
Multiobjective VLSI Cell Placement using
Distributed Genetic Algorithm

Sadiq M. Sait Mohammed Faheemuddin Mahmood R. Minhas Syed Sanaullah
College of Computer Sciences & Engineering
King Fahd University of Petroleum & Minerals

Dhahran, Saudi Arabia

{sadiq,faheem,minhas,sanaulla}@ccse.kfupm.edu.sa

ABSTRACT
Genetic Algorithms have worked fairly well for the VLSI
cell placement problem, albeit with significant run times.
Two parallel models for GA are presented for VLSI cell
placement where the objectives are optimizing power dis-
sipation, timing performance and interconnect wirelength,
while layout width is a constraint. A Master-Slave approach
is mentioned wherein both fitness calculation and crossover
mechanism are distributed among slaves. A Multi-Deme
parallel GA is also presented in which each processor works
independently on an allocated subpopulation followed by in-
formation exchange through migration of chromosomes. A
pseudo-diversity approach is taken, wherein similar solutions
with the same overall cost values are not permitted in the
population at any given time. A series of experiments are
performed on ISCAS-85/89 benchmarks to show the perfor-
mance of the Multi-Deme approach.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Program-
ming—Parallel programming

General Terms
Algorithm, Performance

Keywords
Parallel Genetic Algorithms, Cluster Computing, Fuzzy Logic,
Genetic Crossover.

1. INTRODUCTION
Genetic Algorithms have been extensively used for solv-

ing NP-hard problems such as VLSI cell placement [2, 3].
Parallelization of these algorithms has increasingly become
an attractive option for accelerating performance, especially
due to the consistent growth in performance to cost ratios

Copyright is held by the author/owner.
GECCO’05,June 25–29, 2005, Washington, DC, USA.
ACM 1-59593-010-8/05/0006.

of cluster computing environments. Two parallel GA strate-
gies are described here that target the optimization of width-
constrained, multi-objective placement.

2. PARALLELIZATION OF GENETIC
ALGORITHMS

Prior to developing parallelization strategies, a profiling
analysis of the serial GA was carried out to determine com-
putation intensive functions and routines. It was seen that
the runtime intensive operations are fitness calculation and
the parent crossover. The first parallel model is a ‘Global
Selection’ approach where the population is divided among
slave processors, which then carry out individual crossover
followed by fitness evaluation of generated offsprings. Se-
lection of the new population is done at the Master, which
collects the cumulative offsprings from the slave processors.
The performance results of this approach were poor with
very low speedup for small circuits. However, with increas-
ing circuit size, which translates into higher complexity and
larger search space, there is more potential with distribut-
ing the fitness calculation and the crossover. In the case of
smaller circuits, any gains achieved by such a distribution
would be lost due to communication overheads.

The second approach - the Multi-Deme parallel GA, has
often been favored over simplistic data distribution as in the
earlier model. In this strategy, the population is distributed
among all processors, which independently run their own
GA for a predefined number of generations. An extensive
study of the parameters governing the performance of this
model was done by Cantú-Paz [1]. The pseudo-code of the
algorithm is presented in Figure 1.

The initial population constructor runs on the master pro-
cessor, which then distributes the solutions among all the
slave processors. Following this, all nodes, including the
root execute the serial GA on their allocated population
for a predefined number of iterations called the Migration
Frequency (MF). Then each node sends a certain number
of its best solutions to the root. The number of solutions
sent is controlled by the Migration Rate (MR) parameter.
The root determines the MR best solutions from the collec-
tive MR ∗ (N) solutions and broadcasts it to all processors.
These migrants if not already present on the processors, are
then absorbed into the existing population by weeding out
and replacing the weakest solutions. Each processor then
continues with the serial GA for another MF number of
generations. Every interval between migrations, i.e., the
length of time defined by MF number of generations is called

1585

as Epoch. The stopping criteria is a predefined number of
Epochs.

It is important to note that the migrant absorption policy
dictates the replacement of worst solutions with incoming
migrants only if the migrants already do not exist within the
population. Also, logically this model could represent a fully
connected topology of non-hierarchical processing elements
which cooperate to determine the best MR solutions among
themselves and absorb these into their existing populations.

3. RESULTS AND DISCUSSION
The parallel architecture used in this work is a dedicated

eight-node cluster connected via a low-latency network. Each
of these nodes is a general purpose stand-alone Pentium4
workstation running at 2.0GHz with 256MB memory and
running the RedHat Linux distribution. The cluster runs
over a Fast-Ethernet switch. Communication between nodes
is achieved using the MPICH implementation of the Message
Passing Interface.

