
Task Matching and Scheduling in Heterogeneous Systems
Using Simulated Evolution

Hassan Barada1 Sadiq M. Sait2 Naved Baig2

1Etisalat College of Engineering
Emirates Telecommunications Co.

Sharjah, UAE
email: hbarada@ece.ac.ae

2Computer Engineering Department
King Fahd University of Petroleum & Engineering

Dhahran, Saudi Arabia

ABSTRACT
This paper describes and analyzes the application of a

simulated evolution (SE) approach to the problem of
matching and scheduling of coarse-grained tasks in a
heterogeneous suite of machines. The various steps of the
SE algorithm are first discussed. Goodness function
required by SE is designed and explained. Then
experimental results applied on various types of
workloads are analyzed. Workloads are characterized
according to the connectivity, heterogeneity, and
communication-to-cost ratio of the task graphs. The
performance of SE is also compared with a genetic
algorithm (GA) approach for the same problem with
respect to the quality of solutions generated, and timing
requirements of the algorithms.

1. Introduction

Heterogeneous Computing (HC) is the well-
orchestrated use of a heterogeneous suite of machines
interconnected via a high-speed network. HC is emerging
as a major paradigm for scientific and high performance
applications to exploit the heterogeneity in computations
[1].

However, in order to run an application task efficiently
in an HC environment, it is first decomposed into coarse-
grained subtasks; each subtask is well suited to single
machine architecture. The characteristics of subtasks and
machines are then determined using code-profiling and
analytical benchmarking which are both analytical steps

that evaluate the matching of subtasks to individual
machines [1, 2]. Each subtask is then matched to the most
suitable machine and scheduled on it. Matching is defined
as the assignment of subtasks to the machines in the HC
system whereas scheduling comprises the ordering of
execution of subtasks on each machine. The goal of
efficient heterogeneous computing is then to achieve the
minimal execution time of the application task when it is
running in the HC system.

Task matching and scheduling in HC systems is
known, in general, to be NP-complete [4]. Therefore,
heuristics that attempt to reach near-optimal solutions to
this problem have been proposed in the literature [3-8]. A
good survey of many heuristics is in [4]. In this paper, we
propose another heuristic, simulated evolution (SE),
which is a powerful general iterative heuristic that has
been applied to few optimization problems especially in
design automation [9, 10]. This paper discusses and
analyzes the implementation of this approach to task
matching and scheduling in HC systems and compares its
performance to the genetic algorithm (GA)-based
approach [3], with respect to the quality of solutions and
run time requirement of the algorithms.

2. Problem Definition

Different HC models have been used in the literature
[3-8]. The HC model used in this work is similar to the
model assumed by Wang et al. in [3]. An application task
is decomposed into a set of coarse-grained subtasks
Sb={si, 0di<k}, each subtask is well suited to a single
machine architecture. The data items that need to be

0-7695-0990-8/01/$10.00 (C) 2001 IEEE

�

transferred between the subtasks form a set D={di,
0di<p}. An HC system consists of a set of machines
M={mi, 0di<l} each of which is characterized by a
specific architecture such as SIMD, MIMD, special
purpose FFT, etc. For the purpose of this study, it is
assumed that machines are fully connected.

The estimated execution times of the subtasks in Sb on
the machines in M are known a priori and are given by an
l u k execution-time matrix E. The estimated transfer
times of data items between subtasks to be transferred
through the HC network are also described by an l(l�1)/2
u p transfer-time matrix Tr; p represents the number of
data items while l(l�1)/2 represents the number of
machine pairs. As an example, Figure 1a shows a DAG of
7 subtasks and 6 data items describing an application task.
Figure 1b shows a graph representing a 2-machine HC
system on which the application is to be executed. The
estimation of execution times of the subtasks on both
machines are given by the 2x7 E matrix shown in Figure
1c. In Figure 1d, the 1x6 matrix Tr gives the transfer
times between m0 and m1 for the data items d0 to d5.

The task matching and scheduling problem is defined
as follows: It is required to match and schedule the k
subtasks in set S on the l machines in set M such that the
total execution time of the application task on the HC
network is minimized.

c)

d)

Figure 1. A sample HC model.

