
Enhanced Simulated Evolution Algorithm For 
Digital Circuit Design Yielding Faster Execution in 

a Larger Solution Space 
Sadiq M. Sait Muhammad AI-Ismail 

College of Computer Sciences & Engineering 
King Fahd University of Petroleum and Minerals 

Dhahran 31261, Saudi Arabia 
Email: {sadiq, st941659}@ccse.kfupm.edu.sa 

Abstrncl- Evolutionary algorithms have been studied by sev- 
eral researchers for the design of digital circuits. Simulated 
Evolution (SimE) is used in this paper due to it simplicity and 
customizability to combinatorial problems. A tree data structure 
based circuits are evolved. Thus, a larger solution space is 
investigated. In addition, a new pattern based goodness measure 
is presented. 

I. INTRODUCTION 
Evolutionay algorithms present a new methodology in 

hardware design and synthesis. It is expected, to some extent, 
that evolutionary algorithms will lead to the discovery of 
novel digital circuits in terms of design style, area, power 
and delay [I]  The process of implementing a digital circuit 
involves transforming the logical specifications using conven- 
tional logic rules into a logic functional representation of 
digital cells. Using evolutionary algorithms to assemble digital 
circuits out of n variables and then iteratively testing the 
functional fitness of the assembled circuit will eventually lead 
to a logically correct representation that a human engineer may 
have not reached. Figure 1 depicts the principles of evolution- 
aty design solution space as compared to conventional design 
techniques. 

Fig. 1. Evolutionary Design Solution Space 

This process was pioneered by de Garis [2] back in 1993 

and since then this field of research has received increasing 
attention [3]. The work presented here is driven by the fact that 
evolutionary algorithms can he used to explore a much richer 
design space. In addition, it is also anticipated that the evolved 
circuits would be better according to an objective function. 

11. SIME BACKGROUND 
Simulated evolution -SimE- is conceptually simple and 

elegant [4]. It is general in the sense that it can be tailored 
to solve most known combinatorial optimization problem$;. 
SimE was proposed by Kling and Banerjee in 1987 which 
is based on an analogy with the principles of natural selection 
thought to be followed by various species in their biological 
environment [SI. During the process of evolution, biological 
organisms tend to develop features that allow them to adapt tO 
the peculiarities of their environment. Therefore, by adapting. 
an organism optimizes its chances of survival [4]. 

Allocation 

Fig. 2. Simulated Evolution Algorithm 

SimE is stochastic because the selection of which compo- 
nentS of the solution to change is done according to a stochas- 
tic rule. Well located components have a high probability to 
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remain where they are. This probabilistic feature gives SimE 
a hill-climbing property. 

It is not the intention of this paper to give a detailed 
description of SimE. It is only used to briefly outline the 
required knowledge to understand the terminology used in 
the context to this work. Simulated Evolution is very well 
described in [4]. Figure 2 pictures the basic steps of SimE. The 
creators of SimE have originally used it to solve the standard 
cell placement problem [ 5 ] ,  hence, the terms selection and 
allocation. Various operators of SimE are introduced below. 

A. Evaluation 
The evaluation step proceeds by evaluating the goodness of 

each individual of the population. The goodness measure is a 
single number in the range [0, 11. The Goodness is defined as 
follows: , .  

Si = 2 
Where 0; is an estimate of the optimal cost of the individ- 

ual, and C, is the actual cost of the individual in its current 
location. 0, and C, are problem specific that are customized 
according to the problem objective. 

E .  Selection 
Secondly, the selection step is the decision-maker of SimE. 

It takes the population as its' input and partitions it into two 
disjoint sets P, and P,. The components selected for re- 
allocation are assigned to set p,. Components are either sorted 
or  not based on a correlation with the problem objective. In 
other words, the sorting process is problem specific. Figure 
3 outlines the basics of the selection procedure. Sorting is 
thought of as arranging the components in P, for the allocation 
operator to act upon them in a meaningful way with respect 
to the problem objective. 

