
Efficient Static Compaction Techniques for Sequential Circuits Based on Reverse

Order Restoration and Test Relaxation

Aiman H. El-Maleh, S. Saqib Khursheed and Sadiq M. Sait

Department of Computer Engineering

King Fahd University of Petroleum & Minerals

Dhahran 31261, Saudi Arabia

emails:{aimane, saqib, sadiq}@ccse.kfupm.edu.sa

Abstract

In this paper we present efficient Reverse Order Restora-

tion (ROR) based static test compaction techniques for syn-

chronous sequential circuits. Unlike previous ROR tech-

niques that rely on vector-by-vector fault-simulation based

restoration of test subsequences, our technique restores test

sequences based on efficient test relaxation. The restored

test subsequence can be either concatenated to the com-

pacted test sequence, as in previous approaches, or merged

with it. Furthermore, it allows the removal of redundant

vectors from the restored subsequences using State Traver-

sal technique and incorporates schemes for increasing the

fault coverage of restored test subsequences to achieve an

overall higher level of compaction. In addition, test relax-

ation is used to take ROR out of saturation. Experimental

results demonstrate the effectiveness of the proposed tech-

niques.

Keywords: Static Compaction, Test Relaxation.

1. Introduction

The length of a test set for testing System on Chip (SOC)

crucially affects the Test Application Time (TAT) and mem-

ory requirements of the tester. Therefore, test compaction

focuses on reducing the length of a test set while main-

taining its fault coverage. Test compaction algorithms can

be classified into two main classes: dynamic and static

compaction. Dynamic compaction algorithms incorporate

heuristics aimed at producing shorter test length into the

test generation process while static compaction algorithms

are applied as a post-processing step to the test generation

process. Static compaction is known to be more efficient for

sequential circuits than dynamic compaction.

Several well known static compaction techniques are

proposed in the literature, [1-11].

Vector restoration algorithms [1, 4-8] could suffer from a

large number of fault simulations to restore a test sequence

to detect the target faults, which makes it computationally

expensive. Recently, an efficient Test Relaxation scheme

was proposed for sequential circuits by El-Maleh et al. [12].

The relaxation algorithm returns the relaxed assignments on

inputs as well as on flip-flops of the circuit, considering a

certain number of target faults.

In this work, we utilize the relaxation algorithm in ex-

tracting a test sequence. This is achieved by stopping the

relaxation process whenever the required values on all the

flip-flops are either don’t cares (Xs) or are compatible with

the states reached by previously restored test sequence. This

gives an efficient way of restoring test sequences compared

to the expensive vector-by-vector fault simulation based

restoration technique. The restored test sequences using

this scheme have the additional property of being relaxed,

i.e., not fully specified, and therefore can be merged using

schemes similar to those proposed in [11]. Furthermore,

the test relaxation algorithm is used to take RX-LROR out

of saturation.

In addition, we propose an efficient way to identify re-

dundant vectors in a restored test subsequence based on a

technique similar to State Traversal [2].

We also propose a technique that enhances the perfor-

mance of RX-LROR by increasing the fault coverage of

currently compacted test sequence before restoring a subse-

quence for the next target fault(s). This is done by relaxing

and randomly filling the compacted test set, and is found

effective in drastically reducing the test size. Finally, we

propose three hybrid compaction techniques that reduce the

inherent limitation of vector restoration algorithms of quick

saturation and offer a trade-off between compaction quality

and CPU time.

The paper is organized as follows: Section 2 dis-

cusses the proposed algorithms with illustrations, Section

3 presents experimental results and finally Section 4 con-

Proceedings of the 14th Asian Test Symposium (ATS ’05)
1081-7735/05 $20.00 © 2005 IEEE

cludes the paper.

2 Proposed Algorithms

In this section, different algorithms proposed in this

work are described.

2.1 Relaxation based Reverse-Order-Restoration
with State Traversal

Algorithm 1 illustrates our implementation of the

Reverse-Order-Restoration technique based on test relax-

ation. Let’s suppose that the size of the test set to be com-

pacted , is of length . We denote the compacted test set as

C; initially = . Given a time frame , we denote the set

of faults detected at by . The Good and Faulty state of

the flip-flops is denoted by and , respectively. We also

denote the required flip-flop values for justifying the faults

by () . holds all the faults detected by .

Let and indicate the flip-flop values (required or

reached) at time frame and , respectively. Then, the state

justification requirements of are covered by those of ,

if . For e.g., let be 1X and be 10. Then,

and this means that the required values on are satisfied

by . Finally, & is a concatenation operator.

Algorithm 1 starts by restoring a self-synchronizing se-

quence of length vectors, where is user-specified. Then,

it starts the restoration process from the last time frame in

the test sequence at which some faults are detected. Test

restoration is shown in Algorithm 2. A test subsequence

for a set of faults is restored by justifying the required val-

ues for detecting the faults frame-by-frame. The restoration

process of the test subsequence terminates if the required

values on the flip-flops at a time-frame are all X’s or are

covered by the flip-flop values reached by the previously

restored sequence. Once a test subsequence is restored, an

attempt to reduce its size is made by State Traversal algo-

rithm, which is discussed in the next subsection. Finally,

the reduced subsequence is concatenated to the previously

restored sequence and only the concatenated sequence is

fault simulated, and detected faults are dropped. The pro-

cess continues until all the faults are detected.

