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Abstract— Recent advances in nanoscale components
assembly have led to the invention of low-power and high-
density nanofabrics, which can be integrated with conven-
tional CMOS transistors. CMOS/nanofabric hybrid cir-
cuits combine the flexibility and high fabrication yield ad-
vantages of CMOS technology with ultra fast nanometer-
scale devices. CMOL is a novel architecture which consists
of a nanofabric overlay on top of a CMOS stack. CMOL can
be configured to implement NOR-based logic circuits by
programming nanodevices placed between the nanofabric’s
overlapping nanowires. Defects rate in nanofabric-based
circuits is expected to be higher than that of conventional
CMOS technology. Misassembly of nanodevices will lead
to non-programmable crosspoints, while broken nanowires
will result in unreachable circuit’s components. In such
cases, utilizing CMOS/nanofabric architectures requires ro-
bust reconfiguration-based defect-tolerance design automa-
tion tools that can circumvent defective components and
insure circuits functionality.

In this work, we propose a heuristic-based nanofabric re-
configuration around defective nano-components in CMOL
circuits. Simulated Evolution (SimE) is formulated to find
circuits configurations that adhere to nanowires connectiv-
ity constraint and rely on non defective components. Cir-
cuits of various sizes from ISCAS’89 benchmarks were used
to evaluate our proposed design. Results show that SimE
yield successful reconfigurations in acceptable computation
time when up to 50% of nanodevices are stuck-at-open and
70% of nanowires are broken.

Keywords—CMOL, Nanofabrics, Reconfiguration, De-
fects, Simulated Evolution, VLSI, Design Automation.

I. Introduction

A shift from CMOS-based integrated circuits to chem-
ically assembled nanoelectronics has been under investi-
gation in the past years. Conventional CMOS fabrica-
tion suffers from multiple physical limitation when gate
length is scaled down to few-nm region [1]. Recently,
many proposals focused on the so-called bottom-up self-
assembly approach; where the smallest active devices of
integrated circuits are not defined lithographically but as-
sembled from components with reproducible size and struc-
ture. Those components are based on the advances in single

electron devices [2], quantum dot cells [3], and reconfig-
urable switches [4].

Self-assembly process is based on synthesizing and con-
necting nano-scale components (e.g., wires or devices)
through chemical process [5]. Two-dimensional nanofab-
rics are formed by the intersection of two sets of orthogonal
parallel nanometer-sized wires. Nanowires are aligned to
construct a reconfigurable array with nanometer spacing,
where the formed crosspoints can be used as programmable
nanodevices. Post-manufacturing configuration can ren-
der the assembled nanofabrics into functional circuits; the
small active nanodevices can be programmed to pass elec-
trical signals and to implement logic functions. Nanoscale
crossbar systems offer ultra-high density and can operate
at THz frequencies [6], however, nanowires and nanodevics
are likely to have many imperfections.

Circuits consisting of nanoscale molecular devices alone
are hardly viable as they lack register structures and mech-
anisms for signal restoration. Many suggested architectures
integrate two-dimensional nanofabrics with CMOS-based
subsystem, which provides the needed signals latching and
the additional necessary functionalities (e.g., high voltage
gain). Following this approach, researchers proposed hy-
brid CMOS/nanofabric circuits with varying layouts and
organizations; examples of which include Likharev et al.
CMOL circuits [7] and Crossnets [8], and Goldstein et al.
Nanofabrics [9]. Recent reviews of CMOS/nanofabric cir-
cuits can be found in [10].

Defects are major issue for devices with few atoms in
diameter. The small cross-section and contact areas can
render nanodevices fragile and defect prone. Although the
common problem of nanofabric-based architectures is high
defect density, yet it is still possible to utilize the defect-free
nano-components. Nanofabric’s faulty devices can be de-
tected and located using testing and diagnosis techniques;
where the nanofabric is tested in conjunction with an out-
side circuit or by configuring part of it to test its own
resources based on Built-in Self-test (BIST) techniques.
Tahoori et al. [11] surveyed different approaches for defect
detection and diagnosis in nanofabrics computing. Defect-
tolerant nanofabric-based circuits implementations can be
achieved by utilizing the reconfigurable and defect-testable
nanodevices and through employing effective design tools
that perform post-manufacturing circuits Reconfiguration.



