
A Tile Logic Based Model for a Collaborative Session
Application

C. Bouanaka , F. Belala, and A. Choutri

LIRE Laboratory, Department of Computer Science, Mentouri University. Constantine, Algeria.

Tel./Fax: 213 31 81 88 88

{Bouanaka2006, ChoutriAicha}@yahoo.fr; Belalafaiza@hotmail.com

Abstract — In a previous work, we have defined an

architectural model for software architectures
description based on Tile logic. We have also defined a
dynamic connection between components, which is
invoked only if an interaction is needed. Our aim in the
present work is to show the expressive power of the
proposed model to specify realistic applications, such as
collaborative session application.

Index Terms — Tile Logic, Architecture Description
Languages, Synchronization, Collaborative
Applications.

I. INTRODUCTION

Nowadays, software engineering community is
developing techniques centered on systems
architectures description in order to improve the
understanding and the conception of complex
systems, to encourage their evolution and their reuse,
and to proceed to various analysis. These techniques
are materialized by specific languages, ADLs
(Architecture Description Language) [1], which allow
a software designer to focus on high-level aspects of
an application by disregarding details of components
that contribute in the architecture. It is precisely this
abstraction that makes ADLs suitable for verification
using model checking techniques.

A great number of ADLs have been proposed in the
literature. However, most of them: Wright [2], Rapide
[3], Darwin [4], etc., focus on the software
architecture description where component semantics
is in part expressed by its interface, and system
behaviour is not completely defined. Therefore,
software architecture concepts need to be associated
to formal theories, clarifying these concepts or
providing rules to determine whether a given
architecture is well-formed.

In our model [5], system software architecture,
designed to facilitate designers job, is systematically
transformed to a formal theory specification, which

can be prototyped or model checked. This facilitates
the integration of formal specifications in the
traditional life-cycle of an application development.

We present an interesting combination of Tile logic
[6], an extension of rewriting logic [7], and software
architectures to define Tile logic based model of an
ADL inherent concepts [5]. It considers the system
software architecture as a set of black boxes
interconnected via an interconnection topology. It
also allows defining alternative transparent boxes
where internal behaviours can be formally specified.

The remainder of the paper is organized as follows.
Section 2 begins by motivating Tile logic choice as a
semantic framework for our model. Then, basic
semantic aspects of Tile Logic are presented. Finally,
the collaborative session case study formalisation and
the main ideas introduced on software architectures
description are specified. Discussion and conclusions
round out the paper.

II. A FORMAL MODEL FOR COLLABORATIVE

SESSIONS

Distributed collaborative applications are
characterized by supporting groups’ collaborative
activities. This kind of applications is branded by
physically distributed user groups, who cooperate by
interactions and are gathered in work sessions [8].
The effective collaboration result is a production of
simultaneous and concurrent actions, carried out
during the definition and the execution of the session.
Thus, interaction plays the prominent role in
collaborative sessions and requires being coordinated
(synchronized) to avoid inconsistencies.
Consequently, adopting an approach that follows a
component-based software development and that
exploit a clean conceptual separation between
computation and coordination is recommended. Tile
model is the adequate framework since it is based on
a configuration notion, that includes input and output
interfaces where actions can be observed and that can
be used to compose configurations and also to
coordinate their local behaviours [8].

A. Tile logic

Tile logic [6] is an extension of rewriting logic (in
the unconditional case) taking into account rewriting

with side effects and rewriting synchronization. The
main idea is to impose dynamic restraints on terms to
which a rule may be applied by decorating rewrite
rules with observations ensuring synchronizations and
describing interactions. The resulting rewrite rule is
called a tile.

A tile α : s
a
b⎯⎯→ t, and represented graphically in

Fig.2, is a rewrite rule stating that the initial
configuration s can evolve to the final configuration t
via α, producing the effect b; but the step is allowed
only if the arguments of s can contribute by producing
a, which acts as the trigger of α. Triggers and effects
are called observations.

Fig. 1. Graphical Representation of a Tile

Definition [6]: A tile system is a 4-tuple R = (H, V, N,
R) where H, V are monoïdal categories with the same
set of objects OH = OV, N being a set of rule names
and R: N→ H x V x V x H a function where for each
α in N, if R(α) = (s,a,b,t), then s:x→y, a: x→ z, b:y→
w and t: z→ w, for suitable objects x, y, z and w, x
and z are the input interfaces. While, y and w are the
output interfaces.