3. Simulated Evolution

Simulated Evolution is a general iterative heuristic for
solving combinatorial optimization problems [9 - 11].
The book by Youssef and Sait [10] includes a good and
thorough discussion of SE and its relation to other
iterative.

SE starts from an initial solution. Then following an
evolution-based approach, it seeks to reach better
solutions from one generation to the next. The algorithm
has three basic steps: Evaluation, Selection and
Allocation. These steps are carried out repetitively until a
stopping criterion is satisfied.

The Evaluation step consists of evaluating the
goodness of each individual ei of the current solution. The
goodness measure is a number expressible in the range
[0,1] and it is defined, for each individual ei, as gi = Oi/Ci,
where Oi is an estimate of the optimal cost of individual ei

and Ci is the actual cost of ei in its current location. Oi

does not change from one generation to the next, and
therefore it is computed for every individual only once
during initialization.

During selection step, individuals of the current
solution are divided into two disjoint sets; a selection set
S and a set R of remaining individuals. The decision
whether to include ei in S or R is based solely on
individual goodness gi. Individuals with lower goodness
values are more likely to get selected and assigned to set
S. However, individuals with higher goodness values
should have a non-zero probability of being selected.

Allocation alters all individuals in S of the current
generation to produce a new generation. It involves
making several trial alterations for each individual before
deciding on the final configuration of the new generation.
The goal of allocation is to favor improvements of quality
of the current generation over the previous generation,
without being too greedy. It allows the search to
progressively converge to an optimal configuration where
each individual is optimally allocated.

4. SE for Matching and Scheduling in HC

To implement SE, it is necessary to devise an efficient
goodness measure that computes goodness value of each
individual during the evaluation step. It is also necessary
to devise an encoding technique that describes the state of
the solution. Then, problem-dependent methods for
generating an initial solution, evaluation, selection, and
allocation should be designed.

V�

V�

V� V�

V�

V� V�

P� P�

G� G�

G�G�
G�G�

��

��

�
�

�
�
�

�
�

�������	�
�����
����

����
��������	�����
�

� ��
��
��	������

0-7695-0990-8/01/$10.00 (C) 2001 IEEE

�

4.1 Encoding Technique

We have encoded a solution to matching and
scheduling in HC (MSHC) using a string of k segments
where k is the number of subtasks in the DAG
representing the application task. Each segment consists
of two parts: a subtask identifier and a machine identifier.
Pairing a subtask si with a machine mj in the same
segment means that si is assigned to machine mj.
Obviously, in this type of encoding, we have to ensure
that a string represents a valid solution, which satisfies the
precedence constraints in the DAG. In our encoding
scheme, if a subtask sx is placed on the left of a subtask sy

and both are assigned to the same machine mj then sx is
executed before sy in mj. This encoding scheme is close to
the encoding technique used by Wang et al. [3]. However,
in [3], the authors used two different strings: one for
matching and one for scheduling while we combine both
strings in only one string for matching and scheduling.

Figure 2 illustrates the encoding scheme. The string in
the figure represents a valid solution to the HC problem
described in Figure 1. In Figure 2, the order of execution
of subtasks in each machine is given by m0: s0, s3, s4 and
m1: s1, s2, s5, s6. This ordering means that in machine m0, s0

is executed first, s3 is executed next, then s4 last. In m1, s1

is executed first, s2 second, s5 third, then s6 last.

s0 m0 s1 m1 s2 m1 s5 m1 s6 m1 s3 m0 s4 m0

Figure 2. Valid encoding string.

4.2 Generating an initial solution

To generate a valid initial solution, each subtask in the
DAG is first assigned randomly to a machine in the set of
machines M. Then, the DAG is topologically sorted [12].
Following the sorted order, which guarantees that data
dependencies are satisfied, the subtasks are placed in
successive segments. This initial valid string is then
modified a random number of times as follows. A subtask
si is selected and moved randomly to another segment in
the string within its valid range of positions. The valid
range of a subtask is the set of positions where the subtask
can be placed without violating any data dependencies.

