
Predictability and Performance Enhancement for Real-Time

Embedded Systems by Cache-Locking

Abu Asaduzzaman, Niranjan Limbachiya, and Imad Mahgoub

Florida Atlantic University, Boca Raton, Florida, 33431, USA

Abstract — In real-time systems, cache memory poses
challenge to improve both predictability and performance
because of its adaptive and dynamic behavior. Recent
studies indicate that for application-specific embedded
systems, static cache-locking helps determining the worst
case execution time (WCET) and cache-related preemption
delay. In this work, we propose a static instruction cache-
locking algorithm that makes the real-time embedded
system more predictable by locking the blocks that might
cause more cache misses. We obtain CPU utilization for
both static cache analysis (no cache-locking) and static
cache-locking using Heptane. Experimental results show
that our cache-locking algorithm may improve both
predictability and performance of real-time systems.

Index Terms — Predictability, performance, cache-
locking, real-time embedded system, Heptane.

I. INTRODUCTION

The demands for running real-time multimedia

applications on embedded systems are growing.

Processing video applications on embedded systems is a

significant challenge for memory subsystem, which are

the primary performance bottleneck. Multimedia

applications seriously suffer due to the memory

inefficiency from dropped frames, blocking, or other

annoying artifacts [1], [2]. Memory hierarchy is

changing in order to support multimedia applications in

embedded systems. Cache memory is introduced to

improve performance by reducing the speed-gap

between the processor and the main memory. However,

cache is an important source of unpredictability due to

its adaptive and dynamic characteristics; as a result

programs may behave in an unexpected way. A lot of

work has been done to predict the worst-case behavior of

embedded applications in order to determine the safe

and precise bounds on tasks worst-case execution time

(WCET) and cache-related preemption delay [3], [4].

Cache-locking mechanism adapts caches to the needs of

real-time systems. Recent studies show that the time

required to perform a memory access is predictable with

static/dynamic data/instruction cache-locking [5], [6],

[7]. It is also observed that cache-locking improves

predictability by removing both intra-task and inter-task

interferences [8], [9], [10], [11]. Locking the cache is a

solution that may trade performance for predictability -

at a cost of lower performance, the time of accessing the

memory becomes predictable. Special attention is

needed in real-time systems with caches so that the

performance and predictability remain reasonable.

 In this work, we present a static instruction cache-

locking algorithm that may improve the predictability

and performance of real-time embedded systems. In

Section II, a few relevant articles from our review are

summarized. Section III discusses some cache-locking

algorithms. In Section IV, proposed cache-locking

algorithm is explained. Experimental setup is described

in Section V. In Section VI, the experimental results are

discussed. Finally, we conclude our work in Section VII.

II. RELATED WORK

A lot of progress has been made in the past few years

to address the predictability and performance issues in

real-time embedded systems. A few of them, related to

our work, are discussed in this section.

In [3], a new approach is presented that copes with

caches in real-time systems that statically locks the

contents so as to make memory access times and cache-

related preemption delays more predictable. In [4], two

low-complexity algorithms are proposed for selecting

the contents of statically-locked caches. The

performance is measured and compared with that of a

state of the art static cache analysis method.

Experimental results show that both techniques improve

predictability but may reduced performance.

When the cache miss-ratio is higher, the program will

lead to longer execution time and higher power

consumption. By knowing the cache miss-ratio,

performance can be estimated in advance and can be

used as input for compilers and system developers.

Article [6] presents a static method to limit the worst-

case instruction cache miss-ratio of a program. The static

method needs no manual annotations in the code and is

safe in the meaning that no under-estimation is possible.

A dynamic algorithm is proposed in [8] that partitions

the task into a set of regions. Each region owns statically

a locked cache content that is determined offline. A set

of tasks is used to experimentally analyze the effects of

the algorithm on the worst-case cache miss rate

(WCCMR). Experiments show significant improvement,

when compared with a system without any cache.

Work [9] and [10] discuss data cache-locking related

issues. In [9], a new technique is proposed to obtain

predictability in preemptive multitasking systems in the

presence of data caches. The complexity introduced by

the data caches makes it difficult to bound execution

times tightly. Cache partitioning, dynamic cache-

locking, and static cache analysis are done to provide

worst-case performance estimates in a safe and tight

way. In this work, two strategies are employed in order

to minimize the performance degradation due to cache

partitioning and locking. First, the cache is loaded with

data likely to be accessed so that their cache utilization

is maximized. Second, compiler optimizations such as

tiling and padding are applied in order to reduce cache

replacement misses. Experimental results indicate that

this scheme is very predictable, without compromising

the performance of the transformed programs.

