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Abstract: - This paper is aimed at calculating the electric field inside and outside a spherical particle 
positioned in a uniform dc electric field. This makes it possible to assess the polarization surface charge. With 
the flow of corona ions along the dc field, particle charging takes place and the electric field inside and outside 
the particle charge until the particle is charged to the saturation value. The dependency of the surface charge 
density due to corona ions on the applied dc field is determined and correlated to the Panthenier and Moreau-
Hanot limit.  
 
I. Introduction 
 
Electrical charging of small particles is an essential 
process in many electrostatic applications [1], such 
as precipitation of dust, deposition of powers and 
separation of granular materials. Motion of a 
charged particle can be easily controlled by the 
electric force, which depends on the charging level. 
Therefore, it is desirable to charge the particle to as 
high value as possible. 

 
Despite some inconveniences–as compared with 
other techniques, for example, tribocharging – 
corona charging is preferred in many applications 
due to its reliability and high charge values. A 
neutral, dielectric or conducting, particle placed in 
the ionic flow (generated most often by corona 
discharge) is bombarded by ions and charged with 
the same polarity as that of the ions. 
 
This paper is aimed at calculating the electric field 
inside and outside the particle in absence of the 
corona ions. Subsequently, the interfacial surface 
charge (polarization surface charge) is assessed. 
With the progress of particle charging by corona 
ions, the electric field inside and outside the particle 
changes until the particle is charged to the 
saturation value. The method of charge simulation 
[1, 2] is used for field calculation before and during 
particle charging. 
 
II. Method of Analysis 
 
Figure 1 shows a spherical particle of radius R, 
permittivity ε2 and ohmic conductivity σ2 placed in 
a uniform positive corona ion space-charge of 
density ρ. A uniform dc electric field E0 along Z-
direction is applied at infinity in the surrounding 
medium of permitivity ε1. Thus, the particle is 
positioned in a medium of conductivity σ1 (=ρk), 
where k is the ion mobility (=1.5x10-4m2/s.V.). 
 
The electric field E0 is produced by two infinite 
plates; one is charged positively with a density (=ε1 

E0) and the other with a negative charge density   
(=-ε1 E0). The spacing (L) between the two sheets is 
infinitely large (one hundred times the particle 
radius). Thus, the positive and negative plates are 
positioned at z = -L/2 and z = +L/2 while the 
particle is at z = 0. The respective potentials of the 
plates are +V0/2 and -V0/2 where V0 = E0L.  
 

 
 
Fig.1. Charge representation of a particle in a 

monopolar ionized field. 
 

II.1. Particle Before Charging 
 
The electric field is responsible for polarization 
charge in the particle which is more or less 
conducting, the negative move against electric field 
and positive ones with the electric field. The 
polarization surface charge on the spherical  
particle is simulated by two sets of ring charges, 
with centers along Z-axis. Fig.1. One set of 
unknown ring charges qj, j = 1, 2.….N inside the 
particle, the other set is outside the particle with 
unknown ring charges qj, j = N + 1, N + 2, ….2N. 
The Z-coordinates of the ring charges inside the 
particle are the same as those of the rings outside 
the particle. The radius of the inner rings is a 
fraction β of the particle radius at the same Z-level. 
However, the radius of the outer ring is γ times the 
particle radius at the same Z-level with γ > 1. In 
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addition to the ring charges, two sets of point 
charges are positioned on the Z-axis as shown in 
Fig. 1. Each set has two point charges one inside 
the particle and the other outside the particle. Thus, 
the total number of unknowns is 2N + 4. 
 
To determine the values of the unknown charges qj, 
j = 1, 2, ….2N + 4, N boundary points are selected 
around the particle surface. The boundary points 
have the same Z-coordinates as those of the 
simulation ring charges, Fig. 1. This is in addition 
to two boundary points on the Z-axis as shown in 
Fig. 1. Thus, the total number of boundary points is   
N + 2. 
 
At each boundary point, two boundary conditions 
are satisfied, namely; the continuity of potential 
(Dirichlet condition) and the continuity of the 
electric flux. 
 
         ϕ1 (rb, zb) = ϕ2 (rb, zb)  (1) 
 
The potential ϕ1 (rb, zb) at the point (rb, zb) is the 
algebraic sum of potentials at the point due to the 
charged plates and the inner simulation charges (N 
rings and 2 point charges) if the point is seen from 
the medium side. If the boundary point is seen from 
the particle side, the potential ϕ2 (rb, zb) is the 
algebraic sum of the potentials due to the charged 
plates and the outer simulation charges (N rings and 
2 point charges). The potential at the boundary 
point due to the applied field Eo is expressed as: 
 
       φ (rb, zb) = V0 zb / L   (2) 
 
The continuity of the electric flux at a boundary 
point (rb, zb) is expressed as: 
 
       ε1En1 (rb, zb) = ε2En2 (rb, zb)  (3) 
 
If the point is seen from the medium side, the 
component En1 (rb, zb) of the electric field normal to 
the particle surface at the point (rb, zb) is the 
vectorial sum of the normal component of the 
applied field E0 and the normal field components 
due to the inner simulation charges, all calculated at 
this point. 
 