4.3 Evaluation

The evaluation step computes the goodness measure
gi=Oi/Ci of each individual ei of the current solution. In the
SE implementation of MSHC, an individual ei represents
a subtask si. The location of an individual refers to both
the pairing of si with mj (the assignment of subtask si to
machine mj) and the position of this pair in the string (the

order in which si is executed in machine mj). Ci is defined
as the finishing time of subtask si given the assignment of
subtasks and the order of their execution as described in
the current solution. Oi is defined as the finishing time of
subtask si if it is placed in its optimal location according to
a specific function F. F, in our implementation, assigns
subtask si and all its predecessors to their best-matching
machine with respect to the execution time of the subtasks
on all machines.

For example, for the DAG in Figure 1, the optimal
finish time of subtask s4, according to the above function
F, is its finishing time if it is assigned to machine m1 and
subtasks s0 and s1 are both assigned to machine m0. In this
case, O4 = 1835 units including communication time
between s1 and s4. This is computed before SE starts.
Assuming that after SE starts, the current solution is the
solution shown in Figure 2, C4 will equal to 3123 units
since s0, s3 and s4 are assigned to m0, and s1 and s2 are
assigned to m1.

4.4 Selection

During the selection step, at every generation of the
algorithm and for each subtask si, a random number in the
range [0,1] is generated and compared with (gi+B), where
gi is the goodness of si and B is the selection bias. If the
generated number is greater than (gi+B), then si is selected
and assigned to the selection set S; otherwise it is
assigned to R. The selected subtasks are ordered in
ascending order according to their level in the DAG, and
are considered for allocation in the next step in that
particular order.

The value of the selection bias B is fixed and preset at
the beginning of the algorithm. It is used to have some
control over the selection process as a tradeoff between
implementing a fast algorithm and having a more
thorough search. In our work, we have used negative
values for B (between -0.1 and -0.3) for small problem
sizes and positive values (between 0 and 0.1) for large
problem sizes. For smaller DAGs, a negative value of B
will force the selection of relatively large percentage of
subtasks, hence allowing a more thorough search. In cases
of large DAGs, the value of B is kept positive to restrict
the number of subtasks selected in the selection step.

4.5 Allocation

The allocation step relocates all individuals in the
selected set S. The strategy used in the SE algorithm for
MSHC is constructive. It always chooses the best location
for the subtask under consideration. First, the valid
moving range of the selected subtask is determined. Next,
all various combinations are tried and the schedule

0-7695-0990-8/01/$10.00 (C) 2001 IEEE

�

lengths of corresponding solutions are computed. A
combination consists of placing the subtask in a valid
segment without violating the data dependency
constraints and assigning it to a machine. Finally, the
subtask is placed in the segment and assigned to the
machine that results in the best overall schedule length.
This process is tried for every subtask in the set S and the
output of the allocation step is the next generation.

One parameter, which has been analyzed and studied
in our SE-implementation, is a parameter we call Y. Y
defines the number of machines to which a particular
subtask can be assigned according to its execution time
on all machines. For example, if Y=2, then each subtask
can be assigned to two machines, its best-matching
machine and its next best. This parameter limits the
number of combinations tried in the allocation step and
therefore controls the trade-off between the execution
time of the SE algorithm and the quality of the solution
generated.

5. Experimental Results

To analyze the performance of the SE-based approach,
randomly generated workloads are used. Each workload
corresponds to a DAG representing an application task,
the number of machines in the HC system, the matrix E,
and the matrix Tr. Randomly generated workloads are
used since a generally accepted set of HC benchmarks
does not exist [3] and it is also desirable to obtain data
that demonstrates the effectiveness of the approach over a
broad range of conditions. We have conducted
experiments on small and large sizes.

Workloads are further classified according to their
connectivity, heterogeneity and communication-to-cost
ratio (CCR). The level of connectivity in a DAG defines
the number of data items to be transferred between the
subtasks. Heterogeneity classifies workloads according to
the degree of heterogeneity of subtasks, which defines the
difference in execution times of subtasks on the different
machines in the HC system. CCR is defined as the ratio of
size of data item over execution time of the subtask
generating this item. For example, CCR = 0.1 indicates
that the communication cost is low compared to the
computation cost in the DAG. This describes lightly
communicated subtasks. CCR=1 indicates that the
communication cost is comparable to the computation
cost. This describes heavily communicated subtasks.