Function Selection(m, B);  
I* m : is a particular movable element; *I 
I* B : Selection bias; *I 

If Random 5 min(1- gm + B,  1) Then Return True 

EndIf 
End Selection; 

Else Return False 

Fig. 3. SimE Selection Pmedure 

The selection procedure makes use of a selection bias which 
is a fraction in the range of [-0.2,0.2]. Basically, a negative 
bias means that the goodness measure is loose and more 
components are needed to be selected every time for re- 
allocation. A well designed goodness measure can normally 
use a selection bias of zero. 

C. Allocation 
Finally, the allocation procedure which has the most impact 

on the solution quality obtained by SimE. Members of P, 
are mutated according to a function suitable for the problem 
objective. A number of trial mutations are performed. The 

mutations that constitute a better solution are made permanent. 
The post processor is a handy tool that is used to tune 
the population for the next iteration of the SimE algorithm. 
For example, it could be used to get rid of the redundant 
components. 

111. BRIEF LITERATURE REVIEW : 

There are two existing techniques for logic design. These 
techniques are divided into conventional logic synthesis and 
evolutionary logic synthesis. These techniques' are briefly 
described. References to-these techniques are provided. 

A. Conventional Logic Synthesis 

Conventional logic synthesis is mainly classified as two- 
level logic and multi-level logic. The former deals with PLAs 
and their minimization. A number of heuristics exist for 
such problems; The Quine-McClusky algorithm [6], [71. An 
effective technique used is ESPRESSO [8]. The later makes 
use of factoring and decomposition into sub-functions. SIS is 
a sophisticated tool developed at University of Berkeley for 
multi-level minimization [9]. . 

RM-Muller XOR logic is a work done for representing 
functions using only XOR gates and un-complemented vari- 
ables [IO]. XOR based functions are not easily visulized by 
human designers that is why the XOR gate is of interest to 
the evolutionary design of logic. It is believed that utilizing 
XOR gates can lead to new more efficient designs [I]. 

B. Evolutionary Logic Design 

A number of researchers have worked on evolutionary logic 
design. To name a few, Miller [ I l l ,  Colleo [12], [13], Sarif 
[14] and Uthman [15]. They have used different existing 
heuristic such as: Genetic Algorithm, Ant Colony and Simu- 
lated Evolution. In this subsection, several logic design specific 
terminology is explained. 

I )  Input Redundancy: Inputs which are not used in the 
operation of the circuit. 

2) Functional Redundancy: occurs when number of cells 
of an evolved circuit is higher then optimal number needed to 
implement the circuit. 

3) Cell Redundancy: when outputs are not connected to 
any other cells in an evolving circuit. 

4)  Logic Equivalency: when a sub circuit can be substituted 
by another equivalent. 

5 )  Phenotype Equivalency: Possibility of having different 
encoding for a given suh-circuit. 

IV. SIME FOR CIRCUIT DESIGN 

The proposed modifications to the current implementation 
of SimE are discussed in this section. The data structure used 
and the programming implications are also discussed. SimE 
operators are explained in details. 
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A .  Problem Formulation 
The combinatorial optimization problem is mapped to an 

assignment problem where given a finite set M of k distinct 
movable elements and a finite set L of ILI locations. A state 
is defined as an assignment function S : A4 + L 

M is said to be the possible gate types of different input 
configurations. The objective is to start with ILI locations and 
then iteratively select modules from M to produce a logically 
correct circuit.The evolutionary algorithm is guided through 
the search space using a goodness function that is custom 
made. Table I lists all possible gate types allowed in this 
experiment. The table should be rich in gate types but yet 
limited to be able to obtain different structures [ 141. 

TABLE I 
CELL OPTIONS 

Left 

x Gate F""Cti0" 
1 AND A - B  
2 OK A + B  
3 NAND NOT(A.8)  
4 NOR NOT(A+B) 
5 XOR AEBB 
6 XNOR A a B  
7 Buffer1 Input 1 
8 Buffer2 Input 2 
9 NOTI NOT(Inpu1 1) 
IO N m  NOT(1nput 2) 

Right Gate Type 

B. Circuit Encoding 
Most of current implementations of the evolutionary design 

of digital circuit adopt a 2-D matrix representation which 
has been suggested by Coello [12]. This structure has been 
proven to be capable of evolving functionally correct circuits 
in number of research papers so far [12], [13], [14], [15]. 

