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ABSTRACT

In this work, a family of normalized least mean fourth algo-
rithms is presented. Unlike the LMF algorithm, the conver-
gence behavior of these algorithms is independent of the in-
put data correlation statistics. The first proposed algorithm
uses a simple normalization of the regressor and is called
simply the NLMF. The second algorithm consists of a mixed
normalized LMF (XE-NLMF) algorithm which is normal-
ized by the mixed signal and error powers. Finally, the third
algorithm, called the variable XE-NLMF, is a modified ver-
sion of the XE-NLMF where the mixed-power parameter is
time-varying. An enhancement in performance is obtained
through the use of these techniques over the LMF algorithm.
Moreover, the simulation results obtained confirm the theo-
retical predictions on the performance of these normalized
LMF algorithms.

1. INTRODUCTION

Adaptive systems are playing a vital role in the develop-
ment of modern telecommunications. Also, adaptive sys-
tems proved to be extremely effective in achieving high effi-
ciency, high quality and high reliability of around-the-world
ubiquitous telecommunication services [1].

The key to successful adaptive signal processing is un-
derstanding the fundamental properties of adaptive algo-
rithms. These properties are stability, speed of convergence,
misadjustement errors, robustness to both additive noise and
signal conditioning (spectral coloration), numerical com-
plexity, and round-off error analysis of adaptive algorithms.
However, some of these properties are often in direct con-
flict with each other, since consistently fast converging al-
gorithms tend to be in general more complex and numer-
ically sensitive. Also, the performance of any algorithm
with respect to any of these criteria is entirely dependent
on the choice of the adaptation update function, that is the
cost function used in the minimization process. A compro-
mise must be then reached among these conflicting factors
to come up with the appropriate algorithm for the concerned
application.

Due to its simplicity, the least mean-square (LMS) al-
gorithm [2] is the most widely used algorithm for adaptive
filters in many applications. The least mean-fourth (LMF)
[3] algorithm was suggested as a special case of the more
general family of steepest descent algorithms with 2k er-
ror norms, k being a positive integer. But for both of these
algorithms, the convergence behavior depends on the condi-
tion number, i.e., on the ratio of the maximum to the mini-
mum eigenvalues of the input signal autocorrelation matrix,
R = E[xkxT

k ] where xk is the input signal.

2. PROPOSED ALGORITHMS
The LMF algorithm is based on the minimization of the
mean-fourth error cost function, that is [3]:

Jk = E[e4
k], (1)

where the error ek = dk + ηk − xT
k wk, with dk being the

desired value, wk the filter coefficient of the adaptive filter
and ηk the additive noise. In this case, the filter-coefficient
vector update of the LMF algorithm is given by [3]:

wk+1 = wk + 2µe3
kxk. (2)

The speed of convergence of this algorithm depends on the
input signal statistics, or more specifically on the eigenvalue
spread of the input autocorrelation matrix, and for conver-
gence, the proper range of the step size µ was shown to be
[3]:

0 < µ <
1

3σ2
ηλmax

, (3)

where σ2
η and λmax are, respectively, the noise power and

the largest eigenvalue of the autocorrelation matrix of the
input signal.

2.1. The NLMF algorithm
To overcome the dependency of the LMF on the the condi-
tion number, the normalized LMF algorithm is introduced
and is interpreted as the solution to the following minimiza-
tion problem [4]:

min
wk

{
‖dk + ηk − xT

k wk‖4 + (
1
µ̄
− 1)‖xk‖2‖wk+1 − wk‖2

}
,

(4)



with µ̄ ∈ [0,1] being the step size. The weight update re-
cursion of the NLMF algorithm is given by the following
expression [4]:

wk+1 = wk + 2µ̄e3
k

xk

‖xk‖2
, (5)

where ‖xk‖2 is the Euclidean norm of the input vector xk .
Ultimately, for the NLMF algorithm to converge in-the-

mean, a sufficient condition is that µ̄ be chosen in the fol-
lowing range [4]:

0 < µ̄ <
1

3σ2
η + 1

. (6)

2.2. The XE-NLMF algorithm
The power of the LMF lies in its faster initial convergence
and lower steady-state error relative to the LMS algorithm.
More importantly, its mean fourth error cost function yields
a better performance than that of the LMS for noise of sub-
Gaussian nature [3], or light-tailed pdf-like noise [5].

