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Abstract- In this paper, the use of Simulated Evolution 
(SimE) Algorithm in the design of digital logic circuits is 
proposed. SimE algorithm consists of three steps: eval- 
uation, selection and allocation. Two goodness measures 
are designed to guide the selection and allocation opera- 
tions of SimE. Area, power and delay are considered in 
the optimization of circuits. Results obtained by SimE 
algorithm are compared to those obtained by Genetic 
Algorithm (CA). 

1 Introduction 

Design is usually considered to he an activity requiring con- 
siderable human creativity and knowledge. Even the defini- 
tion of the term d e s i p  itself is quite elusive. since it  can be 
interpreted in several different ways depending on the task 
to be performed [IO]. 

The definition of design that fulfills the, ohjectives of 
this paper is  the process of derjving, from a specified in- 
puffoutput behavior. a structure (in our case a certain com- 
bination of logic gates) that is functional (produces all the 
outputs desired for all the inputs specified) within a certain 
set of specitird constraints. Furthepore.  we want the oh- 
tained design to he optimum in terms of certain structural 
features (e.g.. area. power and delay). The design process 
is a very tedious and error prone task that usually requires 
considerable human expertise and involves trade-offs. 

Advances in logic design and synthesis is due to 
the automation of the design process using sophisticated 
computer-aided design tools. Thcse tools have vastly im- 
proved design turn around time to keep pace with the in- 
creasing demand and complexity of circuits. However. there 
have heen many attempts at developing programs for auto- 
mated design. and such programs are difficult to build. 

Several techniques in evolutionary design of digital cir- 
cuits have been studied. Most of the work done in evolution- 
ary logic synthesis is random search where the evolutionary 
algorithm will blindly evolve the circuitaccording to a given 
set of objectives,without using rules and techniques of the 
conventional logic synthesis. .It is believed that incorporat- 
ing logic synthesis rules and guidelines combined with the 
idea of assemb1e;and-test could lead to better results. 

The objective is to develop a computer-based tool that 
can make the design process less tedious for the human de- 
signer wiihout sacrificing quality of the design produced. In 

this paper, we limit our focus to combinational logic cir- 
cuits, which contains no memory elements and no feedback 
paths. The use of Simulated Evolution algorithm as a search 
heuristic will he considered [9]. 

This paper is organized as follows: first, Simulated Evo- 
lution Algorithm is briefly presented. Then. a formulation 
of the problem of interest is described. Following this. an 
introduction to the approach being used to implemen! SimE' 
for digital logic design is presented. Finally, SimE algo- 
rithm is compared with genetic alggrithm (CA) in circuit 
design with optimization for area, power and delay. 

2 Simulated Evolution Algorithm (SimE) 

Combinatorial optimization problems seek to find a global 
optimum of some real valued cost.functions COSI : R + R 
defined over a discrete set R. The Set R is called the state 
space and its elements are referred to as s!ates. A state space 
R together with an underlying neighborhood structure (the 
way one state can he reached from another stiie) form the 

The Simulated Evolution (SimEj aleorithm is a general 
search strategy for solving a variety of combinatorial opti- 
mization problems 18, 91. The SimE algorithm Starts from 
an initial assignment, and then: following an evolution- 
based approach, it  seeks to  reach better assignments from : 
one generation to the next.'SimE assumes that there exists a ' 
population P of a set M of k elements: In addition. there is 
a cost function Cost that is used to associate with each as- 
signment of an element m a cost C,. The cost C, is used to 
compute the goodness'(fitness) gm of element m, for each 
m E M .  Furthermore. there are usually additional con- 
straints that must he satisfied by the population as a w t h e  
or by particular elements. A general outline of the SimE 
algorithm is given in Figure 1. 

SimE algorithm proceeds as follows.'Initially. a popula- 
tion' is created at random from all populations satisfying the 
environmental constraints of the'prohlrm. The algorithm 
has'one main loop consisting of three basic steps. Evaha- 
tion. Selecrion. and Allocarioir. The three steps are executed 
in sequence until the population average h;oodness reaches a 

solution space [ I ] .  , .  