In [11], a genetic algorithm is developed and applied

in real-time systems to improve predictability. The set of

instructions to be locked in cache is selected using the

genetic algorithm. This algorithm estimates a tight upper

bound of the response time of tasks. Experimental

results show that this scheme is highly predictable, and

the performance loss is negligible for most tasks.

In our previous work [1], we focus on cache modeling

and optimization for portable communication devices

running MPEG-4 video decoder. Simulation results

show that MPEG-4 decoding performance in embedded

systems can be enhanced by optimizing cache

parameters. In this work, we investigate the impact of

our proposed static instruction cache-locking algorithm

on the predictability and performance of real-time

embedded systems.

III. CACHE-LOCKING ALGORITHMS

A lot of cache-locking algorithms have been proposed

to improve predictability in real-time and hard real-time

embedded systems. Some of those algorithms are

discussed in the following subsections.

A. Low-Complexity Cache-Locking Algorithm

Two algorithms are proposed in [4] to select the

contents of the locked instruction cache. Both algorithms

are greedy (they do not reconsider the assignment of a

cache block once it has been decided) and have a pseudo

polynomial complexity. They use the knowledge of the

memory accesses made by the tasks along their worst-

case execution paths. The two algorithms are based on

different metrics to select the cache contents in order to

optimize the task set schedule ability. The first one,

Lock-MU (minimizing utilization) aims at minimizing

the worst-case CPU utilization, while the second one

Lock-MI (minimizing interferences) aims at minimizing

the interferences between tasks. It is important to note

that the metrics used for the selection of the locked

cache do not prescribe the use of any particular schedule

ability analysis method, although CUA (Cache-aware

Utilization-based Analysis) and CRTA (Cache-aware

Response Time Analysis) are used to evaluate the

performance of the algorithms, any scheduling policy

taking into account the cache-related preemption delay

can be used for schedule ability analysis. These

algorithms are simple to implement and show

predictability and performance improvement when

evaluated on a small real task set.

B. Region Merging and Inlining (RMI) Algorithm

This algorithm is used for finding a partition of the

machine code of a given task into regions, and to

determine a locked state of the instruction cache for each

such region [8]. It is performed in a non-blind manner by

using memory access patterns obtained by profiling the

task. In this algorithm the worst-case performance of the

tasks is compared in two situations – the cache is

dynamically locked and the cache is dynamic with a

LRU policy. The goal of this algorithm is to improve the

worst-case performance as compared with a system with

no cache.

C. Algorithm for Selective Cache Loading

Compile-time cache analysis is combined with data

cache-locking in this algorithm to estimate the worst-

case memory performance (WCMP) in a safe, tight and

fast way [10]. In order to get predictable cache behavior,

the cache for those parts of the code where the static

analysis fails is locked first. To minimize the

performance degradation, this method loads the cache, if

necessary, with data likely to be accessed. According to

their experimental results this scheme is very predictable

without compromising the performance of the

transformed program. If compared to an algorithm that

assumes compulsory misses when the state of the cache

is unknown, this approach eliminates all overestimation

for the set of benchmarks, giving an exact WCMP of the

transformed program without any significant decrease in

performance.

D. Cache-Defect-Aware Code Placement Algorithm

In this algorithm, a defect-aware code placement

technique is introduced which reduces the performance

degradation of a processor with a partially good cache

memory [12]. This approach is to modify the placement

of basic blocks or functions in the address space so that

the number of cache misses is minimized for a given

defective cache. This is the first known compiler

technique which reduces the performance degradation of

a partially good cache memory. Three benchmark

programs, namely Compress version 4.0, JPEG encoder

version 6b, and MPEG2 encoder version 1.2 are used.

The Best Case, Worst Case and Average Case results are

compared for the benchmark programs. Experiments

demonstrate that the technique can compensate the

performance degradation from 5% to 25% of the cache

lines are faulty.