ALGORITHM Multi −Deme P arallel GA
NOTATION
RANK : ROOT= Root Processor designated by Rank=0
RANK : NON − ROOT= All other Processors designated by rank>0
RANK : ANY = All processors, including Root
MF= Migration Frequency
MR= Migration Rate
N= Number of Processors
Epoch = Instances of Migration
EP OCH MAX = Maximum Number of Migrations Stopping Criteria
Begin
(Multi −Deme P arallel GA)

FOR RANK:ROOT
Initial Population Constructor
Distribute Initial Population
ENDFOR RANK:ROOT

FOR RANK:ANY
Receive Allocated Population

ENDFOR RANK:ANY

LOOP-A
FOR RANK:ANY

LOOP-B
Serial GA on Allocated Population:

Choice of Parents
Crossover and Offspring Generation
Fitness Calculation
New Population Selection

END LOOP-B IF [Num Iterations >= MF]
Send MR Best Solutions and Costs to ROOT

ENDFOR RANK:ANY

FOR RANK:ROOT
Collect the best MR*N solutions
Determine best MR distinct solutions
Broadcast MR solutions

ENDFOR RANK:0

FOR RANK:ANY
Receive MR Best Solutions
IF [Received Migrants not present in existing Population]

Replace Worst Solutions with Received Solutions
ENDIF

ENDFOR RANK:ANY

END LOOP-A IF [Epoch >= EPOCH MAX]

FOR RANK:0
Return Best solution.

ENDFOR RANK:0

End (Multi −Deme P arallel GA)

Figure 1: Structure of the Multi-Deme Parallel GA.

Results for the Multi-Deme Parallel GA are documented
in Table 1. The Migration Frequency and Migration Rate
are twenty and one respectively, i.e., all processors run the
GA on their allocated sub-population for twenty genera-
tions, followed by migration of one chromosome between
them. The GA parameters are the same as used for the
serial Genetic Algorithm. Figure 2 gives the speedup per-
formance for the s386 circuit.

Table 1: Multi-Deme Parallel GA: Runtime to reach
a target fitness with increasing number of proces-
sors.

Circuit Target Time taken to reach target fitness
Fitness P=1 P=2 P=3 P=4 P=5 P=6 P=7 P=8

s298 0.73 219 116 79 62 48 42 37 36
s386 0.63 314 171 109 89 71 62 52 52
s832 0.54 569 306 199 155 122 105 89 88
s953 0.54 1004 549 354 280 222 191 162 162
s641 0.64 2734 1439 933 730 589 520 425 424
s1196 0.54 1538 876 549 439 348 299 247 248
s1494 0.53 1679 942 597 460 367 319 263 268
s1488 0.54 1672 913 592 459 368 316 266 268
s3330 0.50 6818 3959 2584 1933 1523 1317 1090 1094

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 1 2 3 4 5 6 7 8

S
pe

ed
up

Number of Processors

Speedup with Increasing Number of Processors

Speedup

Figure 2: Speedup for circuit s386. The speedup
pattern is almost identical for all circuits

4. CONCLUSION
This paper primarily serves as a demonstration of docu-

mented GA parallelization strategies to multiobjective opti-
mization problems. The first approach was a variation of the
canonical Master-Slave parallel GA, with both fitness and
crossover distributed among processors. Only Selection was
implemented by the Master. Performance gains in terms of
reduced run-time were seen only for larger circuits. On the
other hand, the Multi-Deme approach reported consistent
performance gains independent of problem complexity and
size of the search space.

5. ACKNOWLEDGMENT:
The authors acknowledge King Fahd University of Petroleum

& Minerals (KFUPM), Dhahran, Saudi Arabia, for support
under Project Code COE/CELL PLACE/263.

6. REFERENCES
[1] E. Cantú-Paz. Designing Efficient Master-Slave Parallel

Genetic Algorithms. Genetic Programming 1998:
Proceedings of the Third Annual Conference, 1998.

[2] S. M. Sait and H. Youssef. Iterative Computer
Algorithms and their Application to Engineering:
Solving Combinatorial Optimization Problems.
December 1999.

[3] S. M. Sait, H. Youssef, A. El-Maleh, and M. R. Minhas.
Iterative Heuristics for Multiobjective VLSI Standard
Cell Placement. Proceedings of IJCNN’01,
International Joint Conference on Neural Networks,
3:2224–2229, July 2001.

1586