Since Tile logic exploits three dimensional views,

tiles can be composed horizontally, in parallel, or
vertically to generate larger steps. Horizontal
composition α;β coordinates the evolution of the
initial configuration of α with that of β yielding the
synchronisation of the two rewrites [9]. Horizontal
composition is possible only if the initial
configuration of α and β interact cooperatively: the
effect of α must provide the trigger for β. The parallel
composition builds concurrent steps. Vertical
composition is the sequential composition of
computations.

B. COLLABORATIVE SESSION FORMALISATION

In the proposed model, our collaborative session
example is composed of one president and several
instances of participant component. President
component interacts with each participant component
via a pair of (input/output) ports. A connection
between (input/output) port of the president and
(output/input) port of a participant is established
dynamically if needed in the sense that individual
components definition of a the collaborative session is
completely independent from their interconnection
topology. Thus, components are viewed as floating

elements since static interconnection topology
definition, like in most existing ADLs, is completely
absent.

Fig. 2. Software Architecture of a collaborative Session

C. Components internal structure

Each component is defined as a set of external ports,
to ensure interactions with the environment, and an
internal behaviour operating on its basic structure.
The intended behaviour of the collaborative session is
as follows: To open a session, the president begins by
announcing it. He prepares an invite message and
sends it to each participant. The session is opened by
the president when at least a positive response (accept
to participate) is received. Participants are then
informed by an open message. Managing session
consists of realizing the collaborative task with
contribution of all session members. The president
closes the session, by sending a close message to
participants, when the collaborative task is
terminated.
Such behaviour is specified by a set of possible states
and a set of local possible evolutions on the defined
states.

In Tile logic, component states, called
configurations in tile logic, are arrows of a horizontal
category and are defined as tuples of objects values
that the component manipulates. Actions
(observations) on component objects are arrows of the
vertical category in tile logic. These categories define
basic structure of the component and constitute its
possible states and actions.

In our collaborative session, identified objects for
the president are: Ports (a pair of in/out ports is
associated to each participant communicating with the
president), List-Participant (each entry in the list
corresponds to a participant and indicates its state
connected or disconnected), Buffer (contains received
messages), Msg (all message kinds to send: msg-invite,
msg-open, msg-close, etc.).

These objects are defined by a given signature
which is omitted for a simplicity reason.

Configurations correspond to the identified states of
the president component. Each configuration Cpr is a
4-uplet (P, L, B, M), of objects values where:

Final Output
Interface

Initial Output
Interface

Initial Input
Interface

s

t

x y

w z

a b α

Port 1

President

: Dynamic Connection

Port n

Port 2

Port Participant 1

Port Participant 2

Port Participant n : A pair of (in/out)
t

Final Input
Interface

P: is a product of n participants ports / n is the
number of participants.
L : is a list of n communicating participants
B : Buffer of received messages
M : Msg

Basic configurations corresponding to the president

possible states are represented as follows:
Pr-Ready = (empty-P, init-L, empty-B, empty-M),

Wait-Response = (Outs , init-L , empty-B, msg-invite)
 / The president has sent an msg-invite and is
 waiting for a response.

Open-Session = (Outs, L, empty-B, msg-open)
 / The president has sent an msg-open message to all
 participants (Outs term of the configuration).

Session-Management = (P , L , B , M)
/ The president is realizing the collaborative task with the

n participants.

End-Session = (Outs, L, B, msg-close)
 / An msg-close message is broadcast to all participants.

Inviting is an other configuration which is due to an internal
action (not visible from the outside) and does not involve an
interaction.
We note an n-uplet of all the president outputs as:
Outs =

1

((())
n

i

out port i
=
∏

Since we are more interested here with coordination
aspects, we present only a subset of observations that
intervene in coordinating tasks of the different
components:

Deposit(x:msg, y:port) / deposit a message on all (out)ports
Send(x:port) / sends a content of an out(port).

1
(())

n

i
Send all send port i

=
− = ⊗ / corresponds to broadcast

 action of the deposited message to all participants.

 Receive(i) (x:ports, y:Msg) / indicates a message receipt on

 the ith port.

Consume(i)(x:ports, y:list) / a response withdrawal from

 port i and an update of participant-list.