Nanofabrics reconfiguration can be achieved by either;
reconfiguring circuits around defective components using
an already available defect information stored in a defect
map, or following a defect-unaware approach; where defect-
free subsets within the original defective nanofabric are
identified and then used for circuits implementation. For
the defect-unaware approach; Huang et al [12] presented
a defect-tolerance scheme which uses defect density infor-
mation obtained from the manufacturing process to de-
termine the expected size of functional (defect-free) cross-
bars. Whereas, Tahoori et al. [13] modelled the nanofab-
ric as a bipartite graph where a greedy algorithm defines
the defect-free maximum biclique. The algorithm looks for
defect-free k×k crossbars within the original defective n×n
nanofabric.

Finding successful reconfigurations for large nanofabrics
is not guaranteed as the given problem is NP-complete [14].
The aforementioned proposed algorithms are only applica-
ble for small nanofabric crossbars; greedy algorithms are
expected to have degraded results and to consume consid-
erable computation time in case of high defect rates. Fur-
thermore, mapping large circuits with hundreds of gates
and thousands of connections to subsets of defect-free
nanofabric crossbars will further require an additional step
to insure the global connectivity among the mapped sub-
circuits. In that sense, in this paper we investigate how a
non-deterministic heuristic, namely, Simulated Evolution-
SimE, can be formulated to utilize defect information,
which are stored in defect maps, to find successful circuits
reconfigurations in CMOL hybrid CMOS/nandevices ar-
chitecture. Our purposed approach employ a global re-
configuration policy, where SimE iteratively improves a
given circuit configuration until defective components are
all avoided.

In the next section we give a review of CMOL hy-
brid CMOS/nanodevices architecture. Section III provides
the problem formulation of nanofabrics reconfiguration.
Design and characterization of Simulated Evolution non-
deterministic heuristic are presented in Section IV. Section
V highlights our experimental setup and results. Finally,
we conclude with final remarks.

II. CMOL FPGA-like Circuits

CMOL cell-based, Field-Programmable Gate Array
(FPGA)-like circuits integrate conventional inverter-based
four-transistor MOSFET CMOS cells with uniform recon-
figurable nanofabric [7]. Each CMOS cell (four cells are
shown in Figure 1(b)) consists of an inverter and two pass
transistors. Two-terminal nanodevices “latching switches”,
which have two metastable internal states and diode-like
I-V curves, are assembled at each nanowires crosspoint.
Likharev et al. predicted the density of nanodevices to
be above 1012 to cm2 for Fnano = 3 nm, where Fnano

is the nanowires half-pitch. This arrangement results in
abundance of available nanodevices which can serve both
inter-cells connectivity and wiring-logic. CMOS stack is
connected with the nanofabric by metal pins that span to

(a)Schematic side view of two CMOL cells with
two levels of nanowires. Only one nanodevice is
activated to connect the output of Cell 2 with
the input of Cell 4.

(b)Four CMOL cells and corresponding pins and
nanowires. Only two nanodevices are shown; nd1
and nd2 which connect the outputs of Cell 2 and
Cell 3 with the input of Cell 4.

Fig. 1. Low-level structure of CMOL circuit.

top and bottom nanowire levels as shown in Figure 1(a).
Metal pins (i.e., Pin 1 and Pin 2) connect cell’s input and
output respectively with the nanofabric. Any two CMOS
cells (e.g., cell ‘2’ and cell ‘4’) can be connected through a
pin-nanowire-nanodevice-nanowire-pin connection.

