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Abstract

In this paper, we employ fuzzified simulated evolution
and stochastic evolution algorithms for VLSI. standard cell
placement targeting low power dissipation and high perfor-
mance. Due to the imprecise nature of design information at
the placement stage, the various objectives and constraints
are expressed in fuzzy domain. The search is made to evolve
towards a vector of fuzzy goals. The proposed algorithms
are compared with genetic algorithm.

1. INTRODUCTION

With advancement in VLSI technology, delay and power
dissipation due to interconnects have become very signifi-
cant [1]. In this work, the problem of minimizing intercon-
nect delay and power dissipation is addressed at the place-
ment stage [2]. In CMOS circuits, over 90% power dissipa-
tion is due to the switching activity [3], expressed as:
r ., .
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where P; denotes the total power, Vpp is the supply volt-
age, S; is the switching activity of cell 7, and f the clocking
frequency. The node total capacitance is denoted by C;,
and /3 is a technology dependent constant. In case of stan-
dard cell design, cell characteristics are fixed for a particular
library, therefore we cannot reduce cell capacitances. Fur-
thermore, interconnect capacitances are related to the corre-
sponding interconnect wire-lengths /;.

The cost function due to timing performance in the place-
ment problem can be expressed as Costgeray = 7., Where
T, is the most critical path in the layout. In this work, layout
width is considered as a constraint.

2. FUZZY COST MEASURE

In order to select the best solution found so far, a goal di-
rected search approach is adopted, where the best placement
is one that satisfies as much as possible a user specified vec-
tor of fuzzy goals [4].
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Figure 1: Membership functions within acceptable range.

In order to combine three parameters and one constraint,
the following fuzzy rule is suggested.

Rule R1: IF asolutionis within acceptable wire-length AND
acceptable power AND acceptable delay AND within
acceptable layout width THEN it is an acceptable so-
lution.

Using ordered weighted averaging operator (OWA) [5],

the above fuzzy rule translates to the following:

Hpaw(®) = B¢ x min(uy(z), pg(z), py () +
(1-8)x3 3 )
j=p,dw
llc (.’L‘) = nlin(:u]c;dw (.’E), ufuidth(l')) (3)

where p¢(z) is the membership of solution z in fuzzy set of
acceptable solutions, y5 ., () is the membership in fuzzy
set of “acceptable power AND acceptable delay AND ac-
ceptable wire-length”, whereas p$(z) for j = p, d, w, width,
are the individual membership values in the fuzzy sets within
acceptable power, delay, wire-length, and layout width, re-
spectively. In our case we chose ¢ = 0.7, the superscript
c represents “cost”. The solution that results in maximum
value of u¢(z) is reported as the best solution found by the
search heuristic. Notice that the third AND operator in the
above fuzzy rule is implemented as a pure min because the
width constraint has to be always satisfied.

The shape of membership functions for fuzzy sets within
acceptable power, delay and wire-length are as shown in
Figure 1(a), whereas the constraint within acceptable layout
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width is given as a crisp set as shown in Figure 1(b). Since
layout width is a constraint, its membership value is either
1 or 0 depending on goalyiqr, (in our case goaly;qun =
1.25). However, for other objectives, by increasing or de-
creasing the value of yoal; one can vary its preference in the
overall membership function. O;s for i € {w, p, d, width}
represent the lower bounds for wire-length, power, delay
and layout width respectively.

3. EVOLUTIONARY ALGORITHMS

3.1. Stochastic Evolution (StocE)

Stochastic evolution {6], is arelatively recent iterative search
heuristic. Unlike simulated annealing, it totally avoids the
random scarch even at the early stages. The general stochas-
tic evolution algorithm can be found in [6]. StocE takes as
inputs (1) an initial solution 5p, (2) an initial value of a con-
trol parameter py, and (3) a stopping criteria parameter K.

