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Abstract  —  In real-time systems, cache memory poses 
challenge to improve both predictability and performance 
because of its adaptive and dynamic behavior. Recent 
studies indicate that for application-specific embedded 
systems, static cache-locking helps determining the worst 
case execution time (WCET) and cache-related preemption 
delay. In this work, we propose a static instruction cache-
locking algorithm that makes the real-time embedded 
system more predictable by locking the blocks that might 
cause more cache misses. We obtain CPU utilization for 
both static cache analysis (no cache-locking) and static 
cache-locking using Heptane. Experimental results show 
that our cache-locking algorithm may improve both 
predictability and performance of real-time systems. 

Index Terms  —  Predictability, performance, cache-
locking, real-time embedded system, Heptane. 

I. INTRODUCTION 

The demands for running real-time multimedia 

applications on embedded systems are growing. 

Processing video applications on embedded systems is a 

significant challenge for memory subsystem, which are 

the primary performance bottleneck. Multimedia 

applications seriously suffer due to the memory 

inefficiency from dropped frames, blocking, or other 

annoying artifacts [1], [2]. Memory hierarchy is 

changing in order to support multimedia applications in 

embedded systems. Cache memory is introduced to 

improve performance by reducing the speed-gap 

between the processor and the main memory. However, 

cache is an important source of unpredictability due to 

its adaptive and dynamic characteristics; as a result 

programs may behave in an unexpected way. A lot of 

work has been done to predict the worst-case behavior of 

embedded applications in order to determine the safe 

and precise bounds on tasks worst-case execution time 

(WCET) and cache-related preemption delay [3], [4]. 

Cache-locking mechanism adapts caches to the needs of 

real-time systems. Recent studies show that the time 

required to perform a memory access is predictable with 

static/dynamic data/instruction cache-locking [5], [6], 

[7]. It is also observed that cache-locking improves 

predictability by removing both intra-task and inter-task 

interferences [8], [9], [10], [11]. Locking the cache is a 

solution that may trade performance for predictability - 

at a cost of lower performance, the time of accessing the 

memory becomes predictable. Special attention is 

needed in real-time systems with caches so that the 

performance and predictability remain reasonable. 

 In this work, we present a static instruction cache-

locking algorithm that may improve the predictability 

and performance of real-time embedded systems. In 

Section II, a few relevant articles from our review are 

summarized. Section III discusses some cache-locking 

algorithms. In Section IV, proposed cache-locking 

algorithm is explained. Experimental setup is described 

in Section V. In Section VI, the experimental results are 

discussed. Finally, we conclude our work in Section VII. 

II. RELATED WORK 

A lot of progress has been made in the past few years 

to address the predictability and performance issues in 

real-time embedded systems. A few of them, related to 

our work, are discussed in this section. 

In [3], a new approach is presented that copes with 

caches in real-time systems that statically locks the 

contents so as to make memory access times and cache-

related preemption delays more predictable. In [4], two 

low-complexity algorithms are proposed for selecting 

the contents of statically-locked caches. The 

performance is measured and compared with that of a 

state of the art static cache analysis method. 

Experimental results show that both techniques improve 

predictability but may reduced performance. 

When the cache miss-ratio is higher, the program will 

lead to longer execution time and higher power 

consumption. By knowing the cache miss-ratio, 

performance can be estimated in advance and can be 

used as input for compilers and system developers. 

Article [6] presents a static method to limit the worst-

case instruction cache miss-ratio of a program. The static 

method needs no manual annotations in the code and is 

safe in the meaning that no under-estimation is possible. 

A dynamic algorithm is proposed in [8] that partitions 

the task into a set of regions. Each region owns statically 

a locked cache content that is determined offline. A set 

of tasks is used to experimentally analyze the effects of 

the algorithm on the worst-case cache miss rate 

(WCCMR). Experiments show significant improvement, 

when compared with a system without any cache. 

Work [9] and [10] discuss data cache-locking related 

issues. In [9], a new technique is proposed to obtain 

predictability in preemptive multitasking systems in the 



presence of data caches. The complexity introduced by 

the data caches makes it difficult to bound execution 

times tightly. Cache partitioning, dynamic cache-

locking, and static cache analysis are done to provide 

worst-case performance estimates in a safe and tight 

way. In this work, two strategies are employed in order 

to minimize the performance degradation due to cache 

partitioning and locking. First, the cache is loaded with 

data likely to be accessed so that their cache utilization 

is maximized. Second, compiler optimizations such as 

tiling and padding are applied in order to reduce cache 

replacement misses. Experimental results indicate that 

this scheme is very predictable, without compromising 

the performance of the transformed programs. 