Four inverter-based CMOS cells and their corresponding
nanowires are shown in Figure 1(b). Cell ‘3’ (i.e., lower left
cell) is connected to cell ‘4’ (i.e., upper left cell) through a
combination of two nanowires (nw2 and nw6) and a nan-
odevice (nd1). Nanodevice nd1 is located at the intersec-
tion between nanowire nw6 (which is connected with out-
put pin of cell ‘3’) and nanowire nw2 (which is connected
with input pin of cell ‘4’). When two or more nanodevice
on cell ‘4’ input nanowire (nw2) are activated (i.e., nd1 and
nd2) the output of the cell will be equivalent to a NOR gate
whose inputs are cell 2 and cell 3. The wired-OR logic is
implemented through nanowires and nanodevice and the
NOT logic is performed by the cell’s CMOS inverter.

CMOL nanofabric is rotated by angle
α = arcsin (Fnano/βFCMOS) related to the CMOS pins
which are arranged into a square array with side of
2βFCMOS , where FCMOS is CMOS half-pitch, and β is a
factor greater than 1. Each CMOS cell has an area of A =
(2βFCMOS)2. Like other nanofabric crossbars, CMOL’s
nanowires break at repeated intervals of L = 2β2F 2

CMOS

confining CMOL cells connectivity to only M = a2−2 other
cells located within a square-shaped Connectivity Domain
shown in Figure 2, where a is a positive integer number



Fig. 2. CMOL FPGA-like Architecture: Connectivity Domain. Cells
in light gray comprise the connectively domain of the cell in dark gray.
a = 4 and M = a2 − 2 = 14.

which indicates the connectivity domain radius and repre-
sents the constraint on CMOL cells connectivity. In Case
of a = 4, the output pins of cells painted in light-gray in
Figure 2 can be connected to the input pin of the specified
dark-gray cell.

Each nanodevice in CMOL nanofabric is uniquely ad-
dressed via the appropriate pins pair (i.e., one input pin
and one output pin in two different cells). CMOL can
be physically configured using an address decoder which
selects two CMOS columns and two CMOS rows (i.e., se-
lects a pair of CMOL cells), then inverters are turned off
and pass transistors are used for setting the binary state
of each molecular device by relaying appropriate config-
uration voltages. When configuration is done the nan-
odevices are either set ON (low-resistance) state or OFF
(high-resistance). By turning the programmable diodes
“ON” or “OFF”; nanowires, nanodevices and CMOS in-
verters can implement basic wired NORs with multiple fan-
ins/fan-outs. The advantage of CMOL architecture is that
gates with high fan-in and fan-out may be readily formed
as well by turning on the corresponding latching switches
(i.e., nanodevices). Further, the architecture is inherently
defect-tolerant, since it has M ≈ a2 >> 1 nanodevices per
CMOS cell, and few of them are required for either logic
or interconnect functionality.

A. CMOL Circuits Implementation

Implementing circuits in CMOL (i.e., mapping NOR-
based logic gates to CMOL hybrid fabric) requires for the
connected gates to be placed in CMOL cells, which are
proximate to each others and for the connections to use
non-defective components. Conventionally, CMOL cells
mapping is performed through two sequential steps: 1)
defect-unaware cells Placement, where logic gates are as-
signed to CMOL cells obeying the connectivity domain con-
straint, and failure to do so require the insertion of inter-
mediate buffers to connect distant cells. 2) Cells Reconfig-
uration around defective components, as the arrangement
laid out by placement may depend on defective nanofabric
components. In this step, cells are reshuffled to overcome
defects.

Recently, several proposals had been introduced for
defect-unaware cell Placement in CMOL circuits. Likharev
et al. utilized existing FPGA CAD tools to perform place-
ment and routing on 4×4 tile-based version of CMOL [15],
[16]. Hung et al. [17] encoded CMOL cell placement as
a Satisfiability problem at cells level. Previous attempts
to use sub-optimal search heuristics for CMOL place-
ment were reported in [18], [19], [20]. Genetic Algorithm
(GA) [18] were used with two dimensional block PMX
crossover operator and mutation. A more elaborate work
was reported in [19]; where Memetic computing approach
was used by implementing a hybrid of Genetic Algorithm
and Simulated Annealing (SA) local-based search heuristic.
Xia et al. [20] extended the work on Memetic approach by
integrating self-learning operators using Lagrangian Multi-
pliers (LRMA). Other attempts to solve CMOL cell place-
ment problem were based on Simulated Evolution [21] and
Tabu Search [22]. The authors have shown that an ar-
rangement of cells, which completely obey the connectivity
constraint, can be found. Compared with best published
techniques, Tabu Search and SimE have respectively shown
over 90% and 82% reduction in average CPU processing
time.