. 

. .  
'In SimE terminology. a population refers 10 a single solution. Individ- 

unlsofthe papulation arecomponentsofthe solution: thcyarethe movable 
elements. 



ALGORITHM Si,nulnred.Ei~oluriori(E. ,L, SruppiiIg-Criie~iu);, 
INITIALIZATION:  
Repeat 

EI'ALD-ATION: 
ForEach m E A I  Do gm = 2 EndForEach 

S E L E C T I O N  
ForEach m E A l  Do 

If Random 5 hfin(1- gm + B; 1) 

Else P? = P? U {m]: 
Endlf: 

EndForEach: 
son rhe elrilzenrs Qf Pa: 

Then P, = P, U {m]; 

ALLOCATION: 
ForEach m E Ps Do F,(m) EndForEach: 

Until Stopping-criicrin are iiwi: 
Return (BestSolution): 
End Si,nrrlured.R,olurio,~. 

Figure I :  Simulated Evolution algorithm. 

maximum value. or no noticeable improvement to.the pop- 
ulation goodness is ohserved after a numher of iterations. 
Another possible stopping criterion could he to run the al- 
gorithm for a prefixed numher of iterations (see Figure 1 ). 

. .  

3 Simulated Evolution 'Algorithm (SimE) for 
Logic Design. 

3.1 Problem Formulation 

The problem of digital logic. circuit design can he formu- 
lated using this eeneric model as follows: given a set kf of 
all typespf logic gates as in Tahle I and a set L of ILI loca- 
tions, JLJ 5 n, it is required to select some of the elements 
from A f  and allocate them into the L distinct locations to 
produce a required logic function given hy its truth tahje 
and to have this allocation to he minimal according to some 
cost function (power. area and delay)[2]. 

To formulate digital logic design in terms of the ahove 
state model, 'choose &I = {1 ,2 , , .  . .,k} and L = 
{ l , Z , .  . . .  ILI}. A state is defined as the onto function S: 
m = { l , Z , ~ . . , k ' } + { l , Z  , . _ .  : ( L I } w h e r e r n C M . F i g -  
ure 2 is a representation of the digital logic design problem 
addressed in this context. In this case one additional con- 
straint is required. which can he stated as S( i )  # S ( j )  V i  # 
j ,  i.e., no two elements are assigned to the same location. 
The cost of a state, CostfS) is a compound cost considering 
the correctness of the outputs of the solution circuit match- 
ing the required function truth tahle and other metrics such 
as gate count, power, delay and area. A detailed explanation 
of the CosrfSJ function proposed is given later. 
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Figure 2: Representation of digital logic design problem. 
. .  

3.2 Circuit Encoding 

In order to represent a digital logic circuit, a two- 
dimensional matrix is used as depicted in Figure 3. This 
representation has heen adopted by Coello and Miller [3.6]. 
This type of data structure is very much similar to the struc- 
ture of digital circuit. Therefore; the genotype-phenotype 
mapping becomes an easy task 151. 

The size of the'matrix is variable and i t  is relative to n 
where n is numher of inputs of the circuit. An initial value 
for the size of the matrix is given. which is equal to n [7]. 
During'iterations columns andlor rows can he added or re- 
moved. 

, 

_ .  

Figure 3: Example of circuit in matrix representation 
I ,  

Each cell.of the matrix is'considered t? he an individ- 
ual. The collection of all individuals of the matrix repre- 
sents a solution. Each cell of the circuit matrix is encoded 
in a triplet of inputs and gatetype. as illustrated in Figure 4. 
The first two numbers are for the inputs (inputl, input2) and 
the third indicates the gate type. A gate at position (i,j), 
where i is the column'numher and j is the row numher. can 
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Table I :  Gate types used. 