In [11], a genetic algorithm is developed and applied 

in real-time systems to improve predictability. The set of 

instructions to be locked in cache is selected using the 

genetic algorithm. This algorithm estimates a tight upper 

bound of the response time of tasks. Experimental 

results show that this scheme is highly predictable, and 

the performance loss is negligible for most tasks. 

In our previous work [1], we focus on cache modeling 

and optimization for portable communication devices 

running MPEG-4 video decoder. Simulation results 

show that MPEG-4 decoding performance in embedded 

systems can be enhanced by optimizing cache 

parameters. In this work, we investigate the impact of 

our proposed static instruction cache-locking algorithm 

on the predictability and performance of real-time 

embedded systems. 

III. CACHE-LOCKING ALGORITHMS 

A lot of cache-locking algorithms have been proposed 

to improve predictability in real-time and hard real-time 

embedded systems. Some of those algorithms are 

discussed in the following subsections. 

A. Low-Complexity Cache-Locking Algorithm 

Two algorithms are proposed in [4] to select the 

contents of the locked instruction cache. Both algorithms 

are greedy (they do not reconsider the assignment of a 

cache block once it has been decided) and have a pseudo 

polynomial complexity. They use the knowledge of the 

memory accesses made by the tasks along their worst-

case execution paths. The two algorithms are based on 

different metrics to select the cache contents in order to 

optimize the task set schedule ability. The first one, 

Lock-MU (minimizing utilization) aims at minimizing 

the worst-case CPU utilization, while the second one 

Lock-MI (minimizing interferences) aims at minimizing 

the interferences between tasks. It is important to note 

that the metrics used for the selection of the locked 

cache do not prescribe the use of any particular schedule 

ability analysis method, although CUA (Cache-aware 

Utilization-based Analysis) and CRTA (Cache-aware 

Response Time Analysis) are used to evaluate the 

performance of the algorithms, any scheduling policy 

taking into account the cache-related preemption delay 

can be used for schedule ability analysis. These 

algorithms are simple to implement and show 

predictability and performance improvement when 

evaluated on a small real task set. 

B. Region Merging and Inlining (RMI) Algorithm 

This algorithm is used for finding a partition of the 

machine code of a given task into regions, and to 

determine a locked state of the instruction cache for each 

such region [8]. It is performed in a non-blind manner by 

using memory access patterns obtained by profiling the 

task. In this algorithm the worst-case performance of the 

tasks is compared in two situations – the cache is 

dynamically locked and the cache is dynamic with a 

LRU policy. The goal of this algorithm is to improve the 

worst-case performance as compared with a system with 

no cache. 

C. Algorithm for Selective Cache Loading 

Compile-time cache analysis is combined with data 

cache-locking in this algorithm to estimate the worst-

case memory performance (WCMP) in a safe, tight and 

fast way [10]. In order to get predictable cache behavior, 

the cache for those parts of the code where the static 

analysis fails is locked first. To minimize the 

performance degradation, this method loads the cache, if 

necessary, with data likely to be accessed. According to 

their experimental results this scheme is very predictable 

without compromising the performance of the 

transformed program. If compared to an algorithm that 

assumes compulsory misses when the state of the cache 

is unknown, this approach eliminates all overestimation 

for the set of benchmarks, giving an exact WCMP of the 

transformed program without any significant decrease in 

performance. 

D. Cache-Defect-Aware Code Placement Algorithm 

In this algorithm, a defect-aware code placement 

technique is introduced which reduces the performance 

degradation of a processor with a partially good cache 

memory [12]. This approach is to modify the placement 

of basic blocks or functions in the address space so that 

the number of cache misses is minimized for a given 

defective cache. This is the first known compiler 

technique which reduces the performance degradation of 

a partially good cache memory. Three benchmark 

programs, namely Compress version 4.0, JPEG encoder 

version 6b, and MPEG2 encoder version 1.2 are used. 

The Best Case, Worst Case and Average Case results are 

compared for the benchmark programs. Experiments 

demonstrate that the technique can compensate the 

performance degradation from 5% to 25% of the cache 

lines are faulty. 



IV. CACHE-LOCKING ALGORITHM USED 

Our proposed static instruction cache-locking 

algorithm is based on the static tree-graph generated by 

Heptane tool [13]. The main objective of this simple-

scheme is to lock the blocks that cause more misses. 