Reconfiguration around defective CMOL nanodevices
was reported by Likharev et al. [7]. They developed a re-
configuration algorithm assuming only one type of defect
(stuck-at-open). The algorithm preforms a number of se-
quential attempts to move each gate from a cell with bad
input or/and output connections (i.e., connections which
use defective nanodevices) to a new cell. Each gate may
be swapped with another one, provided that all connec-
tions of the swapped gates can be realized under CMOL
connectivity constraint and are not defective. The authors
showed case studies by reconfiguring KoggeStone adder and
full crossbar around randomly distributed defects. Other
attempt to reconfigure CMOL circuits were reported us-
ing SAT solvers [17]. Few clustered defects (around single
source) were introduced in small and medium sized CMOL
circuits. A center of mass computation is performed to fo-
cus on a limited reconfiguration region where defects are
formulated as satisfiability constraints.

The aforementioned reconfiguration techniques are ex-
pected to be sufficient for small or medium size circuits.
Reconfiguration becomes more complex if CMOL has high
defect rates and wider range of defects or when circuits’
gates have many fan-in or fan-out connections. In such
cases, resorting to SAT or sequential-attempts algorithms
will be insufficient and circuits reconfiguration may fail.

III. Problem Formulation

The implementation of combinational logic using CMOL
involves the assignment of logic gates (i.e., NORs or In-
verters) to cells that are connected by defect-free pro-
grammable nanodevices. There are tens of thousands of
nanodevices (i.e., possible connections) in a CMOL circuit,
however, those connections will not be used simultaneously,
but a small subset of them is sufficient to map a particular



Fig. 3. Defects in CMOL circuits: (a) Type 1: Stuck-at-Open nanodevices defect (b) Type 2: broken nanowire defect. Cells shown in light
gray are not reachable by the cell in dark gray.

circuit. The extra nanodevices are mainly intended for bet-
ter reconfigurability. Circuits in CMOL can be configured
in field by first performing a defect-unaware cells place-
ment [21], and then apply non-deterministic heuristics to
reconfigure cells locations as to avoid defective components.
The reconfiguration procedure need to be applied once per
circuit and each CMOL circuit will have its own unique
defect map which can be acquired by utilizing BIST tech-
niques. The scope of this work is to investigate the second
stage of CMOL cell’s mapping (i.e., reconfiguration). We
have considered two types of widely used defect models:

1. Stuck-at-open: The nanodevice which connects two per-
pendicular nanowires is stuck-at-open (i.e., not pro-
grammable). In this case, the connection between two
given CMOL cells through this nanodevice is not feasible.
However, each of those two CMOL cells can still be used
and connected with other cells.

2. Broken Nanowire: An input or output nanowire of a given
CMOL cell is broken into two segments. Thus, this CMOL
cell may not be connected to all other cells within its in-
put/output connectivity domains. The connectivity do-
mains of the affected cell is significantly reduced.

Type 1 and type 2 defects are shown in Figure 3. In
stuck-at-open defect; the output of cells B and C cannot
be connected with the input of cell A as the nanodevices
between them are not programable. In broken nanowire
defect shown in Figure 3(b); the number of unreachable
cells (e.g., cells B, C and D) from a given cell (e.g., cell A)
could be larger as more connections are affected by the cut
in the nanowire. In this type of defect, each unreachable
nanodevice can be considered as if it’s stuck-at-open. Simi-
lar to other nanofabric-based circuits; CMOL is susceptible
to stuck-at-close defects. Even a small percentage of stuck-
at-close defects can results in having most of CMOL cells
connected with each others. Different approaches other
than reconfiguration should be investigated to circumvent
stuck-at-close defects in nanofabric-based circuits.

