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ABSTRACT 
In this paper fuzzy logic (FL) is used to develop adaptive controllers. FL will replace well-known adaptive 
schemes. We have addressed both the MIT rule based and Lyapunov approach based Model Reference 
Adaptive Controllers (MRACs). Simulations are carried out to illustrate the developed schemes and their 
performance with uncertain parameters. 
 
1 Introduction 
FL is a logic that is close to the human thinking 
and reasoning and provides a means for modeling 
and dealing with the inexact nature of the real 
world. FL is introduced by Zadeh [1]. It tries to 
capture experience and intuition in the form of IF-
THEN rules from which conclusions are drawn. 
Fuzzy logic control is a technology in which FL is 
used to develop control strategies for dynamical 
systems. 
In using FL for control purposes, one is faced 
with the following alternatives. The first is to 
design a Fuzzy Logic Controller (FLC) based on 
the input-output behavior of the system under 
study [2,3,4,5]. Another option is to use FL to 
tune the parameters of classical control schemes 
such as the PID, VSC etc. [6,7]. The third option 
is to use FL to mimic the behavior of some 
classical controllers such as the PID controller [7]. 
In this paper we have adapted the third alternative. 
FL is used to replace some MRACs [8,9], namely 
the MIT rule based Model Reference Adaptive 
Controller (MRAC) and the Lyapunov approach 
based MRAC. We have developed the schemes 
and have presented some simulation results. 
In the following section we present some 
background material on the two adaptive schemes 
that we plan to replace with a FLC. In section 3, 
we give the FL adaptive schemes. Simulation 
results are shown for one parameter and two 
parameter adjustments. Finally we conclude our 
paper in section 4. 
 
2 Background 
Adaptive control is one of the methods available 
in the literature to control systems with 
uncertainties [10]. Several adaptive schemes are 
reported in the literature together with a lot of 
successful applications [10,12]. MRACs form a 
major body of adaptive controllers. Among the 
available MRACs the MIT rule based MRAC and 
the Lyapunov approach based MRAC are 

considered. In the following, we present the basic 
principle of these adaptive controllers. 
 
2.1 MIT Rule 
Given a system 

( ) ( ) ( )suksGsy pp ,=  

where k is an unknown vector of  n parameters. 
We desire to adjust the parameter ck in order to 

force the output ( )ty p  follows the output of a 

reference model ( )tym  given by 
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In the MIT rule [10] based method, this is 
achieved by minimizing the objective function 
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The adjustment law for parameter ck is given by 
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where γ is a constant, which determines the rate 

of gradient adaptation 
Consider a simple MRAC as shown in Fig. (1). 
The objective is to adjust ck such that the product 

of the system gain pk  and ck  eventually be equal 

to model gain k . 
For the MIT adaptive controller in Fig.(1) , Eq. 
(2) may be replaced by 

( ) { } ( )tyyygtk mmpc −−=&   (3) 
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Fig(1): Gain Adaptation MRAC 
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2.2 Lyapunov Approach 
Stability is an important factor to be considered in 
MRAC design. In the previous design method, 
large inputs or large gains can cause instability. 
Lyapunov [10,12] approach invariably includes 
stability aspect in the controller design. In the 
Lyapunov approach first we obtain the differential 
equation that describes the error between the 
output of the reference model and that of the 
plant. The objective is to obtain parameter-
adjustment equations that assure that the 
differential equation describing the error is 
asymptotically stable. To do this, a positive 
definite Lyanunov function is formulated for the 
error equation. The adaptation mechanism 
equations are then selected so as to cause the time 
derivative of the Lyapunov function to be 
negative definite. 
Lyapunov’s stability theorems make possible a 
method of synthesizing the control laws to result 
in a design that guarantees stability. The type of 
solution depends on the form of Lyapunov 
function selected. The system will be stable in the 
sense that the tracking error goes to zero or 
remains bounded, as when disturbances or time-
varying parameters are involved. 
Let us consider the following model and plant 
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The error between the model and plant output to 
an input signal r is 
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Let us assume 

pc kkkx −= ,     so      pc kkx && −=  

We may now select the Lyapunov function as 
     22 xev λ+=   for positive λ 
The derivative w.r.t. time can be written as 
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To make sure that 0<v& , we may use 
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3 Fuzzy Logic Controllers 
FL is based on the fuzzy set theory. Fuzzy sets are 
defined as the sets that do not have crisply defined 
membership but, rather, allow objects to have 
grades of membership from 0 to 1 [1]. A fuzzy set 
is defined by a label and a membership function. 