Heptane generates a tree-graph for C source file. The 

syntax tree is a tree whose nodes represent the structure 

of programs in the high-level language and whose leaves 

represent basic blocks. Leaves in the syntax tree 

coincide with the nodes in the control-flow graph. From 

tree graph, in static analysis we collect the following 

information, 

 

� Name of the node 

� Number of instructions 

� Total number of cycles 

� Cache miss (also, cache hit) for each node 

 

From off-line analysis we determine which code 

section of the source file causes more misses. We divide 

the analysis in several parts including root node of main 

C source file, calling function for C source file, all leaf 

node analysis for root node and top loop node level 

analysis. When we perform cache analysis using 

Heptane WCET analyzer, Heptane generates tree graph 

of the C program used. We collect instruction block (IB) 

address cache miss information based on tree graph and 

we generate instruction cache-locking XML file. In 

order to implement the static instruction cache-locking 

scheme, a small routine is required to be executed at the 

system start-up to load the content of the cache with the 

selected IB-address values and lock the cache so that its 

contents remain available during the whole system 

execution.  

First, our algorithm collects all the blocks that cause 

cache-misses by doing off-line analysis. Then the list of 

the blocks is sorted in a way so that the block that causes 

the most misses becomes the number one candidate to be 

locked, and so on. Major steps involved in our proposed 

algorithm are shown below, 

 

Description: Determine the blocks to be locked  

Input: IB-address-miss info based on the tree-graph 

Output: Instruction cache-locking XML file 

START: 

� Read the Input File 

� Create IB-Address Miss Block List 

� Sort IB-Address Miss Block List 

� List the Candidate Blocks 

� Create Instruction Cache-Locking XML File 

END 

 

Determining the right amount of correct blocks to lock 

is the key to gain both predictability and performance 

improvement using this algorithm. This algorithm may 

also be used for pre-fetching and pre-loading. 

V. EXPERIMENTAL SETUP 

In this work, we develop the simulation environment 

by configuring Heptane tool along with all required 

software components in Linux Red Hat 9. We use a 

simplified Pentium I processor as the target architecture. 

We obtain CPU utilization by varying the cache 

parameters for FFT, MI, and DFT applications. 

A. Heptane 

Heptane (Hades Embedded Processor Timing 

ANalyzEr) is a WCET analysis tool for embedded 

system. Before running Heptane, it must be configured. 

Once the configuration file is created, Heptane can be 

run by typing “heptane-run.sh”' in a command shell 

provided that the PATH variable contains the directory 

where Heptane is installed. The results will be placed in 

the directory as specified in the configuration file and 

can be viewed through a Web browser by opening the 

file “HTML/index.html” [13]. 

B. Target Architecture 

The target architecture considered in this experiment 

is the simplified Pentium I (like the P54C) processor 

from Intel Corporation. The architecture model consists 

in a BTB (branch target buffer) and a CACHE system 

and a MEMORY description. No data cache is modeled, 

only one-level instruction cache is considered, one of the 

two integer pipelines is simulated, and branch prediction 

module is kept disabled. In this study, we consider an 

instruction cache with cache size ranges from 4 to 64 

KB, line size from 32 to 512 Bytes, and the associativity 

level from 1 (direct-mapped cache) to 16 (set associative 

cache). An instruction is assumed to execute in 1 clock 

cycle in the case of a cache hit, and 10 clock cycles 

otherwise. 

C. WCET and Static Cache Analysis 

In Heptane, F. Mueller’s static cache simulation 

technique is used to estimate the instruction cache 

behavior. WCET is obtained using the Heptane tree-

based WCET analysis tool. Heptane computes WCETs 

through a bottom-up traversal of the syntax tree of the 

subject programs. Heptane includes hardware modeling 

capabilities so as to estimate the WCETs on 

architectures with instruction caches, pipelines, and 

simple branch predictors. 

D. Static Cache-Locking 

According to our algorithm, the block that causes 

more misses have higher chances to be locked. This 

algorithm aims at optimizing the task set schedule ability 

by minimizing the CPU utilization. On the considered 

architecture, when static cache-locking is used, the 

cache-related preemption delay is constant and equal to 

the delay required to refill the processor pre-fetch buffer 

(10 clock cycles in this case). 



TABLE II 

CACHE-LOCKING AND CPU UTILIZATION FOR FFT 

LINE SIZE 128 BYTES, ASSOCIATIVITY 4-WAY 

Cache Size 4K Cache Size 8K  

% 

Lock 
Num of 

Block 

Locked 

CPU 

Util. 

Num of 

Block 

Locked 

CPU 

Util. 

5% 1 0.629 3 0.621 

10% 3 0.606 6 0.618 

15% 4 0.599 9 0.616 

20% 6 0.605 12 0.617 

25% 8 0.622 16 0.619 

 

TABLE I 

APPLICATION STATISTICS 

Computing Time 

(Kilo Cycles) 

WCET 

(Kilo Cycles) 

 

App. 

