
A New Parallel Genetic Algorithm Model

Turki F. Al-Somani1 and Kalim Qureshi2

1 Computer Engineering Department, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia,
tsomani@ccse.kfupm.edu.sa

2 Information and Computer Science Department, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi

Arabia, qureshi@ccse.kfupm.edu.sa

Abstract
This paper presents an implementation of three Genetic Algorithm models for solving a reliability optimization
problem for a redundancy system with several failure modes, a modification on a parallel a genetic algorithm
model and a new parallel genetic algorithm model. These three models are: a sequential model, a modified
global parallel genetic algorithm model and a new proposed parallel genetic algorithm model we called the
Trigger Model (TM). The reduction of the implementation processing time is the basic motivation of genetic
algorithms parallelization. In this work, parallel virtual machine (PVM), which is a portable message-passing
programming system, designed to link separate host machines to form a virtual machine which is a single,
manageable computing resource, is used in a distributed heterogeneous environment. The best result was reached
and The TM model was clearly performing better than the other two models.

1. Introduction
Recently, genetic algorithms have received
considerable attention regarding their potential as
an optimization technique for complex problems [1]
and have been successfully applied in the area of
industrial engineering. The well-known
applications include scheduling and sequencing,
reliability design, vehicle routing and scheduling,
group technology, facility layout and location,
transportation, and many others.

As genetic algorithms usually require more
computation time than other heuristic approaches,
the basic motivation genetic algorithms
parallelization is the reduction of processing time
needed to reach an acceptable solution. A good
method of parallelization should preserve any
properties that sequential algorithm with the same
genetic operation would have. It should also not
introduce too many additional parameters whose
value could significantly affect the genetic
algorithm performance. Furthermore, it is highly
desirable to eliminate any need for process
intercommunication and synchronization. That it is
why the asynchronous approach has been favoured
in the majority of applications. In this work, parallel
virtual machine (PVM) [10] is recognized as an
efficient tool for transferring the genetic algorithm
into parallel form in a distributed heterogeneous
environment.

The main objective of this work is
reducing the total processing time of the
implementation by parallelization with the same
parameters. Section 2 introduces the general
structure of genetic algorithms by defining deferent
genetic algorithms operations and functions.
Section 3 gives a short survey on the previous and

recent work done on parallel genetic algorithms.
Section 4 describes the new proposed model. Then
section 5 discusses the problem definition and the
results. The conclusion and future work will be in
Section 6.

2. General Structure of Genetic
Algorithms
The usual form of a genetic algorithm was described
by Goldberg [2]. Genetic algorithms are stochastic
search techniques based on the mechanism of natural
selection and natural genetics. A genetic algorithm,
differing from a conventional search technique, starts
with an initial set of random solutions forming what
is called a population. Each individual in the
population is called a chromosome, representing a
solution to the problem at hand. A chromosome is a
string of symbols; it is usually, but not necessarily, a
binary bit string. The chromosomes evolve through
successive iterations, called generations. During each
generation, the chromosomes are evaluated, using
some measures of fitness. To create the next
generation, new chromosomes called offspring, are
formed by either (a) merging two chromosomes from
the parent generation using a crossover operator or
(b) modifying a chromosome using a mutation
operator. A new generation is formed by (a)
selecting, according to fitness values, some of the
parents and offspring and (b) rejecting others so as to
keep the population size constant. Fitter
chromosomes have higher probabilities of being
selected. After several generations, the algorithm
converges to the best chromosome, which hopefully
represents the optimum or suboptimal solution to the
problem (see figure 1).
 Usually, initialization is assumed to be
random. Recombination typically involves crossover

and mutation to yield offspring. In fact, there are
only two kinds of operations in genetic algorithms:

 1. Genetic operations: crossover and
mutation
 2. Evolution operation: selection

Figure 1: The general structure of a genetic algorithm

The genetic operations mimic the process of
heredity of genes to create new offspring at each
generation. The evolution operation mimics the
process of biological evolution to create
populations from generation to generation.

3. Parallel Genetic Algorithms
Existing parallel implementation of genetic
algorithms can be classified [3 & 4] into three main
types:

1. Global single-population master-slave
genetic algorithms (GPGA).

2. Massively parallel genetic algorithms
(MPGA).

3. Distributed genetic algorithms (DGA).
GPGA is identical to serial genetic algorithms [5] in
contrast of other basic models of parallel genetic

algorithms. GPGA consists of one population. The
master processor stores the entire population and
applies genetic operators to produce the next
generation. The slave processors are used to evaluate
the fitness of a fraction of the population in parallel.
Golub and Jakobovic [3] model is a GPGA. In this
model and in contrast of traditional master-slave
genetic algorithms, the master creates random initial
population, evaluates created individuals and starts
the slaves. Each slave performs whole evolution
process and return back only with the final results as
illustrated in Figure 2. These results may probably
fall in a local maximum [6] because there is only one
initial population created. So, modifying this model
to create new initial populations randomly for each
slave independently has been done (see Figure 3).