2.2 State Traversal

During restoration, the algorithm stores for each fault

the / requirements that have to be justified in previous

time frames. The state traversal algorithm is called after a

sequence is restored and is shown in Algorithm 3. In Al-

gorithm 3, it is assumed that the restored subsequence ,

consisting of vectors, detects faults. It is also assumed

that and are variables corresponding to time frames and

, respectively.

Algorithm 1 Reverse Order Restoration (RX-LROR)

1. Fault Simulate the circuit using the given test set.

Collect the detection time of each fault.

2. Restore the first test vectors as a synchronizing

sequence from the given test set .

={ 1, 2, 3,..... }.
3. Fault simulate the restored sequence and drop all

the faults detected from . Store the (/)

values of all the flip-flops for all undetected faults.

4. if (=) Return else Go to Step 5.

5. = Test Restoration(), where is the last

time frame having undetected faults.

6. = State Traversal()
7. = & ; Go To Step 3.

Algorithm 2 Test Restoration (,)

1. Let = , and = be the sequence currently

restored.

2. () = Justify(,i) and let = .

3. while((() 6=) and (() + ())) {
= & //add current time frame to V

= 1 //move back single time frame

() = Justify(,) //get the required

//values for all flip-flops in this time frame

} //end while
4. Return()

For each time frame , the algorithm checks for the earli-

est possible time frame such that the justification require-

ments of time frame are satisfied by the justification re-

quirements of time frame . If such a time frame is found,

then the vectors from to 1 are redundant and can be
removed. Algorithm 3 removes these vectors if no fault

is detected within these vectors. This heuristic was found

experimentally useful in reducing the overall restored test

sequence by state traversal and not resulting in longer test

sequences.

Algorithm 3 is illustrated in Fig. 1. As shown in Fig. 1,

the algorithm stores for each fault in a list. Since

()
4

()
2
for fault 1, the state requirements

at time frame 4 are satisfied by the state requirements at
time frame 2. Therefore, test vectors 2 and 3 can be re-
moved from the restored subsequence without affecting the

fault coverage. It should be observed that Algorithm 3 takes

into account all the faults in when comparing ()
values. Therefore, the algorithm removes redundant vec-

tors, just by state comparison without doing any additional

fault simulation.

Proceedings of the 14th Asian Test Symposium (ATS ’05)
1081-7735/05 $20.00 © 2005 IEEE

Algorithm 3 State Traversal(, ,)

1. Let =2 and = .

2. while(2) {
if((for each fault k (() ()))&
(No fault detected in Time Frames

to 1)){
Clip Vectors to 1 from

= -1 ; =2 }
else if(1) ++
else { ; = 2 }
} // End while

3. Return ().

f1
FF1

GV=1
FV=0

FF4
GV=X
FV=0

f1
FF4

GV=0
FV=1

FF5
GV=1
FV=0

f1
FF1

GV=1
FV=0

FF4
GV=1
FV=0

Redundant Vectors that are
removed by State Traversal

1 4

After Clipping redundant
Vectors

f = fault
FF = Flip Flop

GV=Good Value
FV=Faulty Value

1 42 3���2 3

Figure 1. Compaction by State Traversal Al-

gorithm.

2.3 Merging Restoration

Merging Restoration (MR) follows the same flow as Al-

gorithm 1. However, it takes advantage of the unspecified

assignments at the inputs of the extracted subsequence and

merges it with previously restored subsequences rather than

concatenating it. In MR, step 7 of Algorithm 1 is replaced

by first calling Algorithm 4 and then moving back to step

3. However in step 3, the states of flip-flops (/) are

not stored for the undetected faults. Furthermore, the while

condition in step 3 of test restoration algorithm is replaced

by only (() 6=)) condition. Therefore in step 5 of
MR, Test Restoration algorithm returns the self-initializing

subsequence for the target faults.

The idea of merging is similar to the one proposed by

Roy et al. [11]. The subsequences can be merged in dif-

ferent ways. Merging from Top is shown by Algorithm 4.

It checks the compatibility of the two test sequences (cur-

rently restored and compacted test set), and tries to

merge the two test sequences starting from the last test vec-

tors of and towards the beginning of the test sequences.

Merging from Bottom, on the other hand is exactly the op-

posite, it checks the compatibility of the two test sequences

and , and tries to merge the two sequences starting from

the first test vectors towards the end of the test sequences.

Similarly, another scheme uses a more greedy heuristic and

decides on merging the subsequence wherever savings are

higher. However, experimental results showed that Merging

from Top gave overall best results. Therefore, our work uses

Merging from Top only. State traversal (ST) is not applied

in MR as higher compaction is achieved without it.

A drawback of MR, compared to concatenating subse-

quences (RX-LROR), is that the currently compacted test

set needs to be fault simulated in contrast to fault simu-

lating only the newly restored subsequence.