If the boundary point is seen from the particle size, 
the normal component En2 (rb, zb) of the electric 
field is the vectorial sum of the normal field 
component of the applied field E0 and the normal 
field components due to the outer simulation 
charges, all calculated at this point. 
 
Applying the two boundary conditions, namely; the 
continuity of potential and electric flux, at all 
boundary points (of number = 2N + 2) formulates 
2N + 4 equations into 2N + 4 unknowns. 
Simultaneous solution of these equations 

determines the unknown simulation charges. Once 
the unknown charges are determined, the electric 
field can be calculated inside and outside the 
particle. The interface charge or the polarization 
surface charge σsp at a point (rb, zb) on the particle 
surface is determined as equal to the change of the 
normal electric flux at the point when seen from the 
medium and the particle sides, i.e. 
 
         σsp = ε2En2 (rb, zb) - ε1En1 (rb, zb) (4) 
 
where ε1 and ε2 are, respectively, the permittivity of 
the surrounding medium and the particle. 
 
II.2. Particle During Charging 
 
With the flow of the space charge along the applied 
field, the particle is charged and the boundary 
conditions determining the unknown charges are 
different from those before particle charging. The 
Dirichlet boundary condition is still valid. The 
continuity condition of electric flux is substituted 
by the continuity of the current density at each 
boundary point. 
 
The continuity of the current density at a boundary 
point (rb, zb) is expressed as: 
 
                                    Jn1 =  Jn2 

Hence;       σ1En1 (rb, zb) = σ2En2 (rb, zb) (5) 
 
where σ1 and σ2 are respectively the conductivity of 
the surrounding medium and the particle. Jn1 and Jn2 
are the current density at the boundary point when 
seen from the medium and particle sides. 
 
Corresponding to En1 and En1, the electric-flux 
density values are: 
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 The surface charge density σsc due to particle 
charging by corona ions is expressed as 
 
                         σsc=σs - σsp                           (7) 
 
III. Results and Discussion 
 
For an applied field Eo of 1 V/m, Fig.2 shows how 
the electric field E2 inside the particle decreases 
with the increase of the particle conductivity σ2 for 
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the same conductivity value of the surrounding 
medium (σ1 =10-9Ù-1.m-1). The field E2 approaches 
the zero value at high σ2 values (σ2 �10-7Ù-1.m-1) 
where the particle behaves as a conducting sphere 
in a uniform field. On the other hand, the value of 
E2 approaches the limiting value of 1.5 times the 
applied field Eo at low σ2 values (σ2 �10-12Ù-1.m-1). 
This conforms with the field values of the case of a 
perfect insulating sphere positioned in a uniform 
field. 

 
Fig. 2. Electric field E2 inside the particle against 

the particle conductivity σ2 for the same 
conductivity value of the surrounding 
medium (σ1 = 10-9 Ω-1.m-1, E0 = 1 V/m). 

 
Fig. 3. Electric field E2 inside the particle against 

the conductivity σ1 of the surrounding 
medium for two different values of the 
particle conductivity σ2 (E0 = 1 V/m) 

 
For an applied field Eo of 1 V/m, Fig.3 shows how 
the electric field E2 inside the particle depends on 
the conductivity σ1 of the surrounding medium for 
two different values of the particle conductivity σ2  

(10-12 and 10-7Ù-1.m-1). As long as σ2<<σ1, the 
particle behaves a an insulating sphere and the field 
E2 inside the particle approaches the limiting value 
1.5 Eo. This conforms with Fig.3 for σ2=10-12            

Ù-1.m-1, where the value of E2 increases from 1.492 
Eo to reach the limiting value 1.5 Eo as the ratio 
σ2/σ1, decreases from 10-2 to 10-4. On the other 
hand, the value of E2 approaches the zero value 

when σ2>>σ1, where the particle behaves as a 
conducting sphere. This conforms with Fig.3 for σ2 

=10-7Ù-1.m-1, where the value of E2 decreases from 
0.25 to about 0.01 as the ratio σ2 /σ1, increases from 
10 to 1000. 

