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Abstract

One of the major differences in partitioning for co-
design is in the way the communication cost is
evaluated. Generally the size of the edge cut-set is used.
When communication between components is through
buffered channels, the size of the edge cut-set is not
adequate to estimate the buffer size. A second important
factor to measure the quality of partitioning is the system
delay.  Most partitioning approaches use the number of
nodes/functions in each partition as constraints and
attempt to minimize the communication cost.  The data
dependencies among nodes/functions, and their delays
are not considered. In this paper we present partitioning
with two objectives: (1) buffer size, which is estimated
by analyzing the data flow patterns of the CDFG, and
solved as a clique partitioning problem, and (2) the
system delay that is estimated using List Scheduling. We
pose the problem as a combinatorial optimization and
use an efficient non-deterministic search algorithm
called Problem-Space Genetic Algorithm to search for
the optimum. Experimental results indicate that,
according to a proposed quality metric, our approach can
attain an average 87% of the optimum for two-way
partitioning.

1. Introduction

For hardware/software co-design, one of the
important and difficult problems is to partition the given
system specifications into software, which is to be
executed by microprocessors, and in hardware, which is
to be executed by a co-processor (custom designed
ASICs or synthesized FPGAs). One major difference in
various partitioning approaches is in the way the
communication cost is evaluated. The most common way
is taking the size of edge cut-set between partitions as
the communication cost [8]. However, the
communication between two components is normally
through buffered channels [2]. The size of the edge cut-

set is not accurate enough to estimate the buffer size. As
a matter of fact, the buffer size is in general smaller than
the values (i.e., edges) transferred among the blocks of a
partition. Another important factor to measure the
quality of the partitioning result is the system delay.
Most of the partitioning approaches [5] set up the
number of the nodes/functions in each partition as the
constraint for partitioning, and then try to minimize the
communication cost. The effects of the data dependency
among these nodes/functions, the delays of each
functions, and the sequences of executing the functions
are not considered. These effects have a great impact on
the system performance. For example, in Figure 1,
although (a) and (b) have the same communication cost
and the same number of nodes in each partition, (a) is
preferred. The reason is that (b) requires a longer
execution delay because of the data dependency among
the functions and the blocks of  the functions assigned
to.

Figure 1.  Partition results with different system delays
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In this paper, behavioral-level system specification is
described using hardware description language, such as
VHDL. The VHDL code is then parsed and translated
into a graphic representation, which is called Control
Data Flow Graph (CDFG). The CDFG is used as the
input for our partition algorithm. We propose two
optimization objectives to measure the quality of the
partition. One is the buffer size, and the other is the
system delay. The buffer size is estimated by analyzing



the data flow patterns of the CDFG, which is obtained by
tracing the paths in the CDFG. The buffer size
estimation is transformed into a Clique Partition
problem [13]. The system delay is estimated by using
List Scheduling [5]. These two quality measures are
formulated as a weighted-sum cost function, and we try
to find a partition that requires a minimal cost by using a
type of the genetic algorithms called Problem Space
Genetic Algorithm (PSGA) [4,7]

2. Previous Related Work

The min-cut partitioning algorithm [8] uses the size
of the edge cut-set to measure the quality of partitioning.
The algorithm interchanges subsets of nodes between
two blocks to get a maximal partitioning improvement.
Agrawal and Gupta stated that a min-cut partitioning
algorithm which uses the size of an edge cut-set is not
accurate enough to estimate the number of buffers
needed, which is a better partitioning quality
measurement, for inter-processor communications [1].
They proposed a data-flow assisted behavioral
partitioning algorithm that can more accurately estimate
the inter-processor communication cost. Their algorithm
is limited to two-way partitioning, and the number of
functions in each partition, is used as a constraint
instead of the system delay which is a better measure of
performance.

Partitioning is known to be a NP-complete problem
[5]. Approaches that have been proposed by previous
researchers are usually based on constructive heuristics
such as the min-cut algorithm [8], or some non-
deterministic hill-climbing algorithms such as the
simulated annealing [9]. The major disadvantage of
constructive heuristics is that they get trapped in local
optima and are therefore unable to attain global optimum
solutions. For the simulated annealing approach, in
order to achieve a satisfactory result, the cost of CPU
time is usually very high [5]. Another non-deterministic
optimization algorithm called the Genetic Algorithm has
been applied successfully in numerous research areas
[6].