After a single run of MR Algorithm, there is a large per-

centage of un-specified bits. These bits can be randomly

filled for subsequent iterations.

Algorithm 4Merging from TOP (,)

1. Let and be the number of test vectors in

and .

2. if () swap with and with .

3. Let i=last test vector in , SM=i

4. Let j=last test vector in

5. if (i 1)

while(j 1 and i 1) {
if([] and [] are compatible) { j = j-1; i = i-1;
if(i = 0 OR j = 0) Merge C and V, starting from

[] and []
} // end if
else { SM = SM-1; i = SM

goto step 4 } //breaking the while loop
} // end-while

6. else = & ;

7. Return()

2.4 Subsequence Fault Coverage Increasing
LROR

In this section, we propose a modification to the RX-

LROR compaction algorithm (Algorithm 1) to maximize its

effectiveness in producing more compacted test sequences.

The proposed algorithm is called subsequence fault cov-

erage increasing LROR (SFC-LROR) and is shown as Al-

gorithm 5. It follows the same steps as RX-LROR, Algo-

rithm 1, with a difference that after concatenating the newly

restored test sequence to the compacted test set, relaxation

algorithm [12] is called to return the un-specified input as-

signments on the currently compacted test set. This step is

followed by randomly filling the un-specified inputs. Ran-

Proceedings of the 14th Asian Test Symposium (ATS ’05)
1081-7735/05 $20.00 © 2005 IEEE

domly filling the un-specified inputs is essentially used for

increasing the fault coverage as more faults can be detected,

which could lead to reducing the number of restored test se-

quences. These two steps, Relaxation followed by Random

filling are done once each time a test sequence is restored

and if the fault coverage of the compacted test sequence in-

creases, the process is repeated. It is important to emphasize

that the objective of subsequence fault coverage increasing

is to achieve higher compaction rather than higher fault cov-

erage, by the compacted test sequence.

Fig. 2 illustrates the behavior of SFC-LROR in compar-

ison with RX-LROR. RX-LROR restores the test sequence

(6, 7) to detect faults f3 and f10, and the test sequence (11,

12) to detect faults f5 and f6. On the other hand, SFC-LROR

detects these faults in earlier test sequences. SFC-LROR in-

creases the fault coverage of the test sequence (1, 2, 3) to de-

tect f3. Similarly, the test sequence (4, 5) detects the faults

f5 and f10, and the test sequence (8, 9, 10) detects the fault

f6, in addition to previously detected faults. Hence, SFC-

LROR restores lesser test sequences giving higher level of

compaction.

1 2 8543 9 10

f3f10

f9

f5 f6f1 f2 f4

f8f7

6 7 1211

1 2 1098543

f1 f2 f6f9

f8f7

f3

f10 f5

f4

RX-LROR

SFC-LROR

Figure 2. Compaction by RX-LROR based on

increasing the Fault Coverage Algorithm.

2.5 Hybrid Schemes

In this section, we propose three hybrid schemes that re-

duce the inherent limitation of vector restoration algorithms

of quick saturation and capitalize on combining the benefits

provided by the different algorithms proposed in this work.

Hybrid-I is composed of two primary steps. In the

first step (step-I), the proposed RX-LROR algorithm (Al-

gorithm 1) is run for two iterations and if there is any re-

duction in test sequence length in any of these two itera-

tions, the algorithm runs for one more iteration. The al-

gorithm re-iterates by running an extra iteration as long as

the last iteration reduces the test sequence length. This step

is followed by Test Relaxation [12] and randomly filling

the un-specified bits, which forms the second step (step-

II) of Hybrid-I. Test Relaxation and random filling (step-

II) change the composition of test set, while maintaining

its fault coverage. This helps moving the algorithm out of

Algorithm 5 Subsequence Fault Coverage Increasing

RX-LROR (SFC-LROR)

1. Fault Simulate the circuit using the given test set.

Collect the detection time of each fault.

2. Restore the first test vectors as a synchronizing

sequence from the given test set .

={ 1, 2, 3,..... }.
3. Fault simulate the restored sequence and drop all

the faults detected from . Store the (/)

values of all the flip-flops for all undetected faults.

4. if (=) Return else Go to Step 5.

5. = Test Restoration(), where is the last

time frame having undetected faults.

6. = State Traversal()
7. = & ;

8. while(fault coverage of increases& 6=) {
=Relaxation()

RandomFill() }
9. Go To Step 3.

local minima and the search space is therefore increased.

Furthermore, it allows RX-LROR to re-iterate far longer

and partially replaces almost every test vector at a very low

cost of CPU time. Step-II is again followed by step-I and

the process continues (step-I followed by step-II) until four

consecutive iterations are unable to reduce the test size.

Hybrid-II is based on the intuition that merging of re-

laxed subsequences (MR) gives another level of freedom to

test compaction, therefore it may further squeeze the size

of test set, if applied after Hybrid-I. As mentioned previ-

ously, MR requires comparatively larger number of fault-

simulations than RX-LROR. This drawback makes it vul-

nerable to large sized test set in terms of CPU time.