However, this higher-order algorithm requires a much
smaller step size to ensure stable adaptation [4]. Whereas,
the error power three in the LMF gradient vector can cause
devastating initial instability. Therefore, it causes unneces-
sary performance degradation. The solution proposed here
is to normalize the step size.

The recursive equation for the XE-NLMF algorithm is
defined as follows [6]:

wk+1 = wk +
γxee

3
kxk

δ + (1 − α)‖xk‖2 + α‖ek‖2
, (7)

where γxe represents the step size, the error signal, ek, wk

is the filter coefficient vector of the adaptive filter, xk is the
input vector, ek = [ek−N+1, ek−N+2, . . . , ek]T is the error
vector and N is the length of the filter.

As shown in equation (7), the LMF is normalized by
both the signal power and error power, which are balanced
by a mixed-power parameter (α). Combining signal power
and error power has the advantage that the former normal-
izes input signal, while the latter can dampen down the out-
lier estimation errors, thus improving stability while still re-
taining a fast convergence speed.

Finally, a sufficient condition for convergence in the mean
of the XE-NLMF algorithm is given by :

0 < γxe <
1

3σ2
ησ2

x

[
(1 − α)σ2

x + ασ2
e

]
, (8)

where σ2
x is the signal power.

2.3. The variable XE-NLMF algorithm
The mixing power parameter, αk, is confined to the inter-
val [0,1] and will be recursively adapted to adjust the signal

power, ‖xk‖2, and error power, ‖ek‖2, for maximum per-
formance. Here, we propose an error square feedback quan-
tity, µk, updated according to a variable-step-size-parameter-
like [7]:

µk+1 = νµk + pk|ekek−1|, (9)

where the quantity ekek−1 determines the distance of wk to
the optimum weight, ν is a constant and |·| denotes the abso-
lute value operation. The quantity pk is updated according
to the weighted sum of the past three samples of αk in the
following way [6]:

pk = a[αk−2 + αk−1 + αk], (10)

a is a constant.
With this averaging, the recursion curve of µk can be

more flexibly controlled. The error power estimate is then
used to guide the value of αk as follows:

αk = erf{µk}, (11)

where erf{r} = (2/
√

π)
∫ r

0 e−y2
dy is the error function

with the purpose to confine αk to the interval [0,1]. Sim-
ilarly, the parameters ν and p are restricted to the interval
[0,1]. Moreover, to avoid zero in the feedback loop, the ini-
tial value of p is set at p0 = 0.5.

This scheme provides an automatic adjustment of αk ac-
cording to the estimation of the square of the error. When
the estimation error is large, αk will approach unity, thus
providing fast adaptation. While the error is small, αk is
adjusted to a smaller value for a lower steady-state error.
Based on this motivation, the variable XE-NLMF algorithm
is expressed as follows [8]:

wk+1 = wk +
γxee

3
kxk

δ + (1 − αk)‖xk‖2 + αk‖ek‖2
. (12)

Therefore, a sufficient condition for convergence in the
mean of the variable XE-NLMF algorithm is given by [8]:

0 < γxe <
1

3σ2
ησ2

x

[
(1 − E[αk])σ2

x + E[αk]σ2
e

]
, (13)

where E[αk] is the average value of of αk.

3. SIMULATION RESULTS
The performance of these normalized algorithms is com-
pared with that of the LMF and the NLMS algorithms. Ex-
periments are carried out where an unknown system is to be
identified under noisy conditions. The unknown system is a
non-minimum phase channel. The input signal xk to the un-
known system and to the adaptive filter is obtained by pass-
ing a zero mean white Gaussian sequence through a channel
used to vary the degree of ill-conditioning of the autocorre-
lation matrix of the sequence {xk}. The additive noise, ηk,
is zero-mean. The signal-to-noise-ratio is set to be equal to



20 dB and the performance measure used is the normalized
weight error norm 10log10||wk−wopt||2/||wopt||2. Results
are obtained by averaging over 600 independent runs and all
the algorithms are obtained for fastest convergence.