 
Fig. 4. Dependency of the electric field E2 inside 

the particle on the applied field E0 for two 
different values of the particle conductivity 
σ2 (σ1 = 10-9 Ω-1.m-1). 

 
For a conductivity value σ1 of 10-9Ù-1.m-1, Fig.4 
shows how the electric field E2 inside the particle 
depends on the applied field Eo for two different 
values of the particle conductivity σ2  (10-12 and    
10-7Ù-1.m-1). For σ2 =10-12Ù-1.m-1, the ratio σ2 /σ1 
equals 10-3 and the particle behaves as an insulating 
sphere where the field E2 is1.5 times Eo . This 
explains the linear relationship shown in Fig.4 
between E2 and Eo with slope equals 1.5 for σ2 =  
10-12Ù-1.m-1, On the other hand, the ratio σ2 /σ1 
equals 102 for σ2 =10-7 Ù-1.m-1and the particle 
behaves approximately as a conducting sphere 
where the field E2 inside the particle assumes low 
values with respect to applied field Eo . Therefore, 
the linear relationship between E2 and Eo for σ2 = 
10-7Ù-1.m-1 dictates a value of Eo around 0.29 V/m 
against 10 V/m for the applied field Eo, Fig.4. 

 
Fig. 5a. Variation of the normal En and tangential 

Et components of the electric field over 
the particle surface (0 ≤ è ≤ 180°)  
(σ1 = 10-9 Ω-1.m-1, E0 = 1 V/m). 
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For a conductivity value σ1 of 10-9Ù-1.m-1 of the 
surrounding medium, Fig.5a shows the variation of 
the normal and tangential components of the field 
E1 over the surface of the particle with conductivity 
σ2 =10-7Ù-1.m-1. A conducting sphere positioned in 
a uniform field Eo distorts the field which reaches a 
limiting value of 3 Eo where the field meets the 
sphere, Fig.1. At è=0, the normal component En of 
the surface field E1 is equal to 3Eo providing that Eo 

extends along the Z-axis, Fig.1. At è= ð, En = -3Eo. 
Subsequently, the tangential component Et of the 
surface field E1 is zero at è=0 and è= ð. With the 
decreases of è, the normal component En decrease 
from the value 3 Eo reaching the zero value at è= 
ð/2 and -3Eo at è= ð. This conforms with Fig.5a 
where the normal component En changes between 
the limits ±2.9Eo,with Eo =1V/m. 
 
On the contrary, the tangential field Et increases 
with the increase of è starting from è=0 reaching its 
maximum value at è= ð/2. As the particle behaves 
as a conducting particle, the maximum value of the 
tangential field is small with respect to the 
maximum value of the normal component. This is 
quite clear from the respective values of the normal 
and tangential field components of Fig.5a. 
 
For a conductivity value σ1 of 10-9Ù-1.m-1 of the 
surrounding medium, Fig.5b shows the variation of 
the normal En and tangential Et components of the 
field E1 over the surface of a particle with 
conductivity σ2 =10-12Ù-1.m-1. As σ2 << σ1, the 
particle behaves oppositely to that of the 
conducting sphere and the maximum value of the 
tangential field is significantly high with respect to 
the maximum value of the normal component. 
However, the trend of variation of the normal and 
tangential components of the field over the particle 
surface as shown in fig. 5b is the same as that for 
the conducting particle in Fig. 5a. 
 

 
Fig. 5b. Variation of the normal En and tangential Et 

components of the electric field over the 
particle surface (0 ≤ θ ≤ 180°)                    
(σ1 = 10-9 Ω-1.m-1, E0 = 1 V/m). 

 

For an applied field Eo of 1V/m and conductivity 
value σ1 of 10-9Ù-1.m-1, Fig.6 shows the distribution 
of the polarization charge density σsp over the 
particle surface for two different values of the 
particle conductivity σ2  (10-12 and 10-7Ù-1.m-1). The 
surface charge density σsp depends not only on the 
conductivity values σ2 and σ1 of the particle and the 
surrounding medium, but also on the respective 
values of the permittivity å2 and å1. In Fig.6, å1 is 
that of the surrounding gas (=åo) and å2 of the 
particle permitivity is 3åo, where åo is the 
permittivity of free space. For σ2 =10-7Ù-1.m-1, the 
particle behaves as a conducting sphere and a 
surface charge appears on the particle to account for 
diminishing the field inside. The surface charge is 
of negative sign on the incident part of the sphere 
and of positive sign on the backward part. The 
surface charge density σsp changes from maximum 
positive at è=0 to maximum negative at è= ð.The 
charge density σsp takes zero value at è= ±ð/2 as 
shown in Fig.6.It is worthy to mention that total 
charge on the entire particle is zero. 