5.1 Effectiveness of the SE algorithm for MSHC

To verify the effectiveness of the SE algorithm, one
can monitor the number of selected individuals in the
selection step of the algorithm as SE progresses. Initially

a large number of individuals should be selected for
relocation since most individuals are not optimally
placed. However, in later iterations, the number of
selected individuals should decrease gradually since more
individuals are placed optimally and should not be
relocated.

In the first set of experiments, various sizes and types
of workload were generated randomly and the number of
selected subtasks at every iteration of the SE algorithm
was logged. Figure 3a shows the result of a sample of
these experiments. The figure sketches the number of
selected subtasks versus the iteration number for a
workload of large size and high connectivity. The shape
of the graph, which is a typical shape of all the
experiments we have run, illustrates clearly that the SE
algorithm for MSHC is very effective in optimally
placing the tasks in their best-matching segments. Figure
3b shows the corresponding current schedule length.

5.2 Effect of Y parameter

Y represents a tradeoff between the timing
requirement of the algorithm and the quality of solution to
the problem. It should be expected that higher Y should
generate better quality solutions. However, this parameter
was studied because we anticipated that it might be
dependent on the heterogeneity of workloads. It was
predicted that if the application task is highly
heterogeneous, a smaller Y will still give high quality
solutions but with less time.

To analyze the effect of Y and heterogeneity of the
workload, SE for MSHC was run on workloads of
different sizes and varying levels of heterogeneity.
Different values of Y (from 2 to the number of machines)
were tried out and it was observed, as expected, that the
timing requirements for the SE algorithm increase as Y
increases. However, as far as the quality of solution is
concerned, it was not as clear. For low heterogeneous
workloads, increasing Y almost always improved the
quality of solution. For workloads of medium and high
heterogeneity, it was observed that increasing Y only
improved the solution as long as Y was relatively small
compared to the number of machines in the workload.
Beyond a certain threshold, the quality of solutions
actually started to get worse. This can be explained that in
heterogeneous workloads and for large Y, many low
quality solutions have to be visited before reaching good
solutions. Therefore, more iterations are needed to reach a
good solution. Figures 4a and 4b show typical samples of
these experiments. In both experiments, the workload is
of large size. Figure 4a sketches the quality of solutions
for Y equals 5, 9, and 12 if the heterogeneity of the
workload is low. This figure clearly shows that as Y

0-7695-0990-8/01/$10.00 (C) 2001 IEEE

�

increases the quality of solution improves and the rate to
reach good solutions also improves. However, in Figure
4b where a highly heterogeneous workload was used, the
best result was for Y = 9. Increasing Y beyond 9 actually
made the quality of solutions worse during the first 1000
iterations.

5.3 Comparison of SE and GA for MSHC

GA was implemented using the algorithm in [3]. We
have also used workloads with different characteristics:
connectivity, heterogeneity and CCR.

Figures 5, 6, and 7 represent samples of the results of
the experiments that we have run to compare both
heuristics. The algorithms are applied on workloads of
100 tasks and 20 machines with varying characteristics.
Figure 5 shows the best schedules found by both
algorithms as real time increases for a workload of high
connectivity. Figure 6 shows the best schedules found by
both algorithms as time increases for a workload of
CCR=1. In Figure 7, the workload used is of low
connectivity, low heterogeneity, and CCR = 0.1. From
these samples and other experiments we have conducted,
it was clear that SE produced better solutions than GA
with less time, for workloads with relatively high
connectivity, and/or high heterogeneity, and/or high CCR.
However, as time increases SE and GA solutions were
getting closer to each other. Also, as obvious from Figure
7, for low to medium connectivity, heterogeneity and
CCR, the conclusion is not as clear. Many times, GA
reached good solutions faster than SE as illustrated in the
sample experiment shown in Figure 7.