Problem Space Genetic Algorithm was first proposed
by Storer et al. [12]. Storer et al. realized that infeasible
solutions occurred during the evolution process in each
generation for conventional genetic algorithms. The
infeasible solutions must be either corrected by a
repairing mechanism or be discarded. They proposed an
alternative way to handle the occurrence of infeasible
solutions by perturbing the problem space instead of the
solution space. A fast heuristic algorithm is then use to
map the problem space into the solution space, which
guarantees that the solutions are always feasible. This

approach was first adopted by Dhodhi et al. [4] to
optimize the datapath in a high-level synthesis
environment.

3. Problem Formulation

The Control Data Flow Graph G = (V, E), which is
used to describe the system behaviors, consists of a set of
functions which are represented by vertices V = {vi | i =
1,2,..m}, and a set of data dependencies which are
represented by edges E = { eij | eij = (vi,vj),  vi, vj ∈ V }.

The CDFG is then used as an  input for our
partitioning algorithm. The problem of partitioning V
into two or more interacting blocks can be expressed as
P = {Pi | i = 1,2,....N.}, where Pi = (Vi, Ei),  ∪ Vi = V,
and Vi ∩ Vj = Ø if i ≠ j, with the constraints of
minimizing the communication cost and system delay.
The functions in the same block, i.e.Vi,  are assigned to
the same functional units or processors for execution.
The delay for each partition block is the sum of the
functional execution delays, and the time during which
the functional unit is idle. The system delay is therefore
the maximum delay of the functional unit delays, which
can be expressed as:

T = max
j 1,N=

( Ti idle(j)
i 1,|Vj|

+
=
∑ ) , (1)

where  Ti is the execution delay for function vi .

The interface communication cost is expressed as:

R = (b  +  b   )ij ji 

i j 1, Nj 1,N 1 = += −
∑∑ , (2)

where bij and bji are the buffer sizes required to support
the two-way communication between Partitions i and j .
The algorithm for buffer size estimation will be
presented in Section 4. Having defined the system delay
and communication cost, the objective of behavioral
partitioning can be formulated as follows:

Objective: Given a CDFG G = (V, E), find a
partition P such that the cost function

C =ααT + ββR (3)

is minimized, where  αα and ββ are weights used to
control the desired tradeoff between system delay T, and
communication cost R.

4. Buffer Size Estimation



The buffer size between two partitions can be
estimated by tracing the data flow in the CDFG. The
algorithm is a two-step process which includes labeling
the edges of the CDFG with path vectors (PVs) and then
transforming the edges into a compatibility graph. The
compatibility graph is then used to find the upper bound
on the buffer size.

4.1 Path Vectors

Labeling the edges with path vectors is used to detect
the variables with non-overlapping lifetimes. The
variables with non-overlapping lifetimes can share the
same register in a buffer, which leads to buffer size
reduction. For example, in Figure 2, Functions 1 and 3
are assigned to P1 and Functions 2 and 4 are assigned to
P2, Variables a and c are non-overlapping because the
data dependency among Functions 1, 2, 3, and 4.
Variables a and c can share a register in Buffer b12.

A path vector is a bit vector. The dimension of a path
vector is the number of paths in the CDFG. The paths in
the CDFG can be found by using each entry nodes,
which are the nodes without predecessors, as the roots,
and then perform Depth-First Search. For example, in
Figure 3 (a), the roots for this CDFG are Nodes 1, 2, 3,
4, and 5. After using the roots to find all the paths,
which are shown in Figure 3(b), each path is represented
by a one-hot bit vector, e.g., [00001] is used to represent
Path1. All the edges that belong to that path are labeled
with the same path vector. If an edge is traversed by
more than one path, the edge is labeled with the bit-wise
OR of the path vectors. For example, in Figure 3 (a),
Edges f and h are traversed by Paths 1 and 2 so that
Edges f and h are labeled with a path vector [00011].
The formal notaiton of the path vector for an edge is
denoted as PV(eij ), where eij  ∈∈ E

The path vectors are then used to determine whether
two variables are potentially lifetime overlapped or not.
Two variables are lifetime non-overlapping if the bit-
wise AND of their path vectors is not a zero vector. If
the result of  bit-wise AND of two path vectors is a zero
vector, then the two variables are potentially lifetime
overlapped.

4.2 Buffer Size Upper Bound

After all the edges are labeled with path vectors,
compatibility graphs can be constructed to estimate the
upper bound of the buffer sizes. For two partition blocks
Pi and Pj, the edge cut set, which is used to represent the
variables generated by the functions in Pi and consumed
by the functions in Pj, is denoted as Cij  = { cij  | cij  =

(vi,vj),  vi ∈∈ Vi, vj  ∈∈ Vj }. The compatibility graph for
Cij  is constructed as follows:
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Figure 2. Edge Cut-sets  with  non-overlapping  lifetimes
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Figure 3. CDFG labeled path vectors

Path 1. (1)-a-(6)-f-(10)-h-(11)

Path 2. (2)-b-(6)-f-(10)-h-(11)

Path 3. (3)-e-(7)-g-(11)

Path 4. (4)-d-(8)

Path 5. (5)-e-(9)
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• • For every edge pair (cij , cij ’),  where cij , cij ’ ∈∈ Cij  and
cij  ≠≠ cij ’ ,

• If PV(cij ) AND PV(cij ’) ≠≠ 0, then introduce an edge
between cij  and cij ’ .

For example, Figure 4(a) shows the edge cut-set and
the path vectors for Cij . The compatibility graph for Cij

is shown in Figure 4(b).

Figure 4. (a) Path vectors and (b)Compatibility graph for C ij

Cij  = { b,d,m,r,k}

PV(b)  =  0000 0110
PV(d)  =  0000 0100
PV(m) =  0100 1000
PV(r)   =  0000 0010
PV(k)  =  1001 0000
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The buffer size upper bound for bij  is then
transformed into a clique partition problem, which is to
find the minimal number of cliques to cover the
compatibility graph. Finding a  clique partition is an NP-
complete problem [5]. An effective heuristic algorithm
proposed by Tseng and Siewiorek [13] is used to find the
minimal number of cliques for our buffer size estimation
algorithm. Analogously, the buffer size for bji  can be
obtained by applying the above procedure, and the buffer
size upper bound for Partition i and j  is equal to bij+bji .
The system buffer size can be attained by computing the
buffer sizes of each partition pair and then adding them
up, which is expressed in Equation (2).

5. Problem Space Genetic Algorithm for
Behavioral Partitioning

5.2. Problem Space Genetic Algorithm (PSGA)

Genetic algorithms (GAs) [6] are powerful domain-
independent search algorithms for optimization
problems. In prior genetic algorithm research [10, 11],
the chromosomes in the population are encoded directly
as the solutions of the combinatorial optimization
problem. One major disadvantage for this type of
chromosome encoding is that after crossover and/or
mutation operations, the generated solutions may not be
feasible. For example, in the high-level synthesis
scheduling problem [5], a function cannot be scheduled
before its predecessors are scheduled. If the
chromosomes carry directly the control steps in which
the functions are scheduled for execution, infeasible
solutions will be generated after crossover and/or
mutation if a function is scheduled before its
predecessors were scheduled. The infeasible solutions
have to be fixed or discarded.

PSGA takes an alternate approach by encoding the
problem data not the solution data. The problem space
information is used by a fast heuristic algorithm to map
the problem information into solutions. The advantage of
PSGA includes (1) Crossover operator can be
constructed easily without providing the technique of
fixing the infeasible solutions. (2) An existing fast
heuristic algorithm can be selected to map the problem
space to the solution. The existing problem specific
heuristic algorithm has already gained-insight
knowledge of the problem. Embedding this heuristic
algorithm within GA is equivalent to incorporating
problem specific knowledge into the search for the
optimal solution.

5.3. Problem-Space Genetic Behavioral
Partitioning (PSGBP)

The implementation of the behavioral partitioning
algorithm, which is based on the PSGA, is presented in
this section. For illustration purposes, a CDFG used for
modeling the superposition of reflected and incident
uniform plane electromagnetic waves is shown in Figure
5 [3].
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Figure 5. DFG for the electromagnetic wave superposition model

5.3.1 Chromosome Encoding and Initial
Population

For  optimization of the behavioral partitioning
problem, a chromosome consists of two parts (see Figure
6): (1) a list of integers representing the block to which
each function in the CDFG is assigned, and (2) a list of
integers representing the work remaining (WR) [12] for
each function in the CDFG.

Suppose a two-way partitioning is to be performed,
the initial chromosome in the population is constructed
as follows. Each function is randomly assigned to one of
the two blocks. For example, in Figure 6 the first part of
the , 13, 14, 15, and 17 are assigned block 0 and
Functions 5, 8, 10, 16, 18, and 19 are assigned to block
1. Suppose the execution delays for floating point
addition is 2 clock cycles, multiplication is 1 clock cycle,
cosine is 24 clock cycles, and sine is 26 clock cycles



(these numbers are taken from Intel arithmetic processor
unit 8231 and are normalized against multiplication),
then the second part of the chromosome shows the work
remaining of each function. Work remaining is a term
borrowed from operation research and is used to indicate
the minimum time required to complete all the jobs [12].

 Figure 6. Chromosome representation

group assignments  for each function

work remaining for each function

0      0     0     0    1    0    0    1     0     1     0     0     0   0   0   1    0   1   1

32   31   30    4    3    2    1   31   29    3   33   32   31   4   3   2    2   1   3 

1     1    1      0    0    1    1    0    0      0    1     1     0    1   0   1    1    0     1

21   19   33   31  20  44  29   22   32  18  27    24  33  45  36  34  25  33   27

1     0     1     0    1    0    1    0     1     1    1     1     0    1    0    1    1    1   1

26   29    28   23 37  45  36  45    40   40  31   31  37  27   44 34  32  37  24

1       2         3        4       5       6       7       8         9       10      11      12       13    14     15   16     17    18    19  

node number Chromosome 1

Chromosome 2

Chromosome 3

For the rest of the chromosomes, the block parts are
generated using the same technique as that applied to the
first chromosome. The work remaining parts are
generated using the following  formulae [4]:

WRi = WRmax + δδi (4a)
δδi = [-a,a] , (4b)

where  WRi is the work remaining for Function i in a
chromosome, WRmax is the maximum work remaining
in the initial chromosome, and a is equal to WRmax / 2.
δδi is a randomly generated integer number that is
between -a and a.  Figure 6 shows examples of  the
second and the third of the chromosomes produced for
the CDFG shown in Figure 5. The work remaining is
used by the list scheduling algorithm as the priority
function [5]. List scheduling is a fast heuristic
scheduling algorithm with computational complexity of
O(n), where n is the number of functions in the CDFG.
After assigning the functions into different blocks and
then applying list scheduling, the costs for each
chromosome can be obtained by using Equation 3.

5.3.2 Crossover

Crossover is an operation that selects two parent
chromosomes from the population and produces two
offsprings. The selection of parents from the population
is based on the fitness values of the chromosomes. The
higher the fitness value, the higher the probability of a
chromosome being chosen for reproduction.

The fitness values for each chromosome are
calculated as follows:

f(i)  = 

p

p
(Cmax - Ci +  1)

(Cmax Ci 1)
j 1,N

− +
=
∑

, (5)

where  Cmax is the maximum cost in the population,  Ci

is the cost for chromosome i , N is the population size,
and P is a  parameter used to determine  the selectivity
of the fitness function [12]. The plus 1 in the
denominator is needed for preventing a division by 0
error if all the members in the population converge to an
identical chromosome.

After all the fitness values in the population are
computed, the roulette wheel algorithm [6] is used to
select the chromosomes for crossover operation. The
crossover operator selects two chromosomes, Mm  and
Mf , and randomly generates a cut point i. The first
offspring is the concatenation of Mm(1:i)  and
Mf(i+1,|V|), and the second offspring is the
concatenation of Mf(1:i)  and Mm(i+1,|V|).