IV. CACHE-LOCKING ALGORITHM USED

Our proposed static instruction cache-locking

algorithm is based on the static tree-graph generated by

Heptane tool [13]. The main objective of this simple-

scheme is to lock the blocks that cause more misses.

Heptane generates a tree-graph for C source file. The

syntax tree is a tree whose nodes represent the structure

of programs in the high-level language and whose leaves

represent basic blocks. Leaves in the syntax tree

coincide with the nodes in the control-flow graph. From

tree graph, in static analysis we collect the following

information,

� Name of the node

� Number of instructions

� Total number of cycles

� Cache miss (also, cache hit) for each node

From off-line analysis we determine which code

section of the source file causes more misses. We divide

the analysis in several parts including root node of main

C source file, calling function for C source file, all leaf

node analysis for root node and top loop node level

analysis. When we perform cache analysis using

Heptane WCET analyzer, Heptane generates tree graph

of the C program used. We collect instruction block (IB)

address cache miss information based on tree graph and

we generate instruction cache-locking XML file. In

order to implement the static instruction cache-locking

scheme, a small routine is required to be executed at the

system start-up to load the content of the cache with the

selected IB-address values and lock the cache so that its

contents remain available during the whole system

execution.

First, our algorithm collects all the blocks that cause

cache-misses by doing off-line analysis. Then the list of

the blocks is sorted in a way so that the block that causes

the most misses becomes the number one candidate to be

locked, and so on. Major steps involved in our proposed

algorithm are shown below,

Description: Determine the blocks to be locked

Input: IB-address-miss info based on the tree-graph

Output: Instruction cache-locking XML file

START:

� Read the Input File

� Create IB-Address Miss Block List

� Sort IB-Address Miss Block List

� List the Candidate Blocks

� Create Instruction Cache-Locking XML File

END

Determining the right amount of correct blocks to lock

is the key to gain both predictability and performance

improvement using this algorithm. This algorithm may

also be used for pre-fetching and pre-loading.

V. EXPERIMENTAL SETUP

In this work, we develop the simulation environment

by configuring Heptane tool along with all required

software components in Linux Red Hat 9. We use a

simplified Pentium I processor as the target architecture.

We obtain CPU utilization by varying the cache

parameters for FFT, MI, and DFT applications.

A. Heptane

Heptane (Hades Embedded Processor Timing

ANalyzEr) is a WCET analysis tool for embedded

system. Before running Heptane, it must be configured.

Once the configuration file is created, Heptane can be

run by typing “heptane-run.sh”' in a command shell

provided that the PATH variable contains the directory

where Heptane is installed. The results will be placed in

the directory as specified in the configuration file and

can be viewed through a Web browser by opening the

file “HTML/index.html” [13].

B. Target Architecture

The target architecture considered in this experiment

is the simplified Pentium I (like the P54C) processor

from Intel Corporation. The architecture model consists

in a BTB (branch target buffer) and a CACHE system

and a MEMORY description. No data cache is modeled,

only one-level instruction cache is considered, one of the

two integer pipelines is simulated, and branch prediction

module is kept disabled. In this study, we consider an

instruction cache with cache size ranges from 4 to 64

KB, line size from 32 to 512 Bytes, and the associativity

level from 1 (direct-mapped cache) to 16 (set associative

cache). An instruction is assumed to execute in 1 clock

cycle in the case of a cache hit, and 10 clock cycles

otherwise.

C. WCET and Static Cache Analysis

In Heptane, F. Mueller’s static cache simulation

technique is used to estimate the instruction cache

behavior. WCET is obtained using the Heptane tree-

based WCET analysis tool. Heptane computes WCETs

through a bottom-up traversal of the syntax tree of the

subject programs. Heptane includes hardware modeling

capabilities so as to estimate the WCETs on

architectures with instruction caches, pipelines, and

simple branch predictors.

D. Static Cache-Locking

According to our algorithm, the block that causes

more misses have higher chances to be locked. This

algorithm aims at optimizing the task set schedule ability

by minimizing the CPU utilization. On the considered

architecture, when static cache-locking is used, the

cache-related preemption delay is constant and equal to

the delay required to refill the processor pre-fetch buffer

(10 clock cycles in this case).