Hybrid-II is proposed to keep the advantages offered by

MR, while restricting its limitations. It applies MR to the

solution found by Hybrid-I. In this algorithm, MR is applied

once and is re-iterated until one pass of MR does not further

reduce the test size.

Hybrid-III is another powerful compaction scheme,

which combines SFC-LROR and MR. The algorithm re-

iterates SFC-LROR until 4 consecutive iterations are unable

to reduce the test size. This step is followed by MR, which

is reiterated until one iteration of MR does not reduce the

test size. MR is again followed by SFC-LROR and the pro-

cess continues as long as each pass (SFC-LROR followed

by MR) reduces the test size. The idea is illustrated by Fig.

3.

3 Experimental Results

In order to demonstrate the effectiveness of the proposed

test compaction algorithms, we have performed experi-

Proceedings of the 14th Asian Test Symposium (ATS ’05)
1081-7735/05 $20.00 © 2005 IEEE

FC-LROR MR

4+ 1+

1+

Hybrid-III

Figure 3. Hybrid-III scheme.

ments on the ISCAS89 benchmark circuits using STRATE-

GATE [13] and HITEC [14] test sequences. The experi-

ments are conducted on an IBM P-IV 2.0 GHz processor,

with 512 MB RAM and HOPE [15] is used as a fault simu-

lator.

The RX-LROR version implemented in our work is sim-

ilar to the one proposed by Guo et al. [5], as it doesn’t in-

clude new faults into the target fault set during subsequence

restoration for a group of faults in a single time frame.

Therefore, our implementation of RX-LROR is compared

with that proposed by LROR [5] for a fair comparison. This

version of LROR [5] used 20 test vectors as synchronizing

sequence in case of test size more than 300 vectors and l/16

otherwise. The number of vectors in a synchronizing se-

quence are kept the same in our version of RX-LROR for

the sake of comparison. The proposed Hybrid Schemes

have shown better results and are also compared with the

other best known compaction algorithms i.e., LROR [8],

MISC [8] and SIFAR [6] to show their overall performance.

It should be noted that LROR [8] uses a single test vector

as a synchronizing sequence, therefore for fair comparison,

Hybrid schemes and SFC-LROR have also used the same

synchronizing sequence in their respective RX-LROR im-

plementations.

During cost functions computation for flip-flops, our im-

plementation of RX-LROR, RX-LROR-ST and Test Relax-

ation applies a multiplicative weight of 10, while in SFC-

LROR andMerging Restoration (MR), applies a multiplica-

tive weight of 100. These weights were selected based on

experiments.

The performance of compaction algorithms on

STARATEGATE [13] test sequences, together with

CPU time, reported in brackets are shown in Table 1.

The results of LROR [5] are compared with the proposed

algorithms. From Table 1, it can be seen that the proposed

RX-LROR performed better than LROR [5] on 7 out of 10

circuits, with slightly better overall savings and comparable

CPU time. These results are further improved by applying

State Traversal to the newly restored subsequences in RX-

LROR-ST algorithm. RX-LROR-ST has further reduced

the compacted test set against a small penalty of CPU time.

It has again performed better than LROR [5] on 7 out of

10 circuits. The next column (ITE-RX-LROR-ST) is the

iterative version of the same algorithm. Although it shows

comparable results to ITE-LROR [5], it can be noticed that

ITE-RX-LROR-ST has suffered from quick saturation and

for many circuits it is unable to reduce the test size.

It can be observed that for some circuits, e.g., s5378, the

compacted test sequence length obtained by our proposed

implementation of RX-LROR (Algorithm 1) is larger than

the one obtained by LROR [5]. This is due to the current

limitations of the justification algorithm, which will be ad-

dressed in future work.

The next column in Table 1 shows the performance of

Merging Restoration (MR). MR did not perform well com-

pared to our implementation of RX-LROR. It has achieved

better results on two circuits only (compared to our version

of RX-LROR). This is due to the fact that the extracted test

sequences are not fully specified, which reduces the num-

ber of faults detected by the restored sequence compared

to the fully specified one. This also results in extracting

a larger number of test sequences, which affects the com-

paction quality and CPU time. Despite these limitations,

it has the potential of improving the compaction quality, if

applied after RX-LROR as discussed earlier.

ITE-Hybrid-I is shown next in Table 1. It can be seen

that ITE-Hybrid-I has significantly improved the results

of ITE-RX-LROR-ST and has performed better than ITE-

LROR [5] in 9 out of 10 circuits, with higher overall sav-

ings.

The last column of Table 1 shows the performance of

ITE-Hybrid-II. MR has shown the effect of further squeez-

ing the size of test set, which is already reduced by ITE-

Hybrid-I. ITE-Hybrid-II has performed better than ITE-

LROR [5] on 9 out of 10 circuits and has given the highest

overall savings, in comparison to all other algorithms shown

in Table 1.

Based on the above results, ITE-Hybrid-II is compared

with ITE-LROR [8], ITE-MISC [8] and ITE-SIFAR [6] on

STRATEGATE test sequence [13], and on HITEC test se-

quences [14] in Table 2.