6. Conclusion

To the best of our knowledge, simulated evolution was
never applied before to the task matching and scheduling
problem in heterogeneous computing environments. In
this paper, we have proposed a simulated evolution-based
task matching and scheduling scheme. Experiments were
conducted on various types and sizes of workload to
demonstrate the effectiveness of the algorithm. We have
also compared our approach to the genetic algorithm
approach proposed in [3]. SE performed better than GA
for workloads of certain characteristics as it generates
better quality solution with less time. For other workload
characteristics, the difference between the two algorithms
was not clear.

Acknowledgment: The authors would like to thank King
Fahd University of Petroleum and Minerals, Dhahran,
Saudi Arabia and Emirates Telecommunications (Etisalat)
Corporation, UAE, for their support.

7. References

[1] A.A.Khokar, V.K.Prasana, M.E. Shaaban, and cho-Li
Wang, "Heterogeneous Computing: Challenges and
Opportunities", IEEE Computer, June 1993, pp. 18-27.

[2] S.Chen and W.Tsai, "A Graph matching approach to
optimal task assignment in Distributed Computing
System using a minimax criterion", IEEE Transactions
On Computers, C-34(3), March 1985, pp. 197-203.

[3] L.Wang, H.J.Siegel, V.P.Rowchoudhry, and
A.A.Maciejewski, "Task Matching and Scheduling in
Heterogeneous Computing Environments Using a
Genetic Algorithm-Based Approach", Journal of
Parallel and Distributed Computing, 47(8-22),
November 1997, pp. 8-22.

[4] T.D. Braun, H.J. Siegel, et al., "A Comparison Study of
Static Mapping Heuristics for a Class of Meta-tasks on
Heterogeneous Computing Systems", Proceedings of
Eighth Workshop on Heterogeneous Processing, 1999.

[5] H. Topcuoglu, S. Hariri and M.Y. Wu, "Task
Scheduling Algorithms for Heterogeneous Processors",
Proceedings of Eighth Workshop on Heterogeneous
Processing, 1999.

[6] A. Radulescu and A.J.C. van Gemund, "Fast and
Effective Task Scheduling in Heterogeneous Systems",
Proceedings of ninth Workshop on Heterogeneous
Processing, 2000.

[7] Harmel Singh and Abdou Youssef, "Mapping and
Scheduling Heterogeneous Task Graphs using Genetic
Algorithms", Proceedings of Seventh Workshop on
Heterogeneous Processing, 1997, pp. 86-97.

[8] N.S. Flan, R.F. Freund, P. Shroff, and D.W. Watson,
"Genetic Simulated Annealing for Scheduling Data-
Dependent Tasks in Heterogeneous Environments",
Proceedings of Seventh Heterogeneous Computing
Workshop, 1997, pp. 98-103.

[9] Ralph M. Kling and Prithviraj Banerjee, "ESP: A new
Standard Cell Placement Package using Simulated
Evolution", Proceedings of 24th Design Automation
Conference, , 1987, pp. 60-66.

[10] Habib Youssef and Sadiq Sait. Iterative Algorithms and
Their Applications in Engineering. IEEE press, 1999.

[11] Ly T.A. and Mowchenko J.T., "Applying Simulated
Evolution to Scheduling in High Level Synthesis",
Proceedings of the 33rd Midwest Symposium on Circuits
and Systems, 1990, pp. 172-175.

[12] Leiserson C.E., Cormen, T.H. and Rivest R.L.
Introduction to Algorithms. MIT Press, Cambridge, MA,
1992.

0-7695-0990-8/01/$10.00 (C) 2001 IEEE

�

Biography

Dr. Hassan R. Barada received his BS, MS, and PhD
degrees in Electrical Engineering from Louisiana State
University, Baton Rouge, USA, in 1984, 1986, and 1989
respectively. From 1989 until 1995, he was an Assistant
Professor in the Electrical Engineering and Computer
Science department at Lehigh University, Pennsylvania,
USA. From 1995 until 1999, he was an
Assistant/Associate Professor in the Computer
Engineering department at King Fahd University of
Petroleum and Minerals, Saudi Arabia. He is currently an
Associate Professor and Head of Computer Engineering
department at Etisalat College of Engineering which is a
division of Emirates Telecommunications Corporation,
United Arab Emirates. Dr. current research
interests are in the areas of parallel and distributed
computing and systems, and iterative algorithms with
applications to computer engineering problems.