 
Fig.  6. Variation of the interfacial surface charge 

density σs over the particle surface (0 ≤ θ ≤ 
180°) for two different values of the 
particle conductivity σ2 and for the 
condition  σ2 ε1 = σ1 ε2 (σ1 = 10-9 Ω-1.m-1, 
E0 = 1 V/m). 

 
For σ2 =10-12Ù-1.m-1, the particle behaves as an 
insulating sphere and an interfacial surface charge 
appears to conduct the electric field E2 inside the 
particle. The interfacial charge is of positive sign on 
the incident part of the sphere and of negative sign 
the backward part. The interfacial charge density 
changes from maximum negative at è=0 to 
maximum positive at è= ð with a zero value at è= 
±ð/2 as shown in Fig.6. Also, the total charge on 
the entire particle is zero, the same as the case of a 
conducting particle of σ2 =10-7Ù-1.m-1. Fig.6 shows 
also the surface charge density σsp over the sphere 
for the condition ε1σ2 = ε2 σ1  (ε1 = εo and ε2=100εo; 
σ1=10-9Ù-1.m-1 and σ2=10-7Ù-1.m-1), which is 
negligible in comparison with the discussed case of 
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σ2 =10-7Ù-1.m-1. This condition corresponds to 
equality of the relaxation time in both the particle 
and the surrounding medium, where there is no 
chance for surface charge to appear in conformity 
with the charge density values reported in Fig.6 for 
the case of σ2 =10-7Ù-1.m-1. Theoretically speaking, 
the charge density at the condition ε1σ2 = ε2 σ1 is 
zero as depicted by eqn. (6). 
 
The positive ion flow of density ñ (6.6x10-6 C/m3) 
takes place along the field lines that start far away 
(at Z =-L/2, Fig.1) and approach the particle to 
charge it where the radial electric field is negative. 
The charge density over the particle surface is 
expressed by eqn.(6). For an interfacial charge to 
appear on the particle surface under the conditions: 
ε1 = εo, σ1=10-9Ù-1.m-1, σ2 =10-7Ù-1.m-1, the 
permitivity ε2 of the particle should exceed 100εo. 
The charge density σsc due to corona ion charging 
calculated according to eqn. (7) vary around the 
particle as shown in Fig.7 for ε2 =1000ε1 and two 
different values of the applied field Eo. It is quite 
clear that the charge density σsc is almost constant 
around the particle and increases linearly with the 
value of the applied field. The almost uniform 
distribution of the charge (σsc is almost constant) 
over the particle surface, Fig 7, is explained by the 
fact that the particle behaves as a conducting 
sphere. This is because the particle conductivity σ2 
is much larger than σ1 of the surrounding medium 
and the particle permitivity is1000 times εo of the 
surrounding medium. Therefore, the charge 
received by the particle from the ions distributes 
itself uniformly on the surface and increases with 
the applied field up to the saturation value Qmax 
calculated by Pauthenier and Moreau-Hanot 
classical formula [5]: 
 
                           Qmax =12 ð ε1Eo R

2              (8)                              
 
where R is the particle radius. 

 
Fig. 7 Variation of the charge density σsc due to 

corona charging over the particle surface (0 � 
è � 180 o) for two different values of the 
applied field Eo. (σ1=10-9Ù-1.m-1,                  
σ2 =10-7Ù-1 m-1, ε1 = εo and ε2 =1000 εo) 

IV. Conclusions 
 
On the basis of the present analysis, one may draw 
the following conclusions for spherical particles: 

(1) In absence of corona ions, the conductivity 
value   of the particle determines how high 
is the electric field inside the particle. For 
perfect insulating particles, the inside field 
reaches the limit of about 1.5 times the 
applied dc field. On the other hand, the 
inside field diminishes down to zero for 
conducting particles. 

(2) In absence of corona ions, the conductivity 
value σ1 of the surrounding medium also 
determines the field inside the particle. For 
σ2 >> σ1 , the particle behaves as a 
conducting sphere. On the other hand, the 
particle behaves as an insulating sphere for 
σ2 << σ1 .  

(3) In absence of corona ions, the field inside 
the particle is directly related to the applied 
dc field irrespective of the value of the 
particle conductivity. 

(4) In absence of corona ions, the normal 
component of the field over the surface of a 
conducting particle is dominating with 
respect to the tangential component. On the 
contrary, the tangential component for an 
insulating particle is dominating with 
respect to the normal component.  

(5) With particle charging by corona ions, the 
charge density distribution over the particle 
surface is almost uniform for conducting 
particles. The value of the charge density 
increases linearly with the value of the 
applied dc field. 
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