3.1. Performance of the NLMF algorithm
Here, three experiments are conducted for different eigen-
value spreads of the autocorrelation matrix of the input sig-
nal. The eigenvalue spread (λmax/λmin) is 11.8 for the
first experiment, 21 for the second and 68.9 for the third.
The insensitivity of the NLMF algorithm to the input data
statistics, in contrast to the LMF algorithm, is clearly shown
in Fig. 1 for the three eigenvalue spreads.
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Fig. 1. Convergence characteristics for NLMF algorithm for
λmax/λmin = 11.8, λmax/λmin = 21, and λmax/λmin =
68.9.

3.2. Effect of α on the performance of the XE-NLMF
algorithm
The convergence characteristics of different α’s (0 ≤ α ≤
0.9) are studied in this section. The results are shown in
Figure 2. Typically for α = 0.1, the convergence curves
are close to the NLMF algorithm, which slows down after
the initial fast convergence. Lower weight errors are ob-
served for α = 0.1 and α = 0.5, but their convergence
speeds are slower than that observed when α = 0.9. The
performance for α = 0.5 is in between that of α = 0.1
and α = 0.9. Therefore, the choice of α value acts as an
additional step size control, which provides a compromise
between the convergence speed and steady state weight er-
ror.

The introduction of the mixed parameter α has increased
the flexibility of the XE-NLMF algorithm to achieve faster
convergence and lower steady state weight error. The ex-
periment results showed that there is an optimum value for
the mixed parameter, α, that will wield an optimum perfor-
mance. Therefore, the main parameter affecting its perfor-
mance are the judious choice of α and its consequence on
the normalized step size. In the sequel, these two issues are
considered for the purpose of motivating the choice of the
variable XE-NLMF algorithm.
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Fig. 2. Effect of α on the convergence performance of the
XE-NLMF.

3.3. Performance of varaible XE-NLMF algorithm
Figure 3 depicts the convergence behaviour of the variable
XE-NLMF, the XE-NLMF (with α = 0.5) and the NLMS
with the same convergence rate in an additive white Gaus-
sian noise (AWGN) environment. As can be seen from this
figure, the variable XE-NLMF algorithm adapts faster than
the XE-NLMF and NLMS algorithms, and at the same time,
produces a lower steady-state weight error norm of more
than 15 dB. This demonstrates the advantages of incorpo-
rating a variable mixed-power parameter in the XE-NLMF
algorithm.
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Fig. 3. Convergence performance for the variable XE-
NLMF algorithm, the XE-NLMF algorithm (α= 0.5) and
the NLMS algorithm in AWGN environment.

In Figure 4, the variable XE-NLMF algorithm converges
faster with a lower-steady state error than the NLMS al-
gorithm in a binary (sub-Gaussian) additive noise environ-
ment. Here, the difference of 23 dB in weight error norm is
more apparent. The LMF-based algorithm performs better
in sub-Gaussian noise.
3.4. The Co-Channel Interference (CCI) Effect
In the first experiment, a channel equalizer is used to study
the performance of the NLMF algorithm in terms of bit-
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Fig. 4. Convergence performance in Binary additive noise
environment.

error-rate (BER). The channel is h1(z) = 1 + 0.4z−1 and
the co-channel is h2(z) = 1 + 0.2z−1. The BER results
in a co-channel interference scenario are depicted in Figure
5 where the NLMF algorithm outperforms the NLMS algo-
rithm. More than a 1.5 dB improvement over the NLMS
algorithm is achieved at a BER of 10−5. It can be seen from
these results that the effect of the step size on the perfor-
mance of the NLMF algorithm is almost negligible.
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Fig. 5. The BER performance in a co-channel interference
environment.

In the second experiment, the BER results in a co-channel
interference scenario is depicted in Figure 6 for the variable
XE-NLMF algorithm. The channel is h1(z) and the co-
channel is h2(z). As expected, the variable XE-NLMF al-
gorithm outperforms the rest of the algorithms. A 2 dB im-
provement over the NLMS algorithm is achieved at a BER
of 10−6.

4. CONCLUSION
In this study, newly developed normalized LMF algorithms
were investigated and their performance were compared.
Among the three versions, the variable XE-NLMF algo-
rithm exhibited the best performance. Moreover, the com-
putational complexity added to these algorithms, and more
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Fig. 6. The BER performance in a co-channel interference
environment.

specifically, the variable XE-NLMF algorithm, is minor com-
pared to that of the LMF algorithm. Finally, the variable
XE-NLMF can be a potential candidate in the design of new
receivers where the noise statistics are not gaussian.
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