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Abstract�We demonstrate here the possibility of using the
amplitude-phase polar plot, constructed for a scalar signal as a
characterization tool. In particular, we show how phase noise and
total harmonic distortion can be measured using this polar plot.
In addition, we exploit using the technique for ECG identi�cation.

I. INTRODUCTION

Traditionally, the power spectrum is the widely used tech-
nique for signal characterization. This spectrum plots the
power content of the signal harmonics, obtained via an FFT,
versus their frequency: Important quantities such as Total Har-
monic Distortion (THD) and Phase Noise are measured using
this power spectrum. However, an FFT signal decomposition
of the form f(t) = a0 +

PN
n=1An cos(n!0t+ �n) generates

a phase component �n: This component is ignored in the
power spectrum and is seldom considered useful although few
researchers have indicated that nonlinear dynamical operations
performed on the phase of a signal are the main cause of
behaviors such as chaos and phase noise [1]-[3].
In this work we investigate the amplitude-phase polar plot

and show that THD and phase noise can be measured using
this plot. In addition, we construct the plot from measured
ECG signals for normal and sick individuals (diagnosed with
Congestive Heart Failure) and show that clear differences can
be observed.

II. PHASE POLAR PLOTS

To demonstrate the phase polar plot, consider for example
a periodic square wave x(t) = 3sgn(sin(2000�t +

�

3
)).

The phase polar plot for this signal is shown in Fig. 1(a)
where it is seen that the fundamental component is located
at ��=6, the second harmonic is located at �=2 and the third
harmonic is located at 7�=6 respectively. Another example
is shown in Fig. 1(b) where a white Gaussian noise of zero
mean and 2.25 variance is added to the amplitude of x(t) =
2 cos(2�108t +

�

6
): The fundamental component is clear at

�=6 and the noise content is magni�ed in the lower subplot.
Figure 1(c) is the phase polar plot of x(t) = 2 cos(2�108t+

�

6
)

when noise with variance 0.02 is added to the phase instead of
the amplitude. This case re�ects a typical sinusoidal oscillator
output operating at 100MHz.

A. Phase noise
From Fig. 1(c) we suggest a new method for measuring the

phase noise. The method is based on �nding the best �t noise

circle (shown in gray in the subplots of Figs. 1(b) and 1(c)),
measuring its radius R0 and applying the formula

phase noise (dB) = 20 log(Ro=R) (1)
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Figure 1: Phase polar plots of (a) a square wave with amplitude 3
and frequency 1kHz, (b) a 100MHz sinusoid with amplitude noise

and (c) a 100MHz sinusoid with phase noise.

where R is the amplitude of the fundamental component.
For example, the best �t circle in Fig. 1(c) has a radius R0 =

0:000025 and hence using (1) the phase noise � �86dB. It is
not straightforward to compare this value with that obtained
from the power spectrum, shown in Fig. 2, since the measure-
ment from the power spectrum is based on a speci�c offset
from the carrier (fundamental component) [4]. For example,
at 100KHz offset from carrier the measured phase noise is
�95:2405dBc=Hz. The advantage of measuring phase noise
from the phase polar plot is thus obvious as it is independent
of any frequency offset.
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Figure 2: Phase noise measurement from the power spectrum.
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Figure 3: Measuring THD (a) from phase polar plot and (b) from

ampltude spectrum.

B. Harmonic distortion
The phase polar plot may also be used to measure THD:

Consider for example the polar plot shown in Fig. 3(a) which
has a main component of amplitude one and three harmon-
ics of amplitudes 0.01, 0.003, and 0.004 respectively. The
calculated THD is then 1:1%. Exactly the same value can
be obtained from the amplitude spectrum shown in Fig. 3(b),
which is the traditional method for measuring THD.

C. Signal identi�cation

1) ECG signals: As an application for the phase polar
plot in signal identi�cation, we consider several recorded
ECG signals [5]. The aim is to be able to detect cardiac
abnormalities. Figures 4(a) and 4(b) are ECG phase polar plots
for two normal individuals. From these plots among many
others, it was observed that the fundamental component with
maximum amplitude always has zero phase and that the largest
component in the �rst quadrant always lies between 40� and
60�: In the second quadrant, the largest component always
lies between 150� and 180� and in the fourth quadrant it lies
between -90� and -60�:

Next we consider abnormal ECG signals for patients di-
agnosed with Congestive Heart Failure [5]. Samples of the
constructed phase polar plots for two patients are shown in
Figs. 5(a) and 5(b). It was observed for all patients of this
disease that the fundamental component has a phase of 180�;
i.e. it is shifted 1800 with respect to a normal person. Further,
new large components appear in the third quadrant.
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Figure 4: Phase polar plots constructed from ECG signals of two

normal individuals
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Figure 5: Phase polar plots of two patients diagnosed with

Congestive Heart Failure.

2) Chaotic signals: Chaotic signals are produced by fully
deterministic systems yet they appear to be random and share
some main features with noise. In [1], it was postulated that
chaos is generated because of a nonlinear stretch and fold
mechanism which ampli�es phase-noise to the extent that the
noise may eventually be larger than the signal itself. Chaos
is generally produced by two types of systems: autonomous
free running systems and non-autonomous externally excited
systems. The Duf�ng oscillator is one of the famous nonau-
tonomous chaos generators and is described by the set of
equations

�x+ k(x2 � 1) _x+ x = A sin(!t+ �) (2)

Figures 6(a) and 6(b) show the phase polar plots constructed
from the two signals x(t) and _x(t) obtained via numerical
simulations of the Duf�ng oscillator in chaotic mode. While
the sinusoidal excitation 0:5 sin(!t + 1050) is clearly visible
in the phase plot of x(t) (Fig. 6(a)), it cannot be distinguished
from other components in the phase plot of _x(t) (Fig. 6(b)).
In fact some components in Fig. 6(b) are larger than the
excitation itself which indicates that for such a chaotic system,

mixing and noise ampli�cation is performed much better in
the _x(t) space direction. It is possible to use the same best-
�t circle phase noise measurement procedure explained above
to quantify the ef�ciency of this system in generating chaos;
i.e. the ratio of the generated chaos noise to the necessary
excitation amplitude A = 0:5:
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Figure 6: Phase polar plots of the two states of a forced Van der

Pol equation in chaotic mode.

On the otherhand, Chua's circuit equations form a famous set
of autonomous chaos generating equations. They are given by

!r _x = (1� k)x� y + kz (3a)
_y = !r(x��y) (3b)

!r _z =
1

"c
[k(x� z)� f(z)] (3c)

f(z) =

8<: A z � �1
�Az � 1 < z < 1
�A z � 1

(3d)

Numrical simulations of the above system produce the well-
known double-scroll attractor, which is a 3-dimensional fractal
structure. The phase polar plots for x(t), y(t) and z(t) are
shown in Fig. 7. Note that the amplitudes of the y(t) phase
components are very low compared to x(t) and z(t) and
that the best �t circle with larger radius is that for Fig. 6(a).
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Also note that the component with largest amplitude (=0.3)
in Fig. 6(a) is located at 3350 while in Fig. 6(c) it is located
1800 earlier i.e. at 1550 and with the same amplitude.
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Figure 7: Phase polar plots for Chua's system

III. CONCLUSION
We have introduced the phase polar as a useful signal

analysis and identi�cation tool. Measuring phase noise and
THD from this plot is particularly more relevant than using
traditional power spectrum.
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