Input 2 Gate type 

3.3 Proposed Goodness Measures 

One major requirement of SimE is evaluating the goodness 
of each individual i of the population P. There are t ~ o  types 
of cost measures or goodness measures associated with this 
problem. These two types are: 

functional cost measure where the correctness of the 
obtained logic circuit in matching the truth table of 
the required function is considered. 
optimization cost measure where the extent of the 
optimalily of the logic circuit synthesized is taken 
into consideration. Such measures of optimalily are 
power, delay and area. 

Also, there are two types of functional cost measures and 
these are: 

i~~trirrsicfii~rcrioi~al cost nieasure denoted by gi 
e e.rrririsic fuirctiotial cost measure denoted by Gi 

The brtritisic functional cost nieusure is related to the good- 
ness of cell i in  matching the objective truth table. While. 
the exrrinsic funcrio&l cost nieasure is related to the e F  
fect coming from other cells having cell i as input for them. 
Both Selectiorr Fimctiorr and Allocarion Furrcrinn will use 
these cos! nieasures in order to guide the search to  reach to 
an optimal circuit. The selection function considers the ex- 
trinsic functional cost measure. On the other hand. the allo- 
cation function considers the intrinsic functional cost mea-. 
sure in evaluating the mutated cells after allocation in order 
to accept a certain move. 

The formulation of the gbodness measure has a g k a t  
impact on the performance of the SimE algorithm and the 
quality of the solution obtained. In this papei. two proposed 
functionalgoodness meusures are discussed in detail. The 
first goodness nieasure is called Minterm Based Good- 
ness while the second one is called Multilevel Logic Based 
Goodness. These are explained below. 

The Minterm Based Goodness' Measure relies on the 
truth table of the required function to he implemented. Each 
cell i in the solution matrix is evaluated based on the num- 
ber of correct outputs being generated of the required truth 
table. The following is a formulation of the Minterm Based 
Goodness Meusure: 

g; = q c 2  

where 0; is an estimate of optimal cost (all minterms gener- 
ated), Ci is the actual cost of cell i. By letting. pi = number 
of matching minterms of the i f h  cell and n = number of '  
inputs of the required circui!, then, the Intrinsic Functional 
Minterm Based Goodness Measure is 

gi = p i p "  

The Extrinsic Functional Minterm Based Goodness is com- 
puted using the procedure shown in Figure 5. 

Pg;: Intrinsic Functional Goodness of cell i *I 
Pg,: Intrinsic Functional Goodness of the input cell of cell i " I  
PGi: Extrinsic Functional Goodness of cell i *I 
/*Gj: Extrinsic Functional Goodncss of the input cell of cell i */ 
1% number of inputs. n' number o f  cells i n  the matrix "1 

Fori = n2 downio I Do /*scan all cells trom lasi IO first "/ 
For All j s  cells in the previous columns of i Do 

If g; > gj or G; > gjThen 

If gj < g, Then Gj = (gi + gj)/2 
ElseIf gj < Gi Then G j  = (Ci + g,)/2 
Else I f  gate iype of i is invenrr Then 

EndIf 
gj = gi and G, = G, 

EndIf 
EndFor 

EndFor 

Figure 5: Extrinsic goodness measure calculation. 

This goodness measure has'been used.to'implement a ver- 
sion of the SimE algorithm denoted by SimE-G I .  

The Multilevel h g i e  Based Goodness Measure is based 
on the assumption that the higher the level of a gate in  a 
multilevel logic circuit. the more minterms are covered at 
the output of that gate. Therefore, the goodness of a gate 
is affected by the number of minterms covered at its output 
and the level where the gate is located. Figure 6 illustrates 
this assumption. Since the numher of inputs of the circuit is 
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4. there are I6 patterns that should he generated at the output 
correctly. Initially, these patterns are distrihuted among the 
levels of'the circuit evenly and progressively. Also, i t  is 
assumed thal'the initial number of levels is 4 since there 
are 4 columns in the search matrix. Therefore, a logic gate 
located at the second level should cover 8 patterns while a 
loiic gate located at the first level should cover 4 patterns. 