Dr. Sadiq M. Sait obtained a Bachelor's degree in
Electronics from Bangalore University in 1981, and
Master's and PhD degrees in Electrical Engineering from
King Fahd University of Petroleum and Minerals
(KFUPM, Dhahran, in 1983 and 1987 respectively. Since
1987 he has been working at the Department of Computer
Engineering where he is now a Professor. In 1981 Sait
received the best Electronic Engineer award from the
Institute of Electrical Engineers, Bangalore. In 1990,
1994 and 1998 he was awarded the `Distinguished
Researcher Award' by KFUPM. Sait has authored over 80
research papers in International Journals and
Conferences. He served on the editorial board of
International Journal of Computer Aided Design between
1988-1990, and was invited to serve as a guest editor for
their special issue on Hardware Description Languages.
He is currently the Computer Science Editor of Arabian
Journal for Science and Engineering. Sait has also served
as a referee for several leading journals. He is the member
of the reviewers board of the Computer-Aided Design
Journal, UK. He has given invited lectures in The
University of Erlangen, Nurenberg, and at IBM Research
Center, Rushlikon. His current areas of interest are in
Digital Design Automation, VLSI System Design, and
High Level Synthesis. Sadiq M. Sait is the co-author of
the book ``VLSI Physical Design Automation: Theory
and Practice'', published by McGraw-Hill Book Co.,
Europe, (also co-published by IEEE Press), December
1994; and; also the co-author of the book ``Iterative
Compute Algorihtms with Applications in Engineering:
Solving Combinatorial Optimization Problems'', IEEE CS
Press, USA, December 1999.

Naved Baig received his B.E Computer Systems
Engineering degree in 1995 from NED University of
Engineering and Technology, Karachi, Pakistan. He
received his MS Computer Engineering degree in 1999
from King Fahd University of Petroleum and Minerals,
Saudi Arabia where he is working as a Lecturer now. His
research interests include iterative computer algorithms
and their applications in computer engineering, computer
architecture and computer networks.

0-7695-0990-8/01/$10.00 (C) 2001 IEEE

�

a)

Figure 3. Effectiveness of SE for MSHC.
a) Number of selected subtasks

versus iteration.
b) Schedule length of current

solution at each iteration.

)LJXUH �D� (IIHFW RI < IRU ORZ KHWHURJHQHLW\�

����

����

����

����

����

����

����

� ��� ��� ��� ��� ��� ��� ��� ��� ���

,WHUDWLRQV

6
F
K
H
G
X
OH

/
H
Q
J
WK

< ��

< �

\ �

)LJXUH �E� (IIHFW RI < IRU KLJK KHWHURJHQHLW\�

����

����

����

����

����

����

�����

�����

�����

�����

� ��� ��� ��� ��� ��� ��� ��� ��� ���

,WHUDWLRQV

6
F
K
H
G
X
OH

/
H
Q
J
WK

< ��

< �

\ �

�

�

��

��

��

� �� ��� ��� ��� ���

,WHUDWLRQV

�����

�����

�����

�����

� �� ��� ��� ��� ���

,WHUDWLRQV

E�

0-7695-0990-8/01/$10.00 (C) 2001 IEEE

�

Figure 5. SE vs. GA with high connectivity.

Figure 7. SE vs. GA with Low connectivity,
heterogeneity and CCR.

Figure 6. SE vs. GA with CCR = 1.

����

����

����

����

�����

�����

� ��� ��� ��� ��� ��� ��� ���� ���� ����

7LPH �VHF�

6(

*$

�����

�����

�����

�����

�����

�����

�����

� ��� ���

7LPH �VHF�

6F
KH
GXO
H
/H
QJW
K

6(

*$

�����

�����

�����

�����

�����

�����

�����

�����

� ��� ��� ��� ���

7LPH �VHF�

6(

*$

0-7695-0990-8/01/$10.00 (C) 2001 IEEE