No 

Locking 

I-Cache 

Locking 

No 

Locking 

I-Cache 

Locking 

FFT 121235 117813 58378 63123 

MI 186519 145668 65673 71880 

DFT 258456 186519 62673 65674 

 

 

E. CPU Utilization 

In Heptane, the CPU utilization (U) is measured using 

the WCET, periods of tasks, and the cache-related 

preemption delay as shown in Equation 1. 

 

 

      (1) 

 

 

Here, γi is the upper bound on the cache-related 
preemption delay, n is the number of tasks, Ci and Pi are 

the WCET and period of task number i respectively. 

F. Applications 

In this work, we use three applications to run our 

simulation program, namely Fast Fourier Transform 

(FFT), Matrix Inversion (MI), and Discrete Fourier 

Transform (DFT). Table I shows computing time and 

WCET in terms of processor cycles for both cache 

analysis (non-locking) and instruction cache-locking. 

Here, locking decreases computing time, but increases 

WCET. So, the performance improvement depends on 

the right selection of the cache blocks to be locked. 

 

 

 

 

 

 

 

 

 

 

VI. RESULTS AND DISCUSSION 

In this work, we implement a static instruction cache-

locking algorithm and obtain CPU utilizations for FFT, 

MI, and DFT applications. CPU utilization obtained for 

4 KB (and 8 KB) cache by varying cache-locking 

capacities (5% to 25% of the cache size) using FFT is 

shown in Table II. Results indicate that CPU utilization 

is the minimum (i.e., performance is the maximum) at 

15% locking. 

 

 

 

 

 

 

 

 

 

 

 

 

 We also obtain CPU utilization for MI and DFT by 

varying cache-locking capacity. As shown in Fig. 1, at 

15% cache-locking, all applications show minimum 

CPU utilization (i.e., maximum performance). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. CPU utilization for different instruction cache-

locking capacities. CPU utilization is the minimum at 

15% locking for all three applications. 

 

Following subsections discuss the impacts of 

associativity level, line size, and cache size on 

performance for 15% cache-locking using FFT 

application. 

CPU Utilization Vs Associativity Level 

 Using Heptane tool, we obtain the CPU utilization for 

both static cache analysis and cache-locking as shown in 

Fig. 2. Results show that for cache size 4 KB and line 

size 128 Bytes, the performance of static cache-locking 

scales better than the one of static cache analysis with an 

increasing level of associativity. Static cache-locking 

takes benefit of the increasing associativity level to 

eliminate both intra-task and inter-task interference. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. CPU utilization for various levels of associativity. 

Cache-locking performs better than cache analysis for FFT. 
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CPU Utilization Vs Cache Line Size 

 CPU utilization obtained for both static cache analysis 

and static cache-locking for FFT application is shown in 

Fig. 3. For the cache size fixed at 4 KB and associativity 

level fixed at 4-way, the CPU utilization decreases (i.e., 

performance increases) with the increase of line size 

between 32 and 128 Bytes. For line size higher than 128 

Bytes, CPU utilization increases (i.e., performance 

decreases). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. CPU utilization for various line sizes. Static cache-

locking performs better than static cache analysis for FFT. 

CPU Utilization Vs Cache Size 

 Using Heptane, we investigate the impact of cache 

size on CPU utilization for FFT application. We keep 

line size fixed at 128 Bytes and associativity level at 4-

way. Experimental results are shown in Fig. 4. For the 

given line size and associativity level, the CPU 

utilization of both static cache analysis and static cache-

locking decreases (i.e., performance increases) with the 

increase of the cache size. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. CPU utilization for various cache sizes. The 

performance increase of static cache-locking is higher 

than the one of static cache analysis. 

VII. CONCLUSION 

Cache memory in real-time embedded systems is a 

great challenge to improve both predictability and 

performance at the same time. Studies show that for 

embedded systems where workload is almost known, 

static cache-locking helps to determine the worst case 

execution time (WCET) and cache-related preemption 

delay. In this work, we implement a static instruction 

cache-locking algorithm that makes the real-time 

embedded system more predictable. We obtain CPU 

utilization for both static cache analysis (no cache-

locking) and instruction-cache locking using Heptane 

tool. Experimental results show that our cache-locking 

algorithm improves both predictability and performance 

when the right amounts of cache blocks are locked and 

appropriate cache parameters are used. 

We plan to study the impact of cache-locking 

techniques on multi-level caches in our next endeavor. 
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