As we have already done for the president, we

define in a similar manner horizontal and vertical
categories for a participant. This type of components
manipulates a set of objects: Status (Disconnected,
Invited, and Connected), a pair of Ports (in/out), a
Buffer and Message.
Each participant configuration is a 4-uplet: Cpar =
(St, P, B, M).

Basic configurations of the participant component
are: Par-Ready, Invited, Expected, Connected,
Disconnected.

Possible observations may be:
Receive-Invite(x:port), Receive-Open(x: port), Receive-
Close (x:port), Send-Accept (x:port), Send-Reject(x:port),
change-st(initial-st: status, final-st : status).

D. Component internal behavior

Possible local evolutions of a component are
defined by a set of tiles, controlling components
evolution and showing how its state can change when
being in given state. Initial and final configurations of
a tile correspond to source and target states.
The expected behaviour of the president component is
specified as follows:

Prepare: (,)Re id

deposit msg invite outsPr ady Inviting−− ⎯⎯⎯⎯⎯⎯⎯→

Being in a Ready state (the initial state of the

president), the president decides to deposit an inviting
message on all its output ports in order to broadcast it
to all participants. As a result, the president state
topples to inviting.

Announce: ()

id
Send all OutsInviting Wait Response−⎯⎯⎯⎯⎯→ −

Announcement process is terminated by the msg-invite
broadcast to all participants by executing Announce tile.
Announce tile. Then, the president waits, defined by Wait-
Response state, for at list a positive response.

Receive-Response:

((),)
((()),); (,)
receive port i msg Accept

consume in port i l deposit msg open outsWait Response Open session−
−− ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯→ −

As soon as the president receives an msg-Accept on one of
hiss input ports (trigger of the Receive-Response tile), he
deposits an msg-open on his output ports in order to declare
the session opened.

 Inform:

(,)
()

deposit msg Open outs
Send all OutsOpen session Session Management−

−− ⎯⎯⎯⎯⎯⎯⎯→ −

In the same manner as in the announcement process, the
msg-open is broadcasted to all participants and president
becomes in a Session-Management state preparing him self
to manage the collaborative session.

Close: (,)

()
deposit msg close Outs

Send all OutsSession Management End Session−
−− ⎯⎯⎯⎯⎯⎯⎯→ −

The close tile is executed when the collaborative task
is terminated and the president decides to close it.

In a similar manner, the participant expected
behaviour is specified by the following set of tiles.
The initial configuration of the tile corresponds to the
participant state, while the final configuration
corresponds to final one. Each tile is labelled by
trigger and an effect:

Receive-Invite:

Re (())
(Re ,)Re ceive Invite in p

change st ady InvitedPar ady Invited−
−− ⎯⎯⎯⎯⎯⎯⎯⎯→

Prepare-Accept:

(, ())
id

deposit msg Accept out pInvited Invited−⎯⎯⎯⎯⎯⎯⎯⎯→

Prepare-Reject:

(Re , ())
id

deposit msg ject out pInvited Invited−⎯⎯⎯⎯⎯⎯⎯⎯→

Accept:
(, ())

(()) (,)
deposit msg Accept out p

Send out p Change St Invited ExpectedInvited Expected−
⊗ −⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯→

Reject:
(Re , ())

(()) (,)
deposit msg ject out p

Send out p Change St Invited DisconnectedInvited Disconnected−
⊗ −⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯→

Receive-Open:
Re (())

(,)
ceive Open in p

change St Expected connectedExpected Connected−
−⎯⎯⎯⎯⎯⎯⎯⎯⎯→

Receive-Close:
Re (())

(,) ceive Close in p
Change St Connected DisconnectedConnected Disconnected−

−⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯→

Up till now and thanks to tile logic, we have

formally specified the structure and the behaviour of
each component in the software architecture. Similar
results could be gained by using other formalisms.
The most important aspect is the synchronization of
interactions between components.

E. Components Synchronization

In most existing component-based approaches,
synchronisation between system components is
defined by static connectors, imposing constraints of
static interconnection topology definition.. In our
model, we have defined a tile logic based dynamic
connector. It depends on the contribution of two
components to execute a shared action
(synchronization), expressed by a tile.