In general, for n inputs (2" patterns) circuit, to have a 
goodness of I at a cell in  level i, there should be r(Z*/n)il 
correct patterhs produced at this cell. Thus, the niirlrilevel 
logic goodness nieusrrre is formulated as follows: 

where g; is the goodfiess of cell i .  j is the level number or 
column number. n is the number Of inputs of the required 
circuit and p is the number of matching patterns at the out- 
put of cell i compared lo the intended truth table. 

Minlerrns Mlnlerrns Mlnterms Minterms 

-_;-I 16 Mmlerms Should l"P"tJ be ClrCUlt covered lor a 4 

Figure 6 Multilevel logic goodness assumption. 

Several scenarios result from this assumption. and these 

if a cell i at level j produces more than ((2"ln)j): 
if none of the cells located at level j can produce 
((2"ln)j) nor any cell at level n can produce 2" pat- 
terns: and 

are: 

intrinsic and extrinsic complications. 
First, if a cell !,at level j produces more than ((an/n)j). 

then pi > ((2"/n)j) 3 gi > 1. The number of levels that 
the SimE algorithm is searching should hg decreased by a 
factor relative to,the number of patterns produced by the 
cell i. The number of levels is now 1 = [ ( 2 " / p i ) l .  Also. 
the number of patterns that should he covered at each level 
will be changed accordingly. A cell i at level j should cover 
pi + 1 patterns. At j + 1 level. there should he . 

1 2n - (pi + 1) 
(Pi  + 2) + 1 I 

patterns covered. Thcn, the maximum numher of patterns at 
level i > j is 

Eventually. our goodness measure also should he changed 
accordingly to hecome 

si = p / m  

where m is the new maximum numher of patterns that gate 
i should generate at level j .  

The second case indicates that the numher of levels is 
less than what it should he. Therefore. the number of lev- 
els has to he incrgased. Also. the ranges of the maximum 
number of patterns will change if the number of levels in- 
creases. The increase in number of levels is done gradually. 
i.e.. one by one. If 1 is the number of levels, then the num- 
her of pattern coverage for each level is L2"/1J. Therefore. 
the goodness measure for cell i located at level j will be 
changed to: 

g .  - L i f j  = 1  
1 - 2 n  

The third complication is similar to the one in the first 
goodness measure. A cell j with low goodness measure 
might feed cell i that has high goodness. Therefore. cell 
j will have high prohahility of being selected and mutated 
which might disturb the goodness of cell i. Therefore, the 
same approach as in the previous one i n  computing the in- 
trinsic and extrinsic goodnesses is considered. In this case 
the Oirrirrsic goodness measure is computed by using the 
multilevel logic based goodness measure equations for g;. 

This goodness measure has heen used to implement a 
version of the SimE algorithm denoted hy SimE-G2. 

In order to optimize the circuit for other measures such 
as power, delay and area, a working circuit has to he first 
obtained. This means that thefrirrctioiial goodness nreasure 
should he equal to I..Also, a global opriniizotioti goodriess 
cost fuiiction is proposed. After allocation, the solution is 
evaluated and if there is an improvement in the global cost 
function, the solution is made as permanent. The global 
optiniization goodness costfrrrrcriori is denoted by Go and 
is computed using the procedure in Figure I .  The goodness 
of the solution considering the j t h  ohjective is computed as 
follows: 
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Tahle 2: Comparison with Coello [4] technique in terms of area. delay and power. 

P g i :  Intrinsic Functional Goodness of cell i *I 
PGo: Glohal Optimization Goodness of P ti 
PP1 thc current population (solution) " I  
l*k: number of objectives for optimization " I  
Pgj: the goodness ofthe solution considering the j t h  objective "I  
/*U;;: a weight for functional cost *I 
/*u:j: a weight for optimization cost *I  

If gi < 1 Then 

ElseIf g; = 1 Then 

EndIf 

Go =wig; IO. w;]  

[w;. I ]  Go = wig; + E:=, wjgj 

Figure 7: Glohal optimization goodness., 

' ' 1  
9j = 1+6 

and 
N & =  - 

Nmaz 

A* is the current cost of the objective function (power. area 
and delay) and Armoz.is the maximum acceptable value for 
the given constraint. 