There are two StocE parameters that have to be decided,
po and R. pg is a control parameter to accept uphill moves
(bad solutions). In order to select the value of pg, N random
trial moves are made (where NV is the number of cells in
the circuit). The standard deviation oy of the membership
in the fuzzy set of acceptable solutions due to these trial
moves is computed. Then, pg is assigned the value 20 5. If
the search is stuck at some local optimal solution, then the
value of p is increased to 2pg, otherwise p = py.

The second parameter to be specified for StocE is the
value of R. It represents the expected number of iterations
the StocE algorithm needs until an improvement in the cost
with respect to the best solution seen so far takes place. It
is suggested in [7] that the best results are obtained with
10 < R < 20. In this work, R = 15 is chosen. Upon
termination, the algorithm returns the best solution found
so far by the heuristic.

3.2. Fuzzy Simulated Evolution (FSE)

The general Simulated Evolution (SE) algorithm was pro-
posed in [8]. In order to apply simulated evolution, one
has to design a suitable goodness measure, a cost function,
and an appropriate allocation operator. These three together
have the most impact on the behavior of the SE algorithm.
Due to the multi-objective nature of the placement problem,
the goodness measure, cost function, and the allocation op-
erator should take into consideration all objectives.

Fuzzy Goodness Evaluation: A designated location of a
cell is considered good if it results in short wire-length for
its nets, reduced delay, and reduced power. These conflict-
ing requirements can be expressed by the following fuzzy
logic rule.
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Rule R2: IF cell ¢ is near its optimal wire-length AND
near its optimal power AND (near its optimal net de-
lay OR Tiax(?) is much smaller than Tp,.x) THEN
it has a high goodness.

where Ti,ax 1s the delay of the most critical path in the cur-
rent iteration and Tp,.x(7) is the delay of the longest path
traversing cell ¢ in the current iteration.

With the AND and OR fuzzy operators implemented as
OWA operators, rule R2 evaluates to the expression below:

goodness; = pi (z) = 4° x min(ug, (), uip(2), piq(z))

G
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3¢ and 35 are constants between 0 and 1 to control OWA
operators, pf, () represents the membership in fuzzy set of
good timing performance.
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Figure 2: Membership functions used in fuzzy evaluation.

The base values for fuzzy sets near optimal wire-length,
power, net delay, and for the fuzzy set “Ti,ax (¢) much smaller
than Th,ax 7, for each cell, are represented by Xy, (), Xip(2),
Xinet(x) and Xipaep(2), respectively. Membership func-
tions of these base values are shown in Figure 2.

Selection: In this stage of the algorithm, some cells are se-
lected probabilistically depending on their goodness values.

For this purpose we have used an adaptive bias scheme [9].

Allocation: In the allocation stage, the selected cells are



to be placed in the best available locations. We have consid-
ered selected cells as movable modules and remaining cells
as fixed modules. Selected cells are sorted in descending
order of their goodnesses with respect to their partial con-
nectivity with unselected cells. One cell from the sorted list
is selected at a time and its location is swapped with other
movable cells in the current solution. The swap that results
in the maximum gain is accepted and the cell is removed
from the selection set.

The goodness of the new location is characterized by the
following fuzzy rule:

Rule R3: IF a swap results in reduced overall wire-length
AND reduced overall power AND reduced delay AND
within acceptable layout width THEN it gives good
location.

The above rule is interpreted as follows:

—
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a 1 a
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the superscript a is used here to represent allocation. pf (1)
is the membership of cell ¢ at location /! in the fuzzy set of
good location. p?_wpd(l) is the membership in the fuzzy
set of “reduced wire-length and reduced power and reduced
delay”. puf, (), pf (1), pgy(l), and pf'y,; 405 (1) are the mem-
bership in the fuzzy sets of reduced wire-length, reduced
power, reduced delay and within acceptable width, respec-
tively.

The base values of membership functions in allocation
are represented as X/, (1), X7,(1) X,(l), and X7 ;44 (1)
Membership functions for these base values are shown in
Figure 3. The values of a,,, ap, @g and a4, depend upon
priority on the optimization level of the respective objective.
In our case, we have set a,, = 0.75, ap = 0.75, ag =
0.85 and ay;aen = 0.25. The algorithm terminates when no
further improvement is observed in the best solution found.