Considering STRATEGATE test sequences [13], it can

be noticed that ITE-Hybrid-II has performed better on 8

out of 10 circuits with higher overall savings than ITE-

LROR [8]. When compared to ITE-SIFAR [6], ITE-Hybrid-

II has again performed better on 7 out of 10 circuits, while

1 resulted in a draw. In terms of overall savings, ITE-

Hybrid-II has shown higher savings than ITE-SIFAR. How-

ever, ITE-MISC has performed better than ITE-Hybrid-II

on 6 out of 10 circuits but the overall savings are compa-

rable and the CPU time is significantly higher than that of

ITE-Hybrid-II.

Next, these algorithms (other than ITE-SIFAR) are com-

pared on HITEC [14] test sequences . As shown in Table 2,

Proceedings of the 14th Asian Test Symposium (ATS ’05)
1081-7735/05 $20.00 © 2005 IEEE

ITE-Hybrid-II gives better results than ITE-LROR [8] on 9

out of 13 circuits and significantly higher overall savings.

While comparing to ITE-MISC [8], it shows better perfor-

mance on 9 out of 13 circuits, with slightly better overall

savings and lesser CPU time. The effect of ITE-Hybrid-

II is even more pronounced for the circuits: s1196, s1238,

s3271, s3384 and s4863.

The performance of SFC-LROR is shown in Table 3.

The one-shot version of RX-LROR-ST and SFC-LROR

on STRATEGATE [13] and HITEC test sequences [14] is

shown. It can be seen that SFC-LROR has made significant

improvement on our implementation of RX-LROR-ST. It

has shown higher level of compaction on 8 out of 10 cir-

cuits with higher overall savings on STRATEGATE [13]

test sequences. This trend is even more pronounced on

HITEC [14] test sequences, shown next in the same ta-

ble. On HITEC test sequences [14], SFC-LROR has per-

formed better than RX-LROR-ST on 12 out of 13 circuits

and achieved much higher overall savings. It is worth

mentioning that this (fault coverage increasing) scheme is

generic and can be applied on top of any static compaction

scheme. These results demonstrate the strong potential of

the scheme.

The performance of the iterative version of SFC-LROR

(ITE-SFC-LROR) is shown in Table 3. ITE-SFC-LROR re-

iterates SFC-LROR until 4 consecutive iterations are un-

able to reduce the test size. It can be seen that in compari-

son to SFC-LROR on STRATEGATE Test Sequences [13],

it has further reduced the test size on 9 out of 10 circuits

and achieved higher overall savings of nearly 400 test vec-

tors. Similarly on HITEC Test Sequences [14], it has further

squeezed the test size on 11 out of 13 circuits with nearly

900 test vectors higher overall savings.

ITE-SFC-LROR can also be compared with the other

best known compaction algorithms shown in Table 2. On

STRATEGATE Test Sequences [13], in comparison to ITE-

LROR [8], ITE-SFC-LROR has performed better on 8 out

of 10 circuits with higher overall savings. In comparison

to ITE-SIFAR [6], it has again performed better on 6 out

of 10 circuits with higher overall savings. Finally, in com-

parison to ITE-MISC [8], it has performed better on 4 out

of 10 circuits with comparable savings. The effect is more

pronounced on s5378.

The performance of ITE-SFC-LROR can also be com-

pared with all these algorithms (other than SIFAR [6]) on

HITEC test sequences [14] shown in Table 2. It can be no-

ticed that ITE-SFC-LROR has performed better than ITE-

LROR [8] on 10 out of 13 circuits, while 1 resulted in a

draw. It has shown more than 600 test vectors savings than

ITE-LROR [8]. In comparison to ITE-MISC [8], it has per-

formed better on 8 out of 13 circuits and achieved almost

200 test vectors savings more than ITE-MISC [8]. Some of

the circuits like s713, s820, s1238, s1488, s5378 and s4863

are worth noticing.

Finally, Table 4 shows the performance of ITE-Hybrid-

III and compares it with the best known compaction al-

gorithms on STRATEGATE [13] and HITEC [14] test se-

quences. On STRATEGATE Test Sequences [13], in com-

parison to ITE-LROR [8], ITE-Hybrid-III has performed

better on 8 out of 10 circuits with significantly higher over-

all savings. In comparison to ITE-SIFAR [6], it has again

performed better on 8 out of 10 circuits with higher over-

all savings. Finally, in comparison to ITE-MISC [8], it has

performed better on 5 out of 10 circuits with higher overall

savings. The effect is more pronounced on s1196, s1238

and s5378.

ITE-Hybrid-III is compared next in the same table on

HITEC test sequences [14]. It can be noticed that ITE-

Hybrid-III has performed better than ITE-LROR [8] on 11

out of 13 circuits, while 1 resulted in a draw. It has shown

more than 1000 test vectors savings than ITE-LROR [8].

In comparison to ITE-MISC [8], it has performed better on

12 out of 13 circuits and achieved almost 600 test vectors

higher overall savings. Some of the circuits like s713, s820,

s1196, s1238, s1488, s5378, s3271, s3384 and s4863 have

achieved significantly higher savings than the other two al-

gorithms.