Linear aggregation function is used for the evaluation of 
all objectives of the solution. It maps all objectives into a 
single metric that indicates how good the solution is. SimE 
works on two solutions, the current solution and the candi- 
date (mutant) solution at each iteration. Therefore, neither 
is better than the other on all objectives. Since SimE works 
on two solutions during iteration, Pareto ranking is not ap- 
plicable due to the lack of the ranking set. A linear aggrepa- 
tion function will be an efficient and fast choice compared 
to Pareto ranking. 

'. ; .  

4 Results and Comparison ., 

Several circuits of different degrees of complexity have 
been used to test the proposed approach. The two proposed 
algorithm, SimE-GI and SimE-G2 are compared 10 Genetic 
Algorithm (CA) approach similar to that reported in [3, 41. 
Table 2 shows the quality of solutions i n  terms of area, delay 
and'power for CA, SimErGl and SimE-G2. In Table 2. cir- 
cuitl to circuit5 are randomly generated circuits while the 
last three circuits are seleched~ from ISCAS,'85 benchmark. 
Table 3 shows the average execution time for the given test 
cases. It is ohvious that Coellok approach is'slower com- 
pared to SimE-GI and SimE-GZ in.time. 

. .  
Table 3: Comparison with Coel1q:s [p] technique in ,terms 
of execution time. 

The tahles.show that there are significant imerovements 
in terms of area, delay, power and execution time for mis t  
cases. For the purpose, of this paper. two examples were 
chosen to illustrate this approach. . .,. , 

Since the Genetic Algorithm (GA) reported in [3,4] con- 
siders only functional fitness and number of gates as cost 
function. modification in cost function has to he made ip 
order to include power. delay and area optimization'in the 
cost function instead of number of gates used. The popu- 
lation size used in all circuits for GA is IOOO. Two-point 
crossover is used as in [ 3 ,  41 with crossover rate 0:95. The 
mutation rate is initialized to 0.01. 

Each experiment is tun 50 times and the average cost 
function (fitness) for GA and average goodness for SimE 
for the 50 runs is reported. Also, the best solution ohtained 

. .  
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Time in Sec , 

'Algorithm 
GA 

SimE-GI 
SimE-G2 

. .  

Figure 8: Average global cost function for Example I 

Resultii Gate Types 
F.= ( ( A  fE B )  @ .4D) + (C + ( A  €? D))' 

F = A'B + A((BD)' + C'D) 
F = A'B + A((BD) '  + C'D) 

I AND, 2 ORs, 3 XORs. I NOT 
4 ANDs, 2 ORs. 3 NOTs 

3 ANDs, 2 ORs- 2 NOTs. I NAND 

IP Function I 

Table 4: Results produced by CA. SimE-GI and SimE-G2 for Example'l. 

in the 50 runs is reported for comparison in power. delay and 
area. The library used foithe evaluation of power, delay and 
area is the MOSlS 0 . 2 5 ~  CMOS cell library. 

Example 1 

The first example has 4 inputs and one output where F is 
IC031 I 1  I 1  1100101 (circuit 2): It is noticed that SimE-GI 
and SimE-G2 outperformed GA since more cells are as- 
signed to higher goodness locations. As a result, the global 
average goodness increased result$ in converging into bet- 
ter solutions in lesser number of iterations compared to CA. 
The results for global cost function is shown on Figure 8. 
Also, Table 4 shows the hest resulting circuit outcome from 
running SimE-GI. SimE-G2 and CA. 

Example 2 

The second example is a 9 inputs odd parity circuit (xor9). 
SimE-GI and SimE-G2 produced results in almost 300 sec- 
onds while GA could not generate a working circuit in the 
first 500 seconds. The results for global cost function is 
shownon Figure 9. . ' 

. .. . . .  
. .  