In this experiment a tree data structure is used as it is our 
belief that a logical circuit is relatively similar to a tree in its 
structure. Most researchers start with a matrix of size (n x n) 
where n is the number of inputs of the required circuit. 

Now, having a digital circuit mapped onto a tree introduces 
several differences as opposed to a 2-D matrix. Rows and 
columns are used in a matrix while a tree has a parent-child 
relationship and a node level. Each node has left and right 
children. 

Inspired from the 2-D matrix used by other researchers, the 
root level of the tree is set to n where n is the number of inputs. 
None the less, in order to facilitate the search in the design 
space a number of redundant cells are also needed. Therefore, 
(n x n)  is the initial number of cells, the evolutionary algorithm 
starts with. Figure 4 pictures an example of a circuit of 4 
inputs. 

In this experiment, a node is allowed to have any other node 
as one of its children provided that it is at a lower level. Hence, 
a root node for example might have one or both of its children 
as an input pad. 

~ 
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I u u u u  
Fig. 4. Tree Data Structure of 4 Inpuu Circuit 

The proposed tree data structure allows the search in by far 
a larger design space. The beauty of the tree data structure 
is the ability to evaluate the circuit according to an in-order- 
traversal mechanism, i.e., recursively evaluating the goodness 
of each component. Therefore, reducing the execution time b y  
a great deal as it is going to be shown later. Figure 5 shows 
how in-order-traversal has been used to speed up the evaluation 
of each node. 

Begin InOrderTraversal(node n )  
If (Left.Type(n) != Input) Then 

InOrderTraversal(Left(n)) ; 
EndIf 
If (Right.Type(n) != Input) Then 

InOrderTraversal(Right(n)); 
EndIf 
Evaluate(n) 

End InOrderTraversal; 

Fig. 5. In Order Traversal Procedure 

C. Cell Encoding 

Cells constitute the tiuilding blocks of the circuit. The 
encoding of each cell is crucial as cells (genotypes) are useid 
to form the circuit (phenotype). Due to the use of a tree data 
structure the triplet suggested by Coello in [I21 is modified to 
Figure 6. In other words, instead of using input1 and input2 
as part of the triplet, references to the left and right children 
are used in order to form the tree. 

Fig. 6.  Cell Encoding 

Not to violate the proposed tree data structure, gate types 
7-10 as shown in Table I have been suggested. Buffer 1,  for 
example, will have the cost of a WIRE from the MOSIS [161 
library while it has two inputs. Hence, a post-processor that 
understands such peculiarities of the problem is used. 



D. Firness Calculation 

In this section the,pattern based goodness measures used in 
1141, [I51 are presented. A modified goodness measure used 
in this experiment is also discussed. 

In  this experiment only single output circuits have been 
studied. Area, power and delay optimization has not been 
considered yet. Two functional goodness measures have been 
proposed. Each goodness measure is between 0 and I .  

A cell whose goodness is 1 produces all possible minterms. 
A cell relays on other cells in order to produce more minterms. 
Therefore, the functional goodness measure is divided into 
interior and exterior. 

I )  Interior Goodness Measure: The interior goodness mea- 
sure poses the question: how good is this cell? The interior 
goodness measure is a function of the truth table length and 
the number of minterms generated by the cell. The truth table 
length equals to 2" where n is the number of inputs. The 
number of matching minterms -output patterns- i s  denoted by 
P. 

9. - E 
I - pn 

Table I1 shows possible interior goodness measure values 
for a 3 inputs circuit. At most, a 3 inputs circuit will have 8 
minterms at its output. Consider the case where it produces 
0 minterms, it means that by inverting the output signal the 
cell's goodness will jump to 1. 