5.3.3 Mutation

The mutation operator selects a small percentage,
usually less than 5 %,  of  the offsprings and changes
their block mappings and work  remainings. The block
change is re-mapping the randomly selected functions
into another block. The work remaining change is re-
assigning randomly selected functions new work
remainings. Equation 4 is used to compute values for the
new work remainings.

6. Experimental Results

PSGBP algorithm is coded using C++ and compiled
using GNU g++. The run-times are in the order of
minutes on SUN UltraSparc Workstations for all of the
test cases used. Two CDFGs that are derived from
electromagnetic field and digital signal processing are
used to evaluate PSGBP. Eight artificially generated
CDFGs, whose optimal solutions are known, are also
used to determine the best solutions PSGBP can achieve
for a given memory constraint, i.e., the population size,
and a time constraint (that is, the number of
generations).  The complexities of these CDFGs used
range from 19 nodes to 110 nodes.

The experimental results for Two- and Four-way
partitioning are shown in Table 1. The population size,
Np, is set to 30, and the number of generations, Ng, is



set to 1000. The mutation probability is set to 5%. The
weights for αα and ββ are set to 1 and 5 respectively.
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Table 1. Comparing the results of PSGBP with optimal solutions

Number
of
Partitions

ph_1

ph_2

ph_3

ph_4

ph_5

2

2

2

2

2

2

2

2

4

4

22 0 275 275 2 275 285 96.3%

66 0 823 823 11 825 880 93.0%

110 0 1371 1371 12 1375 1435 95.6%

44 0 275 275 9 275 320 83.6%

88 0 549 549 31 553 728 71.0%

Because the optimal solutions for the first two CDFGs
are unknown, the costs and Q do not apply (indicated by
“-”).  CDFG gh_1 to gh_3 and ph_1 to ph_5 are
generated manually, and optimal solutions for them are
known. In Table 1, buffer size is used to indicate the
buffer size required for the interface communication,
system delay is used to indicate the execution time
required for the given CDFG, and cost is calculated
using Equation 3. From the results shown in Table 1,
For Two-way partitioning, all the test cases can reach
about 87% of the optima.

Table 2 shows comparison of the buffer size for the
final partition by using the size of edge cut-set, or, the
estimated buffer size, as part of the cost function. For
each test case, the initial populations are set to be the
same for comparison. The population size is set to 30,
and the number of generations to 500.

T o ta l b u ff er c o s t o f  f i n ial  p a r ti tio n

C D F G

w a v e  su p e rp o siti o n

ell ip tic  d i g ital  f i lte r

g h _ 2

p h _ 2

u se

size  o f e d g e  cu t- se t
as  p a r t o f  c o st  f u n c tio n

u se

es t im a ted  b u ffe r  s ize
as  p a r t o f  c o st  f u n c tio n

4 2

7 6

9 7

9 9

T ab le  2 . B u ffe r  s ize  com pa riso n s

The results show that using estimated buffer size as
part of the cost function can achieve smaller buffer sizes
in the final partitions in three test cases and the same
buffer size in one test case, which implies using
estimated buffer size instead of the size of edge cut-set as
part of the cost function can attain lower communication
costs and better partition results.

6. Conclusions

We have presented a new partitioning algorithm that
is based on the Genetic Algorithm which is an efficient
way to search optimum solutions for NP-complete

problems. The partitioning algorithm also uses buffer
size estimation and system delay to evaluate the qualities
of the solutions. The proposed buffer size estimation
algorithm starts from searching the paths in the CDFG.
The edges of CDFG are then labeled with path vectors,
and the path vectors are used to construct compatibility
graphs. The compatibility graph is then input to a fast
heuristic partition algorithm to find the upper bound of
the buffer size. The experimental results show that our
partition algorithm can achieve solution qualities
ranging from 83 to 100% of optimal for Two-way
partitioning. Using buffer size estimation as part of the
cost function can also obtain lower communication costs
than using the size of edge cut-set in the finial partitions.
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