSI standard
cell placement. The allocation stage is improved by using
a force directed strategy to reduce the execution time from
����� in previous SE based approaches to����.

Fuzzy logic is used to overcome the multiobjective na-
ture of the problem. It is employed at evaluation and allo-
cation stages and in the choice of the best solution from the
set of generated solutions.

The proposed scheme is compared with BLFSE. It is
observed that FFSE performs much better than BLFSE in
terms of runtime, with no significant degradation in solution
quality. FFSE can be used for large circuits whereas BLSFE
performs poorly for circuits with more than ���� � ����
cells.

Acknowledgment: The authors and the research team ac-
knowledge King Fahd University of Petroleum & Minerals
for its support under research project COE/ITERATE/221.

6. REFERENCES

[1] Sadiq M. Sait and Habib Youssef. VLSI Physical De-
sign Automation: Theory and Practice. World Scientific

Publications, Singapore, 2001.

[2] Glenn Holt and Akhilesh Tyagi. EPNR: An Energy-
Efficient Automated Layout Synthesis Package. IEEE
International Conference on VLSI in Computers and
Processors, pages 224–229, October 1995.

[3] Glenn Holt and Akhilesh Tyagi. GEEP: A Low Power
Genetic Algorithm Layout System. IEEE 39th MWS-
CAS, 3:1337–1340, August 1996.

[4] Sadiq M. Sait, Habib Youssef, and Junaid A. Khan.
Fuzzy Evolutionary Algorithm for VLSI Placement.
GECCO-2001, July 2001.

[5] Sadiq M. Sait, Habib Youssef, Junaid A. Khan, and
Aiman Al-Maleh. Fuzzy Simulated Evolution for
Power and Performance Optimization of VLSI Place-
ment. INNS-IEEE, IJCNN2001, July 2001.

[6] Junaid A. Khan, Sadiq M. Sait, and M. R. Minhas.
Fuzzy Biasless Simulated Evolution for Multiobjec-
tive VLSI Placement. IEEE Congress on Evolutionary
Computation, CEC2002, Honolulu, May 2002.

[7] Sadiq M. Sait and Habib Youssef. Iterative Computer
Algorithms with Applications in Engineering: Solving
Combinatorial Optimization Problems. IEEE Com-
puter Society Press, California, December 1999.

[8] Ralph M. Kling and Prithviraj Banerjee. ESP: Place-
ment by Simulated Evolution. IEEE Transactions on
Computer-Aided Design, 8(3):245–255, March 1989.

[9] Junaid A. Khan and Sadiq M. Sait. Fuzzy Aggregating
Functions for Multiobjective VLSI Placement. FUZZ-
IEEE 2002, Honolulu, May 2002.

	footer1:

