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ABSTRACT
Designing and planning of the switching, signaling and support net-
work is a fairly complex process in cellular mobile network. In this
paper, the problem of assigning cells to switches in cellular mo-
bile network, which is considered a planning problem, is addressed.
The cell to switch assignment problem which falls under the cate-
gory of the Quadratic Assignment Problem (QAP) is a proven NP–
hard problem. Further, the problem is modelled to include an ad-
ditional constraint in the formulation. The additional constraint is
of the maximum number of switch ports that are used for a cell’s
Base Station Transceiver System (BTS) connectivity to the switch.
The addition of the constraint on the number of ports on a switch
has immense practical significance. This paper presents a non–
deterministic heuristic based on Simulated Evolution (SimE) iter-
ative algorithm to provide solutions. The methods adopted in this
paper are a completely innovative formulation of the problem and
involve application of Evolutionary Computing for this complex
problem that may be extended to solutions of similar problems in
VLSI design, distributed computing and many other applications.

1. INTRODUCTION
Mobile telephones are used extensively in the world today. A

tremendous growth was observed in the last decade and the trend is
expected to exponentially improve in the near future. This contin-
uous growth is possible because the cellular concept makes it pos-
sible for users to have freedom with respect to mobility and ease of
use, while still receiving a good quality of service [1].

A large subscriber base, scarcely available network resources
and intensive competition in the telecommunication market makes
efficient and demand adaptive network design a key factor for sur-
vival of cellular mobile network providers. Besides, the upcoming
applications of cellular mobile network systems for data communi-
cation (3G, 4G and UMTS) [2] require more optimum and flexible
network structure.

Network planning in mobile telephony entails planning of the
supporting, switching, signaling and interconnection networks. This
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is a particularly complex process, partly because of the numerous
intervening factors and partly because there are variable environ-
mental conditions which must be taken into account in order to
provide the user with a specified quality of service at any time.

One of the most important problems of network planning, the
problem of assigning cells to switches in cellular mobile network,
is considered. The problem is further modified to include addi-
tional constraints on the switch with respect to the maximum num-
ber of available ports. This modification has immense practical
significance in real life cellular mobile network design scenarios.
It should be noted that the cell to switch assignment problem is an
NP (Non Polynomial time) hard problem since the problem falls
under the category of the Quadratic Assignment Problem (QAP)
which is a proven NP–hard problem [3]. As such, no deterministic
algorithm which can find an optimal solution for the above problem
in polynomial time exists. Thus the problem is solved using itera-
tive heuristics, like Simulated Annealing (SA) and Simulated Evo-
lution (SimE) [4], to provide solutions which are based on different
heuristics and compare them with existing methods. These meth-
ods are completely innovative formulation of the problem and in-
volve application of evolutionary computing for this complex prob-
lem that may be extended to solutions of similar problems in VLSI
design [5], distributed computing and many other applications.

The conventional layout of a cellular network follows a honey
comb structure [6]. The basic geographic unit of a cellular system
is called a “cell”. The geographical area of coverage is divided
into hexagonal cells which are arranged in a hierarchical manner
to reduce link costs. Each cell has an antenna called base station
which is used to communicate with the subscriber mobile unit over
some preassigned frequencies. A certain number of cells are chosen
to install switches that communicate with one another and serve as
relays for communication between any pair of cells. Because of the
subscriber mobility, switches serving as relays could change if the
subscriber moves from its current cell. The operation that consists
of detecting that a user has changed a cell and carrying out the
required updates constitutes a hand-off.

The hand–off that occurs between two cells linked to the same
switch is called a simple hand–off and a hand–off that occurs be-
tween two cells connected to different switches is called a complex
hand–off. In a simple hand–off there are few necessary updates
in the switches, while in a complex hand–off, update procedures
consume more resources than in the case of a simple hand–off.

The problem of cell assignment could be summarized as follows:
for a set of cells and switches (whose positions are known), assign
the cells to the switches in a way that minimizes the cost function.
The cost function integrates a component of link cost and a compo-



nent of hand–off cost. The assignment must take into account the
switches capacity constraints that make them capable to host only
a limited number of calls. Also, the constraint on the maximum
number of available ports on a switch must be taken into account.

First, a brief review of the related work is presented in Sec-
tion 2. Then, a simple mathematical formulation for the problem
is suggested based on the so called conventional methods in cell
to switch assignment problem. Only the complex handover cost
and link cost between cells and switches with respect to the maxi-
mum switch capacity constraints is considered in this formulation.
With this assumption the mathematical formulation is presented in
Section 3. The problem is further modified to include additional
constraint with respect to the maximum number of ports. Section 4
provides an overview of SA and SimE based approaches to solve
the problem. The details of the computational results and the com-
parisons between SA and SimE are presented in 5. Finally, sec-
tion 6 presents conclusions.

2. RELATED WORK
A substantial amount of work has been done in the field of com-

puter network design in general. Comparatively very little work
has been undertaken for solving the problem of designing cellu-
lar networks (assigning cells to switches) in particular. Few papers
related to this work were found in the literature.

Merchant and Sengupta [7] tried to solve the problem using de-
terministic algorithms and provided the basic formulation of the
problem. They considered a scenario of assigning cells to the switches
of a Personal Communication Services (PCS) network in an opti-
mum manner. The problem is formulated as an integer program-
ming problem. Their work also proposed three heuristic solutions
and showed that two of them perform extremely well.

S. Pierre and F. Houeto [6] extended the work of Merchant and
Sengupta [7]. They solved the problem using tabu search, a non–
deterministic iterative algorithm, and provided results for problems
of varying sizes (in terms of number of cells and switches). Their
approach defines a series of moves applicable to an initial solu-
tion in order to improve the cost and establish the feasibility of
the solution. For this purpose, they identified a gain structure with
update procedures to efficiently choose the best solution in the cur-
rent neighborhood. The implementation was tested with different
parameters of tabu search. They also compared these against the re-
sults obtained from simulated annealing, another non-deterministic
iterative algorithm.

S. Menon and R. Gupta [8] improved upon the work of S. Pierre
and F. Houeto [6] and provided results which were obtained in
lesser durations. According to their paper, in the presence of ca-
pacity constraints at the switches, the problem of assigning cells to
switches becomes a difficult one to solve, with all effective solu-
tion approaches being based on heuristic techniques. Their paper
presents a hybrid heuristic, named Price Influenced Simulated An-
nealing (PISA), which integrates ideas from linear programming
into a simulated annealing framework. Extensive computational
results are presented comparing the performance of the heuristic
with the lower bound obtained from the linear programming relax-
ation. These results indicate that the PISA procedure is extremely
efficient, usually providing solutions with gaps around 1% in less
than 1 second.

A memetic algorithm (MA) was recently proposed by Quintero
and Pierre [9] for assigning cells to switches in cellular mobile net-
works. The implementation of this algorithm has been subject to
extensive tests. The results obtained confirm the efficiency and
the effectiveness of MA to provide good solutions for moderate-
and large-sized cellular mobile networks, in comparison with tabu

search and Merchant and Sengupta’s heuristics.
Shyu et al. [10] implemented an algorithm based on the ant colony

optimization (ACO) for solving the problem of cell assignment in
PCS networks. It is a metaheuristic inspired by the foraging behav-
iors of ant colonies. The problem is modeled as a form of matching
problem in a complete bipartite graph. Experimental results show
that the proposed algorithm is an effective and promising approach
with practically reasonable run times. Similarly, a lot of work re-
lated to the problem of cellular mobile network design has been
carried out and the details are available in the literature [11, 12,
13].

3. PROBLEM FORMULATION
A brief description of the variables used in the problem formula-

tion is provided here. We follow the same problem formulation as
presented in [6, 7].

Let n be the number of cells to be assigned to m switches. As-
sume that the location of cells and switches are fixed and known.
Let Hij be the cost per unit of time for a simple handover be-
tween cells i and j involving only one switch, and H ′ij the cost
per time unit for a complex handover between cells i and j (i, j =
1, 2 . . . , n with i 6= j) involving two switches. Hij and H ′ij
are proportional to the handover frequency between cells i and j
that could be measured or estimated. Let cik be the amortization
cost of the link between cell i and switch k (i = 1, 2 . . . , n and k =
1, 2, . . . ,m) and λi the number of calls per time unit destined to
cell i. The capacity of a switch k is denoted by Mk.

The cost function to be optimized is formulated as given below:

f =

nX

i=1

mX

k=1

cikxik +

nX

i=1

nX

j=1,i6=j
hij(1− yij) (1)

The description and cost function presented in [6, 7] covers all
the basic aspects for the formulation of the problem. Although this
formulation is complete, one important constraint is left out. There-
fore, the problem is modeled to include an additional constraint
in the formulation. This additional constraint is of the maximum
number of ports, that are used for a cell’s BTS connectivity, on
each switch. The addition of a constraint on the number of avail-
able ports on a switch has immense practical significance. This is
because in a real life cellular mobile network scenario, the MSC
is not only limited by its call processing capability, but also by the
number of ports present in each switch or MSC.

In certain scenarios, the number of ports present may be less and
the switch may still have enough call processing capacity left. But
in certain other scenarios, the processing capacity may have been
exhausted but a certain number of ports would still be available on
the switch. Thus the inclusion of port constraints to the original
problem formulation has immense practical significance.

If Pk denotes the number of ports available on each switch k,
then the constraint on the number of ports may be represented as
follows:

nX

i=1

xik ≤ Pk for k = 1, 2 . . . ,m (2)

Where xik is defined as:

xik =


1 if cell i is related to switch k
0 otherwise

For this modified model, the problem then is to solve (1) subject
to the original constraints in [6] as well as the constraint in equa-
tion (2).



4. PROPOSED APPROACHES
This section provides a brief overview of the algorithms used to

solve the cell to switch assignment problem.

4.1 Simulated Annealing (SA)
Simulated annealing is one of the most popular and general adap-

tive heuristic which belongs to the class of non-deterministic algo-
rithms [14]. SA has been successfully applied for solving a vast
number of combinatorial optimization problems. It is relatively
easy to implement and also produces high quality solutions regard-
less of the choice of the initial configuration. The main components
of the algorithm are the initial temperature T0, the cooling rate α,
constant β, and M which represents the time until the next param-
eter update. The core procedure of the algorithm is the Metropolis
procedure, which simulates the annealing process. The complete
details of the general simulated annealing algorithm can be found
in [4]. In our implementation, the values chosen for the main pa-
rameters are M=10, T0=10000, β=1.0095, and α=0.963. The val-
ues for these parameters were assigned after carrying out a number
of trial runs for different parameter values and extensive tuning of
parameters. The ultimate factor for decision making was the final
solution result. A simple cooling schedule was followed for the SA
implementation. A decrement function is used to reduce the initial
temperature T0 in a geometric progression.

4.2 Simulated Evolution (SimE)
Simulated Evolution is a non-deterministic iterative heuristic which

is based on an analogy of principles of natural selection thought
to be followed by various species in their biological environments.
The algorithm was proposed by Kling and Banerjee in 1987 [15]. It
has been designed to exhibit superior performance to that of simu-
lated annealing with respect to run time requirements and/or quality
of solution.

According to the theory of evolution, it is a well known concept
that the more an organism adapts to its environment, the better are
its chances of survival. In other words, by adapting, an organism
optimizes its chances of surviving in its environment. Hence, adap-
tation is seen as a form of optimization. This similarity has given
rise to a new class of randomized iterative algorithms which con-
sists of Genetic Algorithms, Simulated Evolution, and Stochastic
Evolution. For all three algorithms, the cost function is an estima-
tion of the degree of adaptation of a particular solution to the target
objective. For a maximization problem, the higher the value of the
objective function is, the more that particular solution is adapted to
its environment. The complete details of the SimE algorithm can
be found in [4].

4.3 Modified Implementation
The algorithms considered so far were implemented such that

the solutions produced were only validated to check the switch pro-
cessing capacity constraint violation. The algorithms need modifi-
cation to include the additional constraint on the number of ports
present in a switch. The validity function thus changes for this im-
plementation. The solution produced in every iteration is passed to
the validity function for checking both the processing capacity and
number of ports constraints. The solution is termed valid only if
both the constraints are not violated. The solution is termed invalid
even if one of the two constraints is violated.

5. EXPERIMENTAL RESULTS

The problem described in section 3 is solved using Simulated
Annealing (SA) and Simulated Evolution (SimE) algorithms. These
algorithms were coded in C language and the results obtained are
compared with those obtained by Pierre and Houeto [6] using SA
(which will be termed as SA-P for the purpose of distinction with
SA in this paper) and Tabu Search (TS) algorithms in [6]. The data
sets are generated as in [6, 7]. Readers are referred to these papers
for the details of the data generation process. The data generated
comprised of problem sets with number of cells varying between
15 and 500 and the number of switches varying between 2 and 12.
Twenty data sets were generated of each type.

The programs were executed on a Red Hat Linux system. A se-
ries of test runs were conducted on the generated data sets using
the proposed algorithms to determine their efficiency in terms of
percentage of feasible solutions generated and the minimization of
cost value. Test runs were also conducted to determine the timing
efficiency of these algorithms. The performance of the proposed
algorithms, when applied to the problem with the inclusion of ad-
ditional constraints on the number of ports, is analyzed.

Table 1: Comparison between SimE and SA with port con-
straint for both.

Problem SimE Time(sec) SA Time(sec)
15–2 97.8072 0.005928 102.4707 0.284906
30–3 265.5235 0.013466 260.9837 1.025724
50–4 505.3431 0.687048 548.1965 3.066327
100–5 1162.0067 0.133096 1198.347 14.801109
150–6 1991.3575 0.348633 2116.6357 34.149955
200–7 3639.9645 0.729478 3540.3312 68.433888
250–8 4240.2983 1.193978 4242.4876 118.91105
300–9 6119.7368 1.869187 6042.9186 187.41385
350–10 7179.7658 2.73929 7099.5593 274.69034
500–12 13203.5318 6.40145 12600.5318 643.32823

Table 1 provides the comparison of the final solution costs and
run times for the SA and SimE with port constraints, while Table 2
provides the comparison of the final solution costs and run times
for the SA (without port constraint) and SA with the inclusion of
port constraint. Comparison between SimE without port constraint
and SimE with port constraint is provided in Table 3.

Figure 1 shows the comparison between the run times of SA
and SimE. It can be observed that the run time for SA almost in-
creases exponentially with increasing problem size, where as the
run time for SimE shows a linear increase with increasing prob-
lem size. SimE is much faster than SA, particularly, for large sized
problems.

Figure 2 shows the comparison of solution costs between SimE,
SA, TS, and SA-P for different problem instances. Figure 3 pro-
vides the comparison of the final solution costs between SA with-
out port constraint and SA with the inclusion of port constraint.

Table 2: Comparison between SA without port constraint and
SA(WPC) with port constraint.

Problem SA Time(sec) SA (WPC) Time(sec)
15–2 97.8072 0.272592 102.4707 0.284906
30–3 257.1508 0.99541 260.9837 1.025724
50–4 486.8911 2.934759 548.1965 3.066327
100–5 1157.1383 12.909532 1198.347 14.801109
150–6 1943.6049 33.71893 2116.6357 34.149955
200–7 2966.2921 67.753639 3540.3312 68.433888
250–8 3852.7231 116.987371 4242.4876 118.91105
300–9 5190.4683 184.92604 6042.9186 187.413846
350–10 6574.7308 272.424261 7099.5593 274.690336
500–12 11550.5805 640.933072 12600.5318 643.328232



Table 3: Comparison between SimE without port constraint
and SimE (WPC) with port constraint.

Problem SimE Time(sec) SimE (WPC) Time(sec)
15–2 86.8706 0.005987 97.8072 0.005928
30–3 229.1357 0.013404 265.5235 0.013466
50–4 432.3942 0.033028 505.3431 0.687048
100–5 1055.906 0.133496 1162.0067 0.133096
150–6 1701.811 0.348627 1991.3575 0.348633
200–7 2453.9762 0.719335 3639.9645 0.729478
250–8 3329.5575 1.184121 4240.2983 1.193978
300–9 4004.1733 1.86348 6119.7368 1.869187
350–10 4624.6573 2.740815 7179.7658 2.73929
500–12 7812.2196 6.392662 13203.5318 6.40145
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Figure 1: Comparison of CPU times for SA with SimE.

Comparison of the final solution costs between SimE without port
constraint and SimE with the inclusion of port constraint is pro-
vided in Figure 4.

From Figure 2 it can be observed that SA and SimE perform
better when compared to SA-P for all problem sizes. The results
for SA and SimE are similar when compared to TS, except for the
problem size (200–7).

The SA (WPC) produces higher cost solutions when compared
to SA, as shown in Figure 3. This is because SA (WPC) is re-
stricted by the additional constraint on the number of ports on a
switch, whereas SA is not. Similarly, SimE (WPC) produces higher
cost solutions when compared to SimE. If Figures 3 and 4 are
compared, it can be observed that results obtained by SA(WPC)
and SimE(WPC) are similar. This shows that the SA algorithm is
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Figure 2: Comparison of solution cost between SimE(WPC),
SA(WPC),SA-P, and TS.

0

2000

4000

6000

8000

10000

12000

14000

(15~2) (30~3) (50~4) (100~5) (150~6) (200~7) (250~8) (300~9) (350~10) (500~12)
Problem Sets (Cells~Switches)

Co
st

SA SA (WPC)

 

Figure 3: Comparison of solution cost between SA and
SA(WPC).

able to perform well even when more number of constraints are
included, whereas SimE performance degrades with the inclusion
of additional constraints compared to its performance without port
constraints.
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Figure 4: Comparison of solution cost between SimE and
SimE(WPC).

In general it can be observed that the non–deterministic algo-
rithms like SA and SimE find higher cost solutions when they are
restricted by additional constraint. This is because the algorithm us
unable to accept the lower cost solutions which may be satisfying
the switch call processing capacity constraint but violating the port
constraint.

6. CONCLUSIONS
In this paper, a modification to the cellular network design prob-

lem of assigning cells to switches is presented. The modified prob-
lem formulation takes into consideration the constraint on the max-
imum number of available ports on the switch. A heuristic called
Simulated Evolution (SimE), based on evolutionary computation,
and Simulated Annealing (SA) are implemented as solutions to
the cell to switch assignment problem. Implementation of SA re-
quired tuning of several parameters, while the implementation of
SimE approach consisted of defining a goodness function to com-
pute the goodness value of each individual cell for every iteration.
The goodness value provides a direction to proceed when trying
to identify new solutions, thereby increasing the probability of im-
proving upon the cost of solution. This criteria is the main driving
force for obtaining speed up in SimE when compared to SA which



can be extremely slow for large–sized problems. Extensive compu-
tational tests are conducted and the SimE algorithm is observed to
perform reasonably better when compared to the results provided
by other heuristics, from the literature, without the inclusion of port
constraints.
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