Based on the discussed defect models; CMOL reconfigu-
ration problem can be stated as follows: for a set of gates
G = g1, g2, g3, ..., gm and a set of nets Γ = γ1, γ2, γ3, ..., γm

where γi = {fan-ini & fan-outi} of gi and given a set
of slots or locations (i.e, cells) L = L1, L2, L3, ..., Ln where

m ≤ n, each gate gi in location Li which uses defective con-
nections is reassigned to a new location Lj given that the
connectivity domain is respected and defects are avoided.
According to CMOL FPGA topology shown in Figure 2,
if a particular gate is moved to another location it will
use different set of nanodevices to connect with its fan-in
and fan-out gates. Reconfiguration should not relocate two
gates in which their connectivity is violated, but rather to
only avoid using any defective components. Mathemati-
cally, reconfiguration constraint can be defined as follows;
Given a gate and its net (gi, γi) placed in location Li, for
any gate gk ⊆ G and gk in the net γi the following equation
should be satisfied.

∀gi ∈ G,∃gk ∈ γi : N(Li, Lk) 6= 0 (1)

Where N(Li, Lk) is the nanodevice connecting gate gi in
location Li and gate gk in location Lk. N = 0 means the
nanodevice is defective. CMOL reconfiguration is intended
to rearrange cells to honor the constraints in Equation 1,
and meanwhile not violating the constraints of CMOL con-
nectivity domain defined as follows:

∀gi, gk ∈ G : (gi 6= gk) ⇒ (Li 6= Lk) (2a)
∀gi ∈ G, ∃gk ∈ γi : Lk ∈ C(Li) (2b)

Where Lk is the location of gk, C(Li) is the connectivity
domain of cell in location Li. Reconfiguration is highly
dependent on defect rates and connectivity radius a.

A. Defect Maps

In nanowire crossbars, imprecision and non-determinism
of the nanoscale assembly process may cause the pro-
grammable nanodevices to be defective. Different meth-
ods for simulating faults distribution has been reported in
the literature [23]. In this work, two methods are used for
stuck-at-open faults simulation. In the first approach, a
uniform random distribution is used. For any given nan-
odevice, a random number p is generated, the nanodevice
could be defective if p is less than a pre-defined defect rate
qnano. In the second approach, clustered faults are injected
around multiple defect sources. Each cluster is generated



as follow; first a random location (x0, y0) is chosen, and
then a probability mass function pmf(x, y) is computed
for each location using the Gaussian distribution:

pmf(x, y) = Ce−
(x−x0)2+(y−y0)2

2σ2 (3)

This probability mass function controls the injection of
faults; where C is a constant that sets the density of the
simulated faults, and σ is the standard deviation that con-
trols the diameter of the defects cluster. For each nanode-
vice we generate a random number p between 0 and 1. A
fault is injected if p ≤ pmf(x, y). In broken nanowires de-
fect; a nanowire is cut if a randomly generated number p
is less than wires cut rate qwire, and the cut point is ran-
domly specified. All unreachable nanodevices on the cut
nanowire are then encoded as if they are stuck-at-open.

IV. Simulated Evolution

The Simulated Evolution algorithm is a general search
strategy for solving a variety of combinatorial optimization
problems. It is stochastic because the selection of which el-
ements to be reallocated is done according to a stochastic
rule. Already well located elements have a high probability
to remain where they are. In SimE heuristic the movable
elements have a goodness value (a number between 0 and
1). Those with goodness value close to 1 have a smaller pos-
sibility of leaving their current locations, while those with
smaller goodness (i.e., ill suited components) have other-
wise.