TABLE I1 
DIFFERENT INTERIOR GOODNESS MEASURES 

# Mintems 0 1 2 3 4 5 6 7 X 
I Goodness 0 1/8 2/8 3/8 4/8 3 8  6/8 7/8 I 
2 [14], 1151 I 716 6/6 5/X 4/6 5/8 6/8 7/6 I 
3 MI SimE I 616 4/6 2/8 0 2/8 4/8 6/X I 

When the functional goodness is less than 0.5, the cell 
is inverted [141, [IS]. It is denoted by the term normalized 
functional fitness as in [14], [15]. Row 2 enumerates possible 
goodness values using the normalized functional fitness. 

FF,, = M a x { F F ,  1 ~ F F }  

Note that the normalized function fitness proposed by [14], 
[IS] has 0.5 as its worst goodness. Due to this scaling of the 
fitness function, it is more difficult to evolve large circuits as 
cells would have less variation in their goodness making if 
harder for the SimE algorithm. 

In this experiment, an improvement was made to the good- 
ness measure. Cells that generate half of the truth table are 
given a goodness of zero. Row 3 in Table I1 demonstrates 
this principle. Below is a formulation of the new proposed 
goodness measure. The newly proposed goodness measure is 
more sensitive to changes in the circuit utilizing a larger scale. 
This feature allows the evolution of larger circuits. 

FF,, = [ ( M a z { F F ,  1 - F F } )  - 0.51 x 2 

The interior goodness measure is used by the allocation 
operator to favor cells with respect to others when performing 
mutations. 

2) Exterior Goodness Measure: The exterior goodness 
measure poses the question: how good is a cell to other cells in 
its current location? The exterior goodness measure is denoted 
by G. Figure 7 shows the process of calculating G for a cell 
i whose input is cell j .  The exterior goodness is divided into 
two instances: when a cell depends on its inputs or when other 
cells depend on it to generate more functional patterns. 

Exterior goodness calculation is done breadth-first. The 
exterior goodness measure is used by the selection operator to 
favor cells with respect to others when partitioning. In other 
terms, when a cell has low exterior goodness, it means that 
this particular cell is not desired by other neighboring cells in 
the current solution. 

rD-1 1-1 

.e, + R, G, =- G, =- 

Fig. 7. Exterior Goodness Calculation 

E. Allocarion and Mutations 

The allocation procedure is the most vital process of the 
evolutionary algorithm. Allocations are split into local and 
global allocations mutations-. A number of trial mutations 
are carried on the cells selected by the selection operator; 
this number is denoted by W .  Moreover, W is relative to 
the number of gate types m and circuit size. In addition, the 
gates used in this experiment make use of 2 inputs. Therefore, 
W is determined using the following formula 

W = m x &  

E Eflect of Trial Mutations 

Since the allocation operator performs W trial mutations per 
cell every time the allocation operator is invoked, a study of 
W is needed. Table 111 lists the W values for different circuits 
based on the number of inputs. 

Throughout this experiment m was set to 6 as this will cover 
all of the possible gate types, i.e., AND, OR, NAND, NOR, 
XOR and XNOR, refer to Table I. More gate types increases 
the complexity of the problem. 

The total number of trials per mutation call grows almost 
exponentionally. In Figure 8, the number of possible gates is 
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TABLE III 
W TRIALMUTATIONS vs. CIRCUITSIZE 

n m w Cells Total 
2 6 6  4 24 
3 6 18 9 162 
4 6 36 16 576 
5 6 60 25 1500 
6 6 90 36 3240 
7 6 126 49 6174 
8 6 168 64 10752 
9 2 1 2  81 17496 
10 6 270 100 27Mx) 

J 0 0  

a 110 
k 
?im 

/ 

V. RESULTS AND COMPARISON 

A number of techniques have been proposed in the liter- 
ature. Genetic Algorithm has been used in [121. Ant colony 
system has been used in [I31 and later modified in [14]. Sait 
has proposed two SimE algorithms where his SimE-G2 has 
shown the best results so far [15]. 14 Single output circuits 
have been evolved and compared to the current results obtained 
by others. Area has been calculated for the output circuit yet it 
has not been optimized for. None the less, results in Table IV 
are very comparable to the current results by other researchers 
while some circuits have been shown to have less area. The 
gates library used in this experiment is CMOS 0 . 2 5 ~  obtained 
from MOSIS [16]. 