4 Conclusion

In this paper, we have proposed several static compaction

algorithms for sequential circuits based on efficient Test Re-

laxation and Reverse Order Restoration schemes. The pro-

posed work has the advantage of quickly restoring a test se-

quence for a set of faults compared to vector-by-vector fault

simulation based Restoration techniques. The restored sub-

sequence is further compacted by state traversal algorithm,

which allows the removal of redundant vectors without ad-

ditional fault simulation. These restored subsequences can

be either concatenated (having fully specified bits; making

RX-LROR), or they can be subjected to increasing the fault

coverage (SFC-LROR), and finally can also be merged (re-

laxed input assignments, Merging Restoration). Merging

Restoration is found to be more effective after applying RX-

LROR and SFC-LROR as demonstrated by ITE-Hybrid-II

and ITE-Hybrid-III. Finally, we have also proposed an effi-

cient way of taking any compaction algorithm out of satura-

tion. This is achieved by using test relaxation and randomly

filling the unspecified bits before re-iterating the algorithm,

demonstrated by ITE-Hybrid-I.

The proposed static compaction algorithms in this paper

have clearly shown the trade-offs between compaction qual-

ity and CPU time.

Proceedings of the 14th Asian Test Symposium (ATS ’05)
1081-7735/05 $20.00 © 2005 IEEE

Table 1. Compaction Results on STRATEGATE Test Sequences.

STRATEGATE Test Sequences

ITE ITE ITE ITE

LROR [5] LROR [5] RX-LROR RX-LROR-ST RX-LROR-ST MR Hyb-I Hyb-II

Ckt TS TS (sec) TS (sec) TS (sec) TS (sec) TS (sec) TS (sec) TS (sec) TS (sec)

s298 194 138 (0.14) 112 (0.74) 152 (0.09) 152 (0.11) 152 (0.15) 154 (0.05) 106 (0.96) 89 (1.16)

s344 86 62 (0.09) 51 (0.18) 44 (0.1) 44(0.1) 44 (0.13) 61 (0.04) 48 (0.26) 48 (0.31)

s641 166 118 (0.13) 117 (0.32) 133 (0.16) 119 (0.17) 118 (0.56) 148 (0.59) 68 (1.48) 68 (1.64)

s713 176 139 (0.16) 103 (0.61) 115 (0.2) 112 (0.25) 111 (0.49) 140 (0.54) 64 (1.37) 64 (1.54)

s820 590 489 (0.79) 471 (1.94) 469 (0.64) 456 (0.59) 428 (1.96) 531 (3.11) 377 (18.1) 376 (22)

s832 701 543 (0.89) 443 (4.5) 534 (0.45) 498 (0.6) 460 (2.28) 568 (3.31) 418 (18.9) 406 (24.3)

s1196 574 277 (0.28) 260 (1.2) 268 (0.59) 268 (1.17) 266 (1.21) 242 (1.79) 213 (37.4) 182 (41.5)

s1238 625 285 (0.31) 270 (1.09) 268 (0.62) 268 (1.23) 266 (1.64) 248 (2.18) 222 (33.1) 196 (36.6)

s1488 593 501 (1.79) 474 (14.89) 466 (0.71) 453 (1.01) 423 (4.0) 533 (5.38) 362 (17.4) 361 (24.5)

s5378 11481 677 (38.71) 585 (71.55) 760 (50.0) 710 (51.8) 703 (74.46) 1549 (227.57) 637 (307.4) 637 (383.7)

Total 15186 3229 (43.27) 2886 (97.04) 3209 (53.6) 3080 (57) 2971 (86.94) 4174 (244.6) 2515 (450.84) 2427 (539.7)

Table 2. Compaction Results on STRATEGATE and HITEC Test Sequences.

STRATEGATE Test Sequences HITEC Test Sequences

ITE ITE ITE ITE ITE ITE ITE

LROR [8] SIFAR [6] MISC [8] Hyb-II LROR [8] MISC [8] Hyb-II

Ckt TS TS (sec) TS (sec) TS (sec) TS (sec) TS TS (sec) TS (sec) TS (sec)

s298 194 125 (0.6) 112 (0.4) 98 (3.2) 89 (1.16) 322 109 (0.8) 97 (1.1) 143 (0.98)

s344 86 47 (0.1) 48 (0.2) 43 (0.4) 48 (0.31) 127 47 (0.1) 47 (0.5) 45 (0.53)

s641 166 78 (0.5) 87 (0.4) 63 (1.7) 68 (1.64) 209 63 (1.0) 72 (1.2) 66 (2.28)

s713 176 72 (0.6) 94 (1.1) 60 (0.8) 64 (1.54) 173 74 (0.7) 74 (1.0) 71 (1.77)

s820 590 394 (6.4) 388 (6.5) 335 (15.2) 376 (22) 1115 578 (13.8) 432 (28.3) 488 (27.4)

s832 701 458 (8.8) 435 (4.5) 368 (14.0) 406 (24.3) 1137 562 (8.3) 383 (64.0) 493 (20.5)

s1196 574 221 (1.7) 237 (3.4) 216 (3.2) 182 (41.5) 435 226 (2.3) 223 (2.5) 187 (38.8)