Initial Population

Crossover
0010 1101
0101 1010

0101 1101
0010 1010

Chromosomes
0010 1101
0101 1010
0101 1111
0001 1101

Solutions
Space

Mutation
0 0 1 0 1 1 0 1

0 1 1 0 1 0 0 1

Evaluation

Offspring
0101 1101
0010 1010
0110 1001

Selection
0010 1101
0101 1010
0101 1111
0001 1101
0101 1101
0010 1010
0110 1001

New Population

Figure 2: Golub and Jakobovic [3] model

Figure 3: Golub and Jakobovic modified model

4. The TM Model
In our new proposed model, the master only triggers
the slaves. Each slave, the master will be also
performing as a slave instead of being idle, then
creates random initial population, evaluates created
individuals performs whole evolution process and
then return the final results to the master (see figure
4). This eliminates the time required to generate

each populations at the server for slaves, the
communication overhead and allows for an
exhaustive search of the solution space by the slaves
random explorations. We are interested in testing the
total processing time of the sequential genetic
algorithm, the modified version of the master-slave
genetic algorithms model proposed by Golub and
Jakobovic [3] and the TM model.

Slave [1]
3. Crossover
4. Mutation
5. Evaluation
6. Selection
7. While (!terminate)

Goto 3 (new pop.).

Master
1. Initial Population [I .. N]
2. Fitness evaluation

Solutions
Space

Master
Best Solution

Slave [2]
3. Crossover
4. Mutation
5. Evaluation
6. Selection
7. While (!terminate)

Goto 3 (new pop.).

Slave [N]
3. Crossover
4. Mutation
5. Evaluation
6. Selection
7. While (!terminate)

Goto 3 (new pop.).

Slave [1]
3. Crossover
4. Mutation
5. Evaluation
6. Selection
7. While (!terminate)

Goto 3 (new pop.).

Master
1. Initial Population
2. fitness evaluation

Solutions
Space

Master
Best Solution

Slave [2]
3. Crossover
4. Mutation
5. Evaluation
6. Selection
7. While (!terminate)

Goto 3 (new pop.).

Slave [N]
3. Crossover
4. Mutation
5. Evaluation
6. Selection
7. While (!terminate)

Goto 3 (new pop.).

Figure 4: The TM model

5. Results
This work considers the reliability optimization
problem of a redundancy system with several
failure modes given by Tillman [7], which is used
as a benchmark problem by many researchers. This
problem was classified in [7] as having Type 1
Failures with Parallel Redundant Components. In
this situation the redundant components are in
parallel, and all of them are subject to the same
mode of failure. Complex systems are usually
decomposed into functional entities composed of
units, subsystems, or components for the purpose of
reliability analysis. This subsystem is a switching
circuit with three switches in parallel, and all must
remain open for it to operate. In this problem we
assume that the subsystem is subject to the
following mutually exclusive modes of failure:
 1. The O failures are those where one
switch closes when it should not and causes the
subsystem to fail.
 2. The A failures are those where all
switches fail by not closing when they should,
causing the subsystem to fail.
The problem is to maximize the system reliability
subject to three non-linear constraints with parallel

redundant units in subsystems that are subject to A
failures, which occur when the entire subsystem is
subjected to the failure condition.

Gen and Cheng simplified the genetic
algorithms understanding and described their general
structure as can be found in [8]. Detailed numerical
examples of solving reliability optimization problems
using genetic algorithms could be found in [9].
 It was discovered while testing that both the
crossover and the mutation function takes a very
small amount of the time that could be ignored when
compared to the total time and the time needed to
generate new populations. So, the comparisons for
the total processing time of the implementation have
been done for the following:

1. The sequential genetic algorithm model.
2. The modified model of Golub and Jakobovic

[3].
3. The TM model.

The best result found is identical with that given [7],
[8] and [9]. The processing time of the
implementation is shown in Table 1. Figure 5 shows
a snapshot of the processing time of the modified
Golub and Jakobovic model and the new proposed
TM model. The TM model was clearly performing
better.