Run time has been shown to outperform the current imple- 
mentations. It is owed to the sophisticated tree data structure 
used. The in-order-traversal procedure recognizes the redun- 
dant cells and only spends time evaluating the required portion 
of the tree. For run time comparison see Table V. 

TABLE IV 
AREA COMPARISON (MICRON) 

Circuit n CA ACO MAC0 SimE-2 SimE 
[I21 [I31 [I41 1151 MI 

circuit1 4 18954 16767 14094 12879 15066 
circuit2 4 21870 16767 14823 13122 15066 
circuit3 4 19926 14823 10692 10752 11907 
circuit4 2 1458 1458 1458 1458 1458 
circuit5 4 27945 29889 11664 13870 12879 
circuit6 4 40338 13365 10935 10935 12393 
circuit7 4 83835 18954 12636 12393 8019 
circuit8 4 75087 7116 7290 7776 7290 

reduced to 2 for circuits of 9 inputs. The effect is a great 
reduction in the complexity of the problem. 

To sum up, the number of cells allowed in this experiment - .I, " nl-" "."" ""-, ---, JmrD 3 Y 4 1 ,  7411 , 1 1 0  , , i o  
sarin 4 17496 19197 12393 - 15309 
Sar in  4 15552 18468 14337 14337 15066 

has been setto a fixed number 6 while it is better to adaptively 
change that number during execution. In order to be able to 
intelligently change the number of allowed cells, the algorithm majority 21,41 . 13851 13851 19440 

xor8 8 32805 - 20655 20655 20655 has to have a prior knowledge of the required circuit. This 

xor9 9 35266 - 23328 23814 24300 suggests the use of a constructive algorithm prior to the use 
of the evolutionary algorithm for SimE to be structure-aware. 
Another problem is which gates to allow and not to allow. It is 
believed that Tabu search could he utilized for this matter [4]. 
l a b u  search makes use of short, intermediate and long-term 
memories which if properly tailored to the problem; a great 
reduction in complexity is possible. 

VI. FUTURE DIRECTIONS 

There is more work to be done in order to improve the 
performance of the evolutionary algorithm. The future work 
involves the further investigation of  

1) Incorporating area, power and delay Multi-objective 
optimization along with the functional constraint. 

2) New goodness measures that are structure-aware rather 
than pattem-based. 

3) Evolving multiple output functions. 
4) Use of a constructive algorithms for initialization. 

6 )  Adaptive number of levels. 
*"I OR6 5) Adaptive cell choices. 

Pig. 9. Evolved Circuit Example (majority) 
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TABLE V 
TIME COMPARISON (TIME) 

Circuit n GA ACO MAC0 SimE-2 SimE 
[I?] 1131 [I41 [I51 MI 

circuill 4 91.66 61.4 15.27 3.12 3.062 
circuit2 4 102.3 61.4 15.17 3.77 3.062 
circuit3 4 155.7 49.7 14.67 4.57 11.51 
circuit4 2 275.1 0.4 3.5 0.48 0 
circuit5 4 266.3 76 16.97 6.51 5.016 
circuit6 4 - 50.7 14.83 6.02 0.125 
circuit7 4 - 75.6 16.1 7.44 0.14 
circuit8 4 - 50.4 12.7 5.02 0.109 
Sarif6 3 - - 0.125 
Sariff 4 - - 7.93 
sarifa 4 91 11 1.75 

majority 5 6290 - 15.32 318.2 
xor8 8 7430 - - 220.43 10.85 

9 10x57 - 231 6.546 

Aren Comparison 
*%%I 

Fig. IO. Area Comparison (micron) 

VII. CONCLUSION 

The modified simulated evolution algorithm has the ca- 
pability of searching a larger design space yet in a shorter 
execution time. Circuits having a more complex structure have 
been evolved. The tree data structure implementation mimics 
the interconnections used in a digital circuit. Recursively 
programming the evaluation procedure using in-order-traversal 
has successfully reduced the execution time. More work is 
needed for the algorithm to handle larger multiple output 
circuits. 

Fig. 11. Run Time Comparison (sec) 
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