The structure of the SimE is shown in Algorithm 4. SimE
assumes that there exists a solution φ of a set G of m
(movable) elements or gates. The algorithm starts from
an initial cells assignment φinitial, and then, following an
evolutionary-based approach it seeks to reach a better as-
signments from one generation to the next by perturbing
some ill-suited components (i.e, gates) and retaining the
near-optimal ones. A cost function Cost associates with
each assignment of movable element gi a cost Ci. The al-
gorithm has one main loop consisting of three basic steps,
Evaluation, Selection, and Allocation. The three steps are
executed in sequence until the solution average goodness
reaches a maximum value, or no noticeable improvement
to the solution cost is observed after a number of itera-
tions. The Evaluation step consists of evaluating the good-
ness goodnessi of each element gi of the solution φ. The
goodness measure, a number expressible in the range [0, 1],
can be defined as the fraction of two values related to the
problem cost.

The second step of the SimE algorithm is Selection. Se-
lection takes as input a bias value B, the solution φ to-
gether with the estimated goodness of each element. The
selection operator has a non-deterministic nature, i.e., an
individual with a high goodness (close to one) still has a
non-zero probability of being assigned to the set of selected
elements S. It is this property of non-determinism that
gives SimE the hill climbing capability to escape local min-
imum. Allocation is the next SimE operator, it generates

a new complete solution φ′ with the elements of the se-
lection set S mutated according to an allocation function.
The goal of Allocation is to favor improvements over the
previous generation [24]. Details of the main steps of SimE
algorithm for CMOL nanofabric reconfiguration problem
are given in the following text.

ALGORITHM Simulated Evolution(B, Φinitial, StoppingCond.)
NOTATION
B= Bias Value. Φ= Complete placement.
gi= Gate i. goodnessi= Goodness of gi.
ALLOCATE(gi, Φ

′)=Function to allocate gi in new solution Φ′

Begin
Repeat

EVALUATION:
ForEach gi ∈ Φ evaluate goodnessi;
/Evaluates if elements use defective nanodevices*/

SELECTION:
ForEach gi ∈ Φ DO

begin
IF Random ≤ 1− goodnessi + B
THEN

begin
S = S ∪ gi; Remove gi from Φ

end
ALLOCATION:

ForEach gi ∈ S DO
begin

ALLOCATE(gi, Φ
′)

/* Reallocate elements as to avoid using */
/* defective nanodevices. */

end
Until Stopping Condition is satisfied
Return Best solution.
End (Simulated Evolution)

Fig. 4. Structure of Simulated Evolution algorithm.

A. Solution Representation

Solutions are represented as an arrangement of logic cells
in two dimensional layout surface. The layout size corre-
sponds to the number of required CMOL cells to fit each
benchmark circuit. The outer cells of the grid are reserved
for the circuit’s I/O ports. Reconfiguration process starts
from a complete cells placement, in which all gates are
placed within the connectivity domain of their nets (i.e.,
connectivity domain constraint is honored). Each gate is
represented by a unique positive integer value.

B. Goodness Function

In Simulated Evolution, goodness function is used to
evaluate individual gates in each generation, where unfit
gates are selected and reassigned to other cells. The good-
ness function of each individual gate is defined as:

goodnessi =
connecti
|γi| (4)

Where connecti represents the number of connections in
set γi that do not use defective nanodevices (i.e., the con-
nections that are defect free) and |γi| is the number of fanin
and fanout gates of gate gi. The above equation assumes
a minimization problem (or a maximization of goodness).
When gate gi’s connections violate the constraint in Equa-
tion 1, the gate will have low goodness value.

C. Cost Function

The main objective of the reconfiguration is to tolerate
defects and ensure that the circuit is working properly. The



overall cost of a solution is expressed as the total number of
used defective nanodevices (i.e., the number of connections
that violate Equation 1). Equation 5 shows the cost of each
gate g ∈ G as to be the number of defective components
it uses to connect with its fan-in and fan-out cells. The
overall circuit’s cost is the summation of individual gates
cost.

Ci =
∑

j∈fan-outi

ui,j (5a)

ui,j =
{

1 if N(Li, Lj) = 0
0 otherwise (5b)

D. Selection and Allocation

In the Selection function, a gate is selected for realloca-
tion if its goodness score is less than a randomly generated
number between 0 and 1. The higher the goodness value of
the element, the higher is the chance of retaining its cur-
rent location. While, lower the goodness value, the more
likely the element will be perturbed and reallocated.