Their are four main building blocks of a FL 
controller: Fuzzification, Fuzzy rule base, 
Inference engine, and De-fuzzification. 
 Fuzzification is the process of transforming the 
range values of the variables of interest into the 
corresponding universe of discourse, and then 
converting the data into suitable linguistic 
variables. Fuzzy rule base is the collection of rules 
that are expressed as fuzzy conditional statements 
IF (Antecedent) THEN (Consequent). Inference 
engine is a mapping from fuzzy sets in the input 
space to fuzzy sets in the output space. De-
fuzzification involves converting the inferred 
fuzzy output into a crisp value and then scaling 
that crisp value into a suitable range. 
 
3.1 Single Parameter MIT Rule Based 

FL-MRAC 
For MIT rule based gain adjustment MRAC, the 
error signal and the output of the model are 
required to update the gain. For the FL counter 
part we are again going to use the error signal and 
the model output as the input to the FL-MRAC 
which generates a corrective output signal as 
shown in Fig.(2 ). 
 
 
 
 
 
 
 
 
 
For FLC design, operator’s opinion about the 
performance of the system is required. To obtain 
this knowledge we have applied different inputs to 
both model and the plant and observed the error 
signal, model output and the corresponding MIT 
rule based control signal. On the bases of these 
observations we have defined membership 
functions (msf). Membership function for each 
variable partition the range into linguistic 
descriptors that overlap. We have used triangular 
msf for all applications. For this application we 
have selected 3 msf for model output, 7 msf for 
error and 7 msf for controller output.  
After selecting and defining the msf, fuzzy control 
rules were delineated. A general rule for the fuzzy 
controller can be described as follows: 

{if e is Ai and ym is Bi then make decision Ci} 
The crisp (defuzzified) output signal of the fuzzy 
controller is obtained by calculating the centroid 
of all fuzzy output variables. 
Input of magnitudes 4, 24, 0 and 16 were applied 
at time instant 0, 15, 30 and 45 seconds 
respectively. In the beginning there is some 
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difference in the plant and model outputs. But 
after 2 seconds the plant has started to emulate the 
model and no further error between the plant and 
the model outputs is observed as shown in Fig.(3). 
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Fig.(3): Plant and model responses 

 
3.2 Single Parameter Lyapunov 

Approach Based FL-MRAC 
For Lyapunov approach based gain adjustment 
FL-MRAC, the input applied to the model and 
error are the two controller inputs as shown in 
schematic in Fig.(4). We have selected 3 msf for 
plant input, 7 for error and 7 for the controller 
output. The decision table is the same as for MIT 
rule based FC.  
 
 
 
 
 
 
 
 
For performance study, inputs of magnitude 
2,12,0 and 8 at time instance 0,15,30 and 45sec 
respectively were applied. Here again after 2 
seconds plant has started to follow the model. 
 
3.3 Two Parameter Lyanunov 

Approach Based FL-MRAC 
Let’s consider the following plant and model 
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The plant parameters a and b are the two 
adjustable parameters whereas model parameters 
c and d are fixed. The input applied to the plant is: 

rkyku rpy +=  
Fig.(5) shows the block diagram of the scheme. 
For this case the parameters to be adjusted are the 
loop gain and the feedback gain of the controller. 
Two separate controllers are designed to adjust 
these parameters. For loop gain, error and the 
input are the two controller inputs. We have 

selected 5 msf for error, 4 for input and 7 for 
change in loop gain. The msf are shown in 
Fig.(6). The decision table is also shown below. 
 
 
 
 
 
 
 
 
 
 
 
 

Table (1): Decision Table for Loop Gain 
 NL  NM Z PM PL 
Z PL PL Z NL NL 
S PL  PM Z NM NL 
M PM PS Z NS NM 
L PS PS Z NS NS 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
              
 
 
 

Fig.(6): (a) msf for error (b) msf for input (c) msf for 
loop gain 

Similarly for the feedback gain, error and the 
plant output are the inputs of the controller and 
change in feedback gain is the output of the 
controller. We have selected 5 msf for error, 7 for 
plant output and 7 for change in feedback gain. 
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Fig.(4): Lyapunov apporach based FL-MRAC 

u 
e 

c 
s + d 

a 
s + b 

ym 

r 

yp _ 

+ e 

Fig.(5): Two parameter Lyapunov approach based FL-MRAC 
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The decision table and the msf are shown in the 
Fig.(7). 