Fig. 3. Session State/Transition Diagram

Announcement for example (see Fig.3), reflects an
interaction between the president and a participant
component. It corresponds to a synchronization
between the sending of the msg-invite message by the
president and its receipt by the participants. To
realisation such synchronization, the following
scenario is executed: The president puts an msg-invite
message in all output ports by executing its Prepare
tile. Then, he sends the message by executing its
Announce tile. President state evolves to Wait-
response. Announce tile effect is a broadcast of msg-

invite to all participants, which actually do nothing
(Par-Ready state). These states constitute the initial
configuration (Wait-Response ⊗ Par-Ready) of the
synchronization tile (in Fig.4). The resulting
configuration is identified by Wait-Response ⊗
Invited, since the input port of the corresponding
participant contains an msg-invite message now. So,
the occurrence of a Send observation, as an effect of
the president Announce tile, triggers the
synchronisation tile. It prepares necessary interfaces
to the interaction by isolating out(pr) and in(par)
thanks to the parallel composition of horizontal
identities idCpr and idCpar. Synchronisation tile effect is
the following sequence: A connection between the
president component and the participant one is
realised by duplicating the output port of the former.
Out(pr) port contents are transferred by swapping one
output port copy of the president and the input port of
the participant. Then, interaction ends by destroying
the empty port. We notice that, duplicator operator ∇
creates a copy of output port and renames it as
in’(par).

IV. CONCLUSION

ADLs are, in a way, domain-specific languages for
aspects such as coordination, distribution and quality-
of-service. Formal theories can be defined, clarifying
these concepts or providing rules to determine if a
given architecture is well-formed. We have proposed
a tile logic based model, where ADLs inherent
concepts have been systematically transformed to a
formal theory specification, That can be model
checked.
Our chosen semantic framework, Tile logic, has been
showed as an interesting unified model of all software
component aspects through a simple but significant
case study, a collaborative application session.
A tile based dynamic connector has also been
proposed to define dynamic synchronization between
system components.
This explicit exposition has facilitated a natural
mapping of a described architecture into a formal
software model and can, in a next stage, facilitate
dynamic reconfiguration and component mobility
activities and non-functional properties analysis.

REFERENCES

[1] N. Medvidovic, R. M. Taylor, "A Classification and
Comparison Framework for Software Architecture
Description Languages", IEEE Transactions on
Software Engineering, Vol 26, no1, pp70-93, Janvier
2000.

[2] M. Clavel, F. Duran, S. Eker, N. Martı-Oliet, P. Lincoln,
J. Meseguer, and J. Quesada. Maude: Specification and
Programming in Rewriting Logic. SRI International,
http://maude.csl.sri.com, January 1999.

Informe

 Close

Informe

Announcement
Initialized =
Ready⊗Ready

End =
End-Session ⊗
Disconnected

Receive-Response

Session =
Session-Management ⊗
Connected (Pi)

Announced = Wait-
Response ⊗ Invited(Pi)

Open =
Open-Session ⊗ Expected

[3] C. Braga1, A. Sztajnberg, "Towards a Rewriting
Semantics for a Software Architecture Description
Language", in: A. Cavalcanti and P. Machado, editors,
Proceedings of WMF 2003, 6th Workshop on Formal
Methods, Campina Grande, Brazil, E.N.T.C.S. 95
(2003), p.148-168.

[4] R. Bruni, J. L. Fiadeiro, I. Lanese, A. Lopes, and U.
Montanari, “New Insight into the Algebraic Properties
of Architectural Connectors”, IFIP TCS, pp. 367-380,
2004.

[5] C.Bouanaka, A. Choutri, F. Belala, “On Generating Tile
System for a Software Architecture : Case of a
Collaborative Application Session”, in ICSOFT2007
(the Second Conference on Software and Data
Technologies), pp. 123-128m July 22-25, 2007.

[6] R. Bruni, “Tile Logic for Synchronized Rewriting of
Concurrent Systems”, Phd Thesis, University of Pisa,
TD-1/99, March 1999.

[7] J. Meseguer, “Conditional Rewriting Logic as a unified
model of concurrency”, Theoretical Computer Science,
1992, pp.73-155.

[8] J. M. Molina Espinosa, “Modèles et services pour la
coordination des sessions coopératives multi
applications: application à l’ingénierie systèmes
distribués”, Thèse de doctorat en Informatique et
télécommunications, LAAS of CNRS, Toulouse, 2003.

[9] R. Bruni, I. Lanesse, and U. Montanari, “A Basic
Algebra of Stateless Connectors”, Theoretical Computer
Science 366, pp. 98-120, 2006.