5 Discussion and Conclusions 

All circuits experimented with showed that SimE-GI and 
SimE-G2 have hetter convergence than GA in time and 
quality of circuit. The reason is that SimE algorithm uses 
less memory and less computation time. SimE works on 
one solution only while GA works on a large number of 
solutions (population size). The number of crossovers and 
mutations that GA will perform in every iteration is large 
which will require more CPU time. On the other hand. 
SimE requires less CPU time because it uses the goodness 
measure to guide the algorithm throush the search space. 
Goodness measure is used during selection and'allocation. 
therefore, SimE algorithm will assign more cells to hetter 
goodness locations in every iteration. The more knowledge 
about the problem incorporated into the goodness measure. 
the better the performance of SimE algorithm in terms of 
CPU time and quality of solution. On the other hand, CA 
evaluates the solution after crossover and mutation: There- 
fore, crossover and mutation is done blindly and most of the 
time the solution space is explored randomly. 

We have introduced a technique to design combinational 
logic circuit using Simulated Evolution Algorithm (SimE). 
Also, two goodness measures have been proposed. The pro- 
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Figure 9: Average glohal cost function for Example 2. , . , .  
, .  

posed,algorithrn SimE-GI and SimE-G2 are compared with 
CA. Both SimE-GI and SimE-G? showed better results in 
all the cases. 

Acknowledgment 

[5] J.  E Miller. T. Fogany. and P Thornson. Design, 
ing Electronic Circuits’Using Evo!utionary Algorithms.~ 
Arithmetic Circuits: A Case Study. ‘Gerieric Algorithms 
aiid Evol~rtion StrateRi irr Eflgirieeririg slid Conipitter 
Science. Johii Wile! a d  Sons, Chichester. pagcs 105- 
131. 1998. 

The authors would like to acknowledge the support received 
from Fahd of Petroleum a Minerals under 
project entitled “Iterative Heuristics for the Design of Com- 

161 J. E Miller, D. Job. and Vassilev V. K. Principles in  the 
Evolutionary Design of Digital Circuits - Part 1. Joiir- 
tral of Generic Prugruno~~ing arid EidwrDle Mucl~iries. 
I(lj:8-35, 2000. 

hinational Logic Cicuits”. . .. 

Bibliography 171 1. E Miller and P. Thomson. Discovering Novel Dig- 

iiig Cornbinarorial Optii~~izariuri Prohlems. Wiley-IEEE 
Press, 2000. [SI 1. F. Miller and Peter Thomson. A Developmental 

Method for Growing Graphs and Circuits. GECCO’W. 
1(1):8-35,2003, [21 Sadiq M. Sail and Habib Youssef. VLSI P/i!sical De- 

sigil Autoniarion: Tilent? arid Practice. World Scienrific 
Press. 1999. [9] R. M. Kling and P. Banerjee. ESP: A New Standard Cell 

Placement Package usinESimulated Evolution. Procerd- 
irlR of23th ~ e ~ i ~ ~ ~  Airronlntiorz Col$erC,lce. pp. 6 M 6 ,  
1987, 

[3J C. A. Coello, A. D. Christiansen. and A. H. Aguirre. ’ 
Use of Evolutionary Techniques to Automate the De- 
s i p  of Combinational Circuits. Iiirerrrational Journal 
of Smart Engineering Swteni Desigil. Elsevier Scierlce. 
2(4):299-3 14. June 2000. 

[IO/ Y. Saah and V. Rao. Stochastic Evolution: A Fast 
Effective Heuristic for Some Generic Layout Problems. 
27th ACMIIEEE Des@ Auronwtion Coiference. pp. 2 6  

. .  I41 C. A. Coello, A. D. Christiansen, and A. H. Aguirre. 71 19911 . . . . . , , -. 
Towards Automated Evolutionary Design of Combina- 
tional Circuits. Coniputers and Electrical Eiigineering. 
Pergamon Press, 27( I j: 1-28, Ian. 2001. 

38 I_ 