TABLE II

CACHE-LOCKING AND CPU UTILIZATION FOR FFT

LINE SIZE 128 BYTES, ASSOCIATIVITY 4-WAY

Cache Size 4K Cache Size 8K

%

Lock
Num of

Block

Locked

CPU

Util.

Num of

Block

Locked

CPU

Util.

5% 1 0.629 3 0.621

10% 3 0.606 6 0.618

15% 4 0.599 9 0.616

20% 6 0.605 12 0.617

25% 8 0.622 16 0.619

TABLE I

APPLICATION STATISTICS

Computing Time

(Kilo Cycles)

WCET

(Kilo Cycles)

App.

No

Locking

I-Cache

Locking

No

Locking

I-Cache

Locking

FFT 121235 117813 58378 63123

MI 186519 145668 65673 71880

DFT 258456 186519 62673 65674

E. CPU Utilization

In Heptane, the CPU utilization (U) is measured using

the WCET, periods of tasks, and the cache-related

preemption delay as shown in Equation 1.

 (1)

Here, γi is the upper bound on the cache-related
preemption delay, n is the number of tasks, Ci and Pi are

the WCET and period of task number i respectively.

F. Applications

In this work, we use three applications to run our

simulation program, namely Fast Fourier Transform

(FFT), Matrix Inversion (MI), and Discrete Fourier

Transform (DFT). Table I shows computing time and

WCET in terms of processor cycles for both cache

analysis (non-locking) and instruction cache-locking.

Here, locking decreases computing time, but increases

WCET. So, the performance improvement depends on

the right selection of the cache blocks to be locked.

VI. RESULTS AND DISCUSSION

In this work, we implement a static instruction cache-

locking algorithm and obtain CPU utilizations for FFT,

MI, and DFT applications. CPU utilization obtained for

4 KB (and 8 KB) cache by varying cache-locking

capacities (5% to 25% of the cache size) using FFT is

shown in Table II. Results indicate that CPU utilization

is the minimum (i.e., performance is the maximum) at

15% locking.

 We also obtain CPU utilization for MI and DFT by

varying cache-locking capacity. As shown in Fig. 1, at

15% cache-locking, all applications show minimum

CPU utilization (i.e., maximum performance).

Fig. 1. CPU utilization for different instruction cache-

locking capacities. CPU utilization is the minimum at

15% locking for all three applications.

Following subsections discuss the impacts of

associativity level, line size, and cache size on

performance for 15% cache-locking using FFT

application.

CPU Utilization Vs Associativity Level

 Using Heptane tool, we obtain the CPU utilization for

both static cache analysis and cache-locking as shown in

Fig. 2. Results show that for cache size 4 KB and line

size 128 Bytes, the performance of static cache-locking

scales better than the one of static cache analysis with an

increasing level of associativity. Static cache-locking

takes benefit of the increasing associativity level to

eliminate both intra-task and inter-task interference.

Fig. 2. CPU utilization for various levels of associativity.

Cache-locking performs better than cache analysis for FFT.

CPU Utilization Vs I-Cache Locking
Cache size 4 KB, Line size 128 B, Associtivity 4-way

0.58

0.61

0.64

0.67

0.7

0.73

0.76

5% 10% 15% 20% 25% 50%

I-Cache Locking

C
P
U

 U
ti
li
z
a
ti
o
n
 .

DFT

MI

FFT

CPU Utilization Vs Associativity for FFT
Cache size 4 KByte, Line size 128 Byte

0.56

0.59

0.62

0.65

0.68

0.71

0.74

1 2 4 8 16

Associativity Level

C
P

U
 U

ti
li
z
a
ti
o
n
 .

Analysis

Locking

CPU Utilization Vs Cache Line Size

 CPU utilization obtained for both static cache analysis

and static cache-locking for FFT application is shown in

Fig. 3. For the cache size fixed at 4 KB and associativity

level fixed at 4-way, the CPU utilization decreases (i.e.,

performance increases) with the increase of line size

between 32 and 128 Bytes. For line size higher than 128

Bytes, CPU utilization increases (i.e., performance

decreases).

Fig. 3. CPU utilization for various line sizes. Static cache-

locking performs better than static cache analysis for FFT.