s1238 625 222 (2.6) 251 (1.5) 222 (3.6) 196 (36.6) 475 227 (1.9) 225 (1.9) 184 (51.8)

s1488 593 343 (27.1) 312 (8.8) 364 (39.4) 361 (24.5) 1170 571 (10.4) 572 (354.6) 648 (49.6)

s5378 11481 711 (339.4) 597 (89.5) 583 (2148) 637 (383.7) 912 245 (108.1) 271 (189.0) 262 (107.3)

s3271 - - - - - 709 555 (24.6) 443 (265.0) 369 (103.2)

s3384 - - - - - 161 104 (11.6) 92 (13.1) 75 (20.1)

s4863 - - - - - 518 302 (20.5) 315 (25.6) 133 (430.1)

Total (sec) 15186 2671 (387.8) 2561 (116.3) 2352 (2229.5) 2427 (537.2) 7463 3698 (204.1) 3246 (947.8) 3164 (854)

Bold face highlights the best results

Table 3. Comparison of RX-LROR-ST and SFC-LROR on STRATEGATE and HITEC Test Sequences.

STRATEGATE Test Sequences HITEC Test Sequences

ITE ITE

RX-LROR-ST SFC-LROR SFC-LROR RX-LROR-ST SFC-LROR SFC-LROR

Ckt TS TS (sec) TS (sec) TS (sec) TS TS (sec) TS (sec) TS(sec)

s298 194 152 (0.11) 150 (0.19) 116 (3.47) 322 187 (0.11) 157 (0.3) 157 (0.92)

s344 86 44(0.1) 52 (0.25) 52 (1.31) 127 54 (0.06) 55 (0.31) 55 (1.45)

s641 166 119 (0.17) 80 (0.37) 62 (6.19) 209 135 (0.1) 87 (0.91) 63 (4.77)

s713 176 112 (0.25) 85 (0.77) 61 (7.5) 173 105 (0.07) 68 (0.91) 53 (4.76)

s820 590 456 (0.59) 449 (15.86) 391 (98.8) 1115 631 (0.5) 541 (24.2) 380 (243.1)

s832 701 498 (0.6) 444 (23.19) 402 (118.27) 1137 636 (0.46) 548 (26.98) 397 (216.28)

s1196 574 268 (1.17) 225 (16.23) 215 (157.59) 435 291 (0.29) 236 (16.85) 212 (150.01)

s1238 625 268 (1.23) 228 (17.17) 202 (155.64) 475 302 (0.29) 245 (19.54) 215 (189.36)

s1488 593 453 (1.01) 456 (41.92) 402 (249.84) 1170 774 (1.0) 698 (54.81) 457 (796.41)

s5378 11481 710 (51.8) 615 (226.06) 490 (1333.61) 912 451 (4.59) 287 (63.11) 212 (561.36)

s3271 - - - - 709 767 (2.37) 610 (307.72) 537 (2304.5)

s3384 - - - - 161 150 (0.71) 106 (37.5) 95 (216.68)

s4863 - - - - 518 390 (2.86) 274 (147.76) 221 (797)

Total (sec) 15186 3080 (57.03) 2784 (342.0) 2393 (2133.22) 7463 4873 (13.41) 3912 (700.9) 3054 (4788.9)

Proceedings of the 14th Asian Test Symposium (ATS ’05)
1081-7735/05 $20.00 © 2005 IEEE

Table 4. Hybrid-III in comparison to best known compaction algorithms.

STRATEGATE Test Sequences HITEC Test Sequences

ITE ITE ITE ITE ITE ITE ITE

LROR [8] SIFAR [6] MISC [8] Hybrid-III LROR [8] MISC [8] Hybrid-III

Ckt TS TS (sec) TS (sec) TS (sec) TS (sec) TS TS (sec) TS (sec) TS (sec)

s298 194 125 (0.6) 112 (0.4) 98 (3.2) 101 (5.07) 322 109 (0.8) 97 (1.1) 153 (2.55)

s344 86 47 (0.1) 48 (0.2) 43 (0.4) 49 (2.46) 127 47 (0.1) 47 (0.5) 46 (10)

s641 166 78 (0.5) 87 (0.4) 63 (1.7) 59 (13.76) 209 63 (1.0) 72 (1.2) 63 (7.41)

s713 176 72 (0.6) 94 (1.1) 60 (0.8) 57 (11) 173 74 (0.7) 74 (1.0) 53 (8.34)

s820 590 394 (6.4) 388 (6.5) 335 (15.2) 374 (204.9) 1115 578 (13.8) 432 (28.3) 359 (394.74)

s832 701 458 (8.8) 435 (4.5) 368 (14.0) 374 (377.24) 1137 562 (8.3) 383 (64.0) 381 (475.52)

s1196 574 221 (1.7) 237 (3.4) 216 (3.2) 180 (273.31) 435 226 (2.3) 223 (2.5) 187 (221.35)

s1238 625 222 (2.6) 251 (1.5) 222 (3.6) 185 (285.54) 475 227 (1.9) 225 (1.9) 190 (252.48)

s1488 593 343 (27.1) 312 (8.8) 364 (39.4) 396 (492.22) 1170 571 (10.4) 572 (354.6) 451 (902.9)

s5378 11481 711 (339.4) 597 (89.5) 583 (2148) 490 (1985.6) 912 245 (108.1) 271 (189.0) 212 (912.72)

s3271 - - - - - 709 555 (24.6) 443 (265.0) 332 (3441.43)

s3384 - - - - - 161 104 (11.6) 92 (13.1) 81 (456.86)

s4863 - - - - - 518 302 (20.5) 315 (25.6) 139 (1299.1)