Slave [1]
1. Initial Population[1]
2. Fitness evaluation
3. Crossover
4. Mutation
5. Evaluation
6. Selection
7. While (!terminate)

Goto 3 (new pop.).

Master
Only trigger the slaves [1..N]

Master
Best Solution

Slave [2]
8. Initial Population[2]
9. Fitness evaluation
10. Crossover
11. Mutation
12. Evaluation
13. Selection
14. While (!terminate)

Goto 3 (new pop.).

Slave [N]
15. Initial Population[N]
16. Fitness evaluation
17. Crossover
18. Mutation
19. Evaluation
20. Selection
21. While (!terminate)

Goto 3 (new pop.).

Solutions
Space

Solutions
Space

Solutions
Space

Table 1: The three models proc. time in msec with population size = 20 and 50 generations

No. of slaves 4 8 12 32
Sequential Model 1322 3712 4799 13590

Golub & Jakobovic Modified Model 558 813 1223 2626
Trigger Model 526 624 941 2223

0

500

1000

1500

2000

2500

3000

4 8 12 32

No. of slaves

T
im

e
 i

n
 m

se
c

Golub & Jakobovic
Model

Trigger Model

Figure 5: The parallel models processing time with population size = 20 and 50 generations.

6. Conclusion & Future Work
In this paper we presented an implementation of
three genetic algorithm models for solving a
reliability optimization problem. The two parallel
genetic algorithms performed better than the
sequential one. A modification to an existing model
(Golub and Jakobovic [3]) has been done. And a
new model (TM) has been proposed. The testing
results show that the TM model was performing
better. The testing has been done using PVM [10]
in a distributed heterogeneous network. The main
objective was reducing the total processing time of
the implementation and doing an exhaustive search
in the solution space searching for a better solution
than the existing one. In future work, more than one
task distribution strategy will be tested in both
heterogeneous and homogeneous distributed
environments. Also, other implementations will be
considered testing different implementation natures
and behaviours.

References
[1] Haupt, R. L. and Haupt, S. E. (1998) Practical

Genetic Algorithms, New York: John Wiley & Sons.
[2] Goldberg, D. E. (1989) Genetic Algorithms in Search,

Optimization and Machine Learning, Longman.
[3] Golub, M. and Jakobovic, D. (2000) A New Model of

Global Parallel Genetic Algorithm, 22nd International
Conference on Information Technology Interfaces
IYI, pp 363-368

[4] Cant ´ u-Paz, E. (1998) A Survey of Parallel Genetic
Algorithms, Calculateures Parallels, Vol. 10, No. 2.
Paris: Hermes.

[5] Cant ´ u-Paz, E. and Goldberg, D. E. (1999). On the
Scalability of Parallel Genetic Algorithms, the

Massachusetts Institute of Technology, Evolutionary
Computation 7(4): 429-449

[6] Punch III, W. F. and Miagkikh, V. V. (1999) Global
search in combinatorial optimization using
reinforcement learning algorithms, Submitted to:
1999 Conference on Evolutionary Computation,
http://garage.cps.msu.edu.

[7] Tillman, F. A. (1969) Optimization by integer
programming of constrained reliability problems with
several modes of failure. IEEE Transactions on
Reliability, Vol.R-18 (No. 2): 47-53.

[8] Gen, M. and Cheng, R. (1997) Genetic Algorithms
and Engineering Design, New York: John Wiley &
Sons.

[9] Al-Somani, T. (2000) Reliability Optimization Using
Genetics Algorithms, M. Sc. thesis, King Abdul-Aziz
University, Saudi Arabia.

[10] Geist, A., Beguelin, A., Dongarra, J., Jiang, W.,
Manchek, R. and Sunderam, V. (1994) PVM:
Parallel Virtual Machine { A Users' Guide and
Tutorial for Networked Parallel Computing, The MIT
Press.

[11] Cant ´ u-Paz, E. (1998) Designing an Efficient
Master-slave Parallel Genetic Algorithms, Genetic
programming Proc. Of the Third Annual Conference,
CA, pp 455-460.

[12] Koza, J. R. (1994) Genetic Programming II,
Cambridge, Massachusetts: MIT Press.

[13] Qureshi, K., Terasaki, H. and Hatanaka, M. (1996) A
Network Parallel Distributed Processing System
using PCs and WSs, Journal of Geotechnology,
Research Association of Japan, Muroran Institute of
Tech. , 38 1-8.

[14] Qureshi, K. and Hatanaka, M. (1996) PC-UNIX
Parallel Distributed processing on Heterogeneous
Hardware, Research Conference at Muroran Institute
of Technology, Hokkaido Japan, 1-2.

	Main