Allocation function intends to generate a new solution
that is inherently better than the old one. The function
is fully aware of the presence of defects. For each selected
gate, the allocation function evaluates the cost of swap-
ping the gate with another one in the grid based on the
cost function in Equation 5. Then, the best swap is cho-
sen. An additional constraint also applies for gates move-
ments in circuit’s reconfiguration; the reallocation of gates
is constrained to the region defined by the intersection of
the connectivity domains of the two cells under investi-
gation and their fanin and fanout cells. This insure that
reconfiguration do not invalidate the assignment made by
placement phase (i.e., do not move cells in which some of
the connections violate the constraints in Inequality 2(b)).

E. Defective Nets Resolving

When Reconfiguration stage terminates, there may still
be some connections that use defective nanodevices or cut
nanowires. In such case, the circuit will not be functional
and defective connections need to be mitigated by rerouting
them through additional buffers (i.e., different set of nan-
odevices). Intermediary pair of inverters are inserted be-
tween cells which have their connections faulty. Buffers in-
sertion is performed by recalling Simulated Evolution with
little modifications. Inverters are placed in empty loca-
tions (i.e., blank cells) so that two cells with defective in-
terconnect become connected. The constraints highlighted
in Equation 1 and Equation 2 should also apply for the
inserted inverters. SimE allocation function is modified as
to only permit the interchange of two inserted inverters or
an inverter and a blank cell. The other already occupied
CMOL cells are assumed to be fixed and no perturbation
can involve any one of them.

V. Experimental Results

Given defect distributions discussed in Section 3; we
have performed our experiments using two defect maps; a

randomly generated map (R1) and a clustered map (C1),
which have C = 0.8 and standard deviation σ = 2a

3 . Eval-
uation of the search heuristics efficiency and performance
was done using two scenarios based on different values for
the probability of nanodevices stuck-at-open defect qnano

(type 1 defect), and the probability of a broken nanowire
defect qwire (type 2 defect). Scenario (i) includes five ex-
periments when qnano ranges between 10% to 50%, while
qwire = 20%, and similarly scenario (ii) is comprised of
seven experiments when qwire probability is between 10%
and 70% and qnano = 20%.

Reconfiguration is applied to 19 circuits of different sizes
from ISCAS’89 benchmarks suite. Circuits are mapped
by SIS synthesis tool to a NOR netlist with maximum of
five inputs. Details of ISCAS’89 circuits are shown in Ta-
ble II; the numbers of Cells including Gates, Inputs and
Outputs are given. The table also gives CMOL 2-D grids
sizes which are used to implement ISCAS’89 benchmarks;
Area (Row × Column) indicates the number of Rows and
Columns and the number of CMOL Cells which a given
benchmark uses. Defect maps R1 and C1 are generated
for each grid size; benchmarks that need similar CMOL
gird sizes are reconfigured using same defect maps.

Simulated Evolution is implemented using Java program-
ming language and run on a machine with 1.5 GHz Intel
Pentium M processor and 512MB memory. The Heuristic
stops when solution’s cost (i.e., number of defective nan-
odevices) becomes zero or when a predefined number of
4000 iterations is reached. The average value of results
obtained from 20 successful reconfigurations for each cir-
cuit is reported, where each run uses different seeds for
random numbers. Figure 5 shows the change of problem
cost (Equation 5) per iteration for s1238 benchmark cir-
cuit; SimE heuristic evolves to better solutions without
being too greed. In some iterations, SimE perform hill-
climbing by making bad moves (i.e., accept solutions with
higher cost) as that may lead to better solutions and help
avoid local minimum solutions.
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Fig. 5. Change of reconfiguration cost per iteration - s1238.blif.