CPU Utilization Vs Cache Size

 Using Heptane, we investigate the impact of cache

size on CPU utilization for FFT application. We keep

line size fixed at 128 Bytes and associativity level at 4-

way. Experimental results are shown in Fig. 4. For the

given line size and associativity level, the CPU

utilization of both static cache analysis and static cache-

locking decreases (i.e., performance increases) with the

increase of the cache size.

Fig. 4. CPU utilization for various cache sizes. The

performance increase of static cache-locking is higher

than the one of static cache analysis.

VII. CONCLUSION

Cache memory in real-time embedded systems is a

great challenge to improve both predictability and

performance at the same time. Studies show that for

embedded systems where workload is almost known,

static cache-locking helps to determine the worst case

execution time (WCET) and cache-related preemption

delay. In this work, we implement a static instruction

cache-locking algorithm that makes the real-time

embedded system more predictable. We obtain CPU

utilization for both static cache analysis (no cache-

locking) and instruction-cache locking using Heptane

tool. Experimental results show that our cache-locking

algorithm improves both predictability and performance

when the right amounts of cache blocks are locked and

appropriate cache parameters are used.

We plan to study the impact of cache-locking

techniques on multi-level caches in our next endeavor.

REFERENCES

[1] A. Asaduzzaman, I. Mahgoub, “Cache Modeling and

Optimization for Portable Devices Running MPEG-4

Video Decoder,” MTAP-06, pp. 239-256, 2006.

[2] Z. Xu, S. Sohoni, R. Min, and Y. Hu, "An Analysis of

Cache Performance of Multimedia Applications,"

ACM SIGMETRICS Proceedings, USA, 2001.
[3] I. Puaut, “Cache analysis vs static cache locking for

schedulability analysis in multitasking real-time systems,”
23rd RT System Symposium, INSA/IRISA, France, 2004.

[4] I. Puaut and D. Decotigny, "Low-Complexity Algorithm
for Static-Cache Locking in Multitasking Hard Real time
Systems," Real-Time Systems Symposium, 23rd IEEE
Volume, pp. 114-123, 2002.

[5] J. Robertson and K. Gala, "Instruction and Data Cache

Locking on the e300 Processor Core," Freescale

Semiconductor, Inc., 2006.

freescale.com/files/netcomm/doc/app_note/AN2129.pdf.
[6] F. Sebek and J. Gustafsson, “Determining the Worst-Case

Instruction Cache Miss-Ratio”, Sweden, 2002.
[7] C. Hong, K. Park, and Y. Song, “Hardware Support: A

Cache Lock Mechanism without Retry,” IEEE
SNPD/SAWN’05, 2005.

[8] A. Arnaud, et al, “Dynamic Instruction Cache Locking in
Hard Real-Time Systems”, INSA/IRISA, France, 2005.

[9] X. Vera, B. Lisper, J. Xue, "Data caches in multitasking

hard real-time systems," Real-Time Systems Symposium,

24th IEEE Volume, pp. 154-165, 2003.

[10] X. Vera, B. Lisper, J. Xue, "Data Cache locking for

Higher Program Predictability,” SIGMETRICS’03, CA,

USA, June 2003.
[11] M. Campoy, A.P. Ivars, J.V. Busquets-Mataix, "Static

Use of Locking Caches in Multitask Preemptive Real-
Time Systems", IEEE Real-Time Embedded System
Workshop, London, UK, 2001.

[12] T. Ishihara, and F. Fallah, "A cache-defect-aware code

placement algorithm for improving the performance of

processors," IEEE/ACM International Conference on

Computer-Aided Design ICCAD'05, pp. 995-1001, 2005.

[13] Heptane (Hades Embedded Processor Timing ANalyzEr),

A Static WCET Analyzer.
www.irisa.fr/aces/work/heptane-demo/heptane.html

CPU Utilization Vs Line Size for FFT
Cache size 4 KByte, Associativity 4-way

0.58

0.61

0.64

0.67

0.7

0.73

0.76

32 64 128 256 512

Line Size (Byte)

C
P

U
 U

ti
li
z
a
ti
o
n
 .

Analysis

Locking

CPU Utilization Vs Cache Size for FFT
Line size 128 Byte, Associativity 4-way

0.56

0.59

0.62

0.65

0.68

0.71

0.74

4 8 16 32 64

Cache Size (KByte)

C
P

U
 U

ti
li
z
a
ti
o
n
 .

Analysis

Locking