Total (sec) 15186 2671 (387.8) 2561 (116.3) 2352 (2229.5) 2265 (3651.1) 7463 3698 (204.1) 3246 (947.8) 2647 (8385.39)

Bold face highlights the best results

Acknowledgements

The Authors would like to thank Dr. Ruifeng Guo for

clarifying some of the concepts of Vector Restoration and

Mr. Khaled Al-Utaibi for his help and support in the Test

Relaxation algorithm. This work is supported by King Fahd

University of Petroleum & Minerals under project # FT

2004/07.

References

[1] I. Pomeranz and S. M. Reddy, “Procedures for Static Com-

paction of Test Sequences for Synchronous Sequential Cir-

cuits,” IEEE Trans. Computers, vol. 49, pp. 596-607, June

2000.

[2] M. S. Hsiao, E. M. Rudnick and J. H. Patel, “Fast Static

Compaction Algorithms for Sequential Circuit Test Vectors,”

IEEE Trans. Computers, vol. 48, pp. 311-322, March 1999.

[3] M. S. Hsiao and S. T. Chakradhar, “State Relaxation Based

Subsequence Removal for Fast Static Compaction in Se-

quential Circuits,” Proc. Design Automation and Test in Eu-

rope, pp. 577-582, Feb 1998.

[4] I. Pomeranz and S. M. Reddy, “Vector Restoration Based

Static Compaction of Test Sequences for Synchronous Se-

quential Circuits,” Proc. Int. Conf. Computer Design, pp.

360-365, Oct 1997.

[5] R. Guo, I. Pomeranz and S. M. Reddy, “On Speeding-up

Vector Restoration Based Static Compaction of Test Se-

quences for Sequential Circuits,” Proc. IEEE Asian Test Sym-

posium, pp. 467–471, 1998.

[6] X. Lin, W. u-Tung Cheng, I. Pomeranz and S.M. Reddy, “SI-

FAR: Static Test Compaction for Synchrnous Sequential Cir-

cuits Based on Single Fault Restoration,” Proc. IEEE VLSI

Test Symposium, pp. 205-212, 2000.

[7] R. Guo, S. M. Reddy and I. Pomeranz, “PROPTEST: A Prop-

erty Based Test Pattern Generator for Sequential Circuits us-

ing Test Compaction,” Proc. Design Automation Conference,

pp. 653-659, June 1999.

[8] R. Guo, S. M. Reddy and I. Pomeranz, “Reverse-Order-

Restoration-Based Static Test Compaction for Synchronous

Sequential Circuits,” IEEE Trans. Computer-Aided Design of

Integrated Circuits and Systems, vol. 22, pp. 293-304, March

2003.

[9] I. Pomeranz and S. M. Reddy, “Vector Replacement to Im-

prove Static-Test Compaction for Synchronous Sequential

Circuits,” IEEE Trans. Computer-Aided Design of Integrated

Circuits and Systems, vol. 20, pp. 336-342, Feb 2001.

[10] I. Pomeranz and S. M. Reddy, “Sequence Reordering to Im-

prove the Levels of Compaction Achievable by Static Com-

paction Procedures,” Proc. Design Automation and Test in

Europe, pp. 214-218, March 2001.

[11] R. Roy, T. Niermann, J. H. Patel, J. Abraham and R.

Saleh, “Compaction of ATPG-Generated Test Sequences

for Sequential Circuits,” Proc. International Conference on

Computer-Aided Design, pp. 382-385, Nov 1988.

[12] A. El-Maleh and K. Al-Utaibi, “An Efficient Test Relax-

ation Technique for Synchronous Sequential Circuits,” IEEE

Trans. Computer-Aided Design of Integrated Circuits and

Systems, vol. 23, pp. 933-940, June 2004.

[13] M. S. Hsiao, E. M. Rudnick and J. H. Patel, “Sequential Cir-

cuit Test Generation using Dynamic State Traversal,” Proc.

European. Design and Test Conf, pp. 22-28, March 1997.

[14] T. M. Niermann and J. H. Patel, “HITEC: A Test Generation

Package for Sequential Circuits,” Proc. Eur. Conf. Design

Automation (EDAC), pp. 214-218, 1991.

[15] H. K. Lee and D. S. Ha, “HOPE: An Efficient Parallel Fault

Simulator for Synchronous Sequential Circuits,” Proc. De-

sign Automation Conference, pp. 336-340, June 1992.

Proceedings of the 14th Asian Test Symposium (ATS ’05)
1081-7735/05 $20.00 © 2005 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