A. Reconfiguration Results

To reconfigure circuits in CMOL, we have adhered to
the original description of the connectivity domain shown
in Figure 2 with connectivity radius a = 18. We have used
a bias B between [−0.06, 0.05], depending on the circuit’s



defect rate. Negative bias was used for high defect rates, in
order to reduce the number of selected gates for reallocation
(particularly, in early iterations). This help in preventing
the heuristic from keep making conflicting moves, which
results in poor search space exploration. Whereas, posi-
tive bias values were used for low defect rates scenarios,
as to explore the search space more vigorously by perturb-
ing some well-suited gates. Our implementation is the first
attempt to solve CMOL reconfiguration problem through
non-deterministic heuristics. Results reported in this sec-
tion were not compared with those based on Satisfiabil-
ity [17] (discussed in Section 2-A), due to the limited na-
ture of that implementation, which included only a small
number of defects (less than 10% of the overall nanode-
vices).

Results for defect scenario (i) are given in the follow-
ing tables; Table I reports the maximum and averaged
CPU computation times (in seconds) needed to reconfig-
ure all benchmark circuits for random and clustered defect
maps when qnano is between 10% and 40%. For this given
range of stuck-at-open probabilities, SimE was successful
in reconfiguring circuits around all defective components
and no intermediary buffer were required. As defect prob-
ability rises the computation time increases. The maxi-
mum CPU time corresponds to the large benchmark cir-
cuits (e.g., s1238) and those that has many multiple fan-in
NOR gates (e.g., s820, s832).

TABLE I

Reconfiguration CPU computation time for Scenario (i) and

defect maps R1, and C1 (qnano = 10%− 40% - qwire = 20%).

Maps qnano Max Avg.

R1

10% 0.51 0.11
20% 0.96 0.20
30% 2.46 0.41
40% 6.50 0.92

C1

10% 0.64 0.14
20% 1.38 0.25
30% 2.72 0.52
40% 6.50 1.26

Max.: Maximum CPU computation time.
Avg.: Average CPU computation time.
qnano: Probability of Stuck-at-Open nanodevices’s defects.

Table II shows Simulated Evolution results for nanode-
vices stuck-at-open defect probability qnano = 50%. Time
is CPU computation time in seconds and Buffers is the
number of inserted buffers to resolve defective nets. For
qnano = 50% only s820 and s832 needed additional buffers
to resolve defective nets. Those two circuits also needed
more buffers when defects are clustered (e.g., s832 required
3 buffers in R1, and 6 in C1). Moreover, SimE’s reconfigu-
ration of clustered defects consumed more CPU time. For
example, C1 average CPU time is 3.11 seconds, compared
to 2.01 seconds for random map R1.

Reconfiguration results for defect scenario (ii) are shown
in Table III. The reconfiguration of s820 and s1238 cir-
cuits is performed when up to 70% of the nanowires are
cut and 20% of the nanodevices are stuck-at-open. SimE
has found successful reconfigurations without the need for

any additional buffers even when the probability of broken
wires is as high as 70%.

In investigating the ratio of successful reconfigurations,
we have run SimE for benchmark s1238 using 20 different
clustered defect maps. All defect maps have C = 0.8, σ =
4a
3 , and cut rate qwire = 20%. The heuristic was run 40

times for each map; the overall successful reconfigurations
rate when qnano = 50% was 60% (i.e., 60% of the 40 run
× 20 maps = 800 run). For defect maps with defect rate
qnano < 50% the overall successful reconfigurations was
over 95%.

VI. Conclusion

In this paper, we have presented the formulation of a de-
sign automation algorithm (i.e., Simulated Evolution), as
a foundation for a reconfiguration-based defect-tolerance
scheme for the emerging hybrid CMOS/nanofabric archi-
tectures. A defect-free configurations were found through
iterative improvement of the circuits defect-tolerance. Our
findings showed that nanofabric-based architectures can
still be utilized even though nanodevices suffer from high
defect rate. Two different defect distributions were used
to evaluate the performance of the applied heuristic. Ob-
tained results showed that circuits can be reconfigured
to become functional even if 50% of CMOL nanodevices
are stuck-at-open or if up to 70% of the architecture’s
nanowires are broken.
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