Table (2): Decision Table for Feedback Gain 
 NL NM Z PM PL 
NL NS NS Z PS PS 
NM NM NS Z PS PM 
NS NL NM Z PM PL 
Z Z Z Z Z Z 
PS PL PM Z NM NL 
PM PM PS Z NS NM 
PL PS PS Z NS NS 

 
 
 
 
 
 
 
 
 
 
             
 
 
 
 
 
 
 
 
 
 
             
           

Fig.(7): (a) msf for error (b) msf for model output (c) 
msf for feedback gain 

 
From the results we see that, at first plant starts to 
follow the model in about 3 seconds. If for the 
model c and d have a value of 1 then in 3 seconds, 
three time constants have been elapsed, so we are 
near steady state. At this time, the updated steady 
state value of plant (a*Kr)/(b+ Ky) and model c/d 
are same. Now once the input applied is changed, 
due to different time constants 1/(b+ Ky)  and 1/d 
for plant and model, again the responses 
mismatch and error is observed as depicted by 
Fig.(8) at time t=15, 30 and 45 seconds. Again the 
plant parameters a and b will be updated. After a 
few updating the parameters a and b will become 
very close to model and then we see relatively less 
error as the input is switched from one value to 
the other. A sinusoidal uncertainty of the form 

( )tkM πsin has been added to the adjustable 
parameters of the plant. Fig(8) shows the plant 
and model responses and the error signal. 
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Fig(8): (a) Plant and model responses (b) Error b/w model 
and plant responses 

3.4 Two Parameter Lyanunov 
Approach Based FL-MRAC for 
Second Order System 

We have the following second order plant and 
model: 
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where a,b,c are unknown parameters 
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The schematic is same as Fig(5), the only 
difference is a 2nd order plant and model. To 
update the feedforward and the feedback gains we 
use the Lyapunove approach based scheme. Inputs 
for feedforward gain FC are the error and the 
input and for the feedback gain FC are error and 
the output of the plant. 
For this application we have used the same 
decision table and number of msf for inputs and 
outputs as for the two parameters (first order) 
Lyapunov based FL-MRAC. Only the ranges of 
the inputs and msf are changed. For feedforward 
gain control, ranges for error, input and output are 
(-4.8-4.8), (0-4), and (-1.6-1.6) respectively. For 
feedback gain control, ranges for error, output of 
the plant and output of the FC are (-4.8-4.8), (-10-
10), and (-2.4 -2.4) respectively. 
To investigate the performance, step inputs of 
varying magnitude are applied to both the model 
and the plant, a sinusoidal disturbance of the 
varying magnitude was added to different 
parameters of the plant. The results in Fig.(9), 
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have shown that after 4 seconds the plant has 
started to follow the model. It is also obvious 
from the results that after a few fluctuations of the 
applied input, the parameter of the model and the 
plant become very close and very little error is 
observed on further switching of the inputs. 
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Fig(9): (a) Plant and model responses (b) Error b/w 
model and plant responses 

For a second simulation a zero mean unity 
variance random noise is added to the plant input 
together with the above mentioned uncertainties. 
The results in Fig.(10) illustrate the robustness of 
the controller. 
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Fig(10):  Plant and model responses  

  
4 Conclusions 
Four Fuzzy Logic Controllers are developed. First 
FLC replaces the MIT rule based MRAC. For 
this, error signal and output of the model are 
selected as  FLC inputs. The output of the FLC 
adjusts the loop gain. For the same plant and 
model Lyapunov approach based FL-MRAC is 
designed. The performance of the controller is 
evaluated by applying inputs of varying 
magnitude plus a sinusoidal uncertainty in the 
plant. The results show the effectiveness of the 
FLC to force the plant to follow the model, under 
uncertainties. 

A two parameter: one feedback gain and other 
loop gain, Lyapunov approach based FL-MRAC 
is also designed. For loop gain control, input to 
the model and error are the inputs to the 1st FC. 
And for feedback gain control, output of plant and 
error are the inputs of 2nd FC. For the second 
order system we have adjusted the feedforward 
gain and feedback gain and used the same scheme 
as for two-parameter Lyapunov approach based 
FL-MRAC. Simulations with different inputs and 
disturbances are carried out. The results obtained, 
show the effectiveness and robustness of the 
scheme. 
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