3.3. GA Based Optimization

For comparison purposes, we have also implemented ge-
netic algorithm (GA) [7] with u(z) as fitness value. Roulette

wheel selection scheme {7], is used. Partially mapped crossover

(PMX) is used to generate new offsprings. For the selec-
tion of next generation, Extended Elitism Random Selection
scheme is used, where half of the chromosomes in the next
population are the best among offspring and current popu-
lation and half are selected randomly. A variable mutation
is used that depends upon the standard deviation of fitness
in the current population. Stopping criteria is the maximum
number of generations.
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Figure 3: Membership functions used in allocation.

4. RESULTS & DISCUSSION

We applied FSE, StocE and GA on eleven different ISCAS-
85 and ISCAS-89 benchmark circuits. In case of FSE and
StocE, execution is aborted when no improvement is ob-
served in the last 500 iterations. In case of GA, the stopping
criteria was 10,000 generations.

Table 1 compares the quality of the final solution gen-
erated by FSE, StocE and GA. The circuits are listed in or-
der of their size (122-1753 modules). From the results, it
is clear that StocE performs better than FSE and GA for
smaller circuits, whereas for circuits with large number of
cells FSE outperforms StocE and GA. In all circuits, it is
observed that GA takes considerably large amount of exe-
cution time as compared to FSE and StocE.

In order to compare improvement in the quality of so-
lution versus time, we plot the current membership values
of the solution obtained by FSE and StocE (Figure 4(a) and
(b)). The average fitness (membership) values in a current
population obtained by GA versus execution time are plot-
ted in Figure 4(c). These plots are for test case S1196. It can
be observed that the quality of solution improves rapidly in
FSE- and StocE-based search as compared to GA. This be-
havior was observed for all test cases

Figures 4(d), (e) and (f) track with time the total number
of solutions found by FSE, StocE and GA for various mem-
bership ranges. Note however that FSE and StocE exhibited
much faster evolutionary rate than GA. For example, after
about 100 seconds, almost all new solutions discovered by
StocE have a membership in the interval 0.5-0.6 in the fuzzy
subset of good solutions with respect to all objectives, and
almost none were found with lower membership values. In
contrast, for GA, it is only after 10,000 seconds that the first
solution with membership in the interval 0.5-0.6 was found
(see Figure 4). This behavior was observed for all test cases.



Circuit FSE StocE GA

W (um) [ P(m) [ D(ps) | T() | W(um) [ P(um) [ D(ps) [ T(s) | W (um) [ Pum) [Dps) | TS
52081 2693 462 112 43 2139 384 112 414 2426 388 113 2341
S298 4989 1013 133 104 3490 660 125 452 4062 838 130 2922
S386 7088 1640 197 152 5896 1368 191 679 6824 1665 181 3945

S832 24705 5827 258 1643 19644 4517

372 950 21015 4787 232 7206

S641 13906 3321 702 618 15841 3888

689 1426 18320 4365 736 21982

S953 32340 5242 245 1278 29894 4634

225 833 32031 5156 230 11221

S1238 39629 12377 371 1168 49148 14373

393 1104 52679 15473 410 16208

S1196 42426 12745 364 1521 47323 14464

371 844 51804 | 15259 370 23070

S$1494 56961 14071 719 3378 77793 18876

712 477 71021 17497 803 26032

51488 57091 13887 710 3529 79406 19214

735 143 69792 17346 784 | 21434

C3540 | 164897 | 58055 734 18318 | 495822 | 175098

991 2041 | 310996 | 109850 924 43232

Table 1: Layout found by FSE, StocE and GA, “W”, “P” and “D” represent the wire-length, power, and delay costs and “T”

represents execution time in seconds.
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Figure 4: (a), (b) and (c) show Membership values versus
execution time for FSE, StocE and GA respectively. (d),
(e) and (f) show cumulative number of solutions visited in a
specific membership range versus execution time for FSE,
StocE and GA respectively.
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