

�
Abstract—This paper presents an experimental evaluation of

the effectiveness of three hardware-based control flow checking

mechanisms, using software-implemented fault injection (SWIFI)

method. The fault detection technique uses reconfigurable of the

shelf FPGAs to concurrently check the execution flow of the

target program. The technique assigns signatures to the target

program in the compile time and verifies the signatures using a

FPGA as a watchdog processor to detect possible violation

caused by the transient faults. A total of 3000 faults were injected

in the experimental embedded system, which is based on an 8051

microcontroller, to measure the error detection coverage. The

experimental results show that these mechanisms detect about

90% of transient errors, injected by software implemented

method.

Index Terms — Control Flow Checking, Experimental

Evaluation, FPGA, Fault Injection

I. INTRODUCTION

owadays, the widely use of processor based embedded

and ubiquitous systems in high critical and real-time

applications requires more investigations on reliability and

fault-tolerance as essential attributes for these systems. Fault

detection and coverage is the first step to design a fault-

tolerant computer system.

 Transient faults are the major causes for computer system

failures. It is reported in [1] and [2], that more than 70% of

transient faults lead to control flow errors (CFE). Furthermore,

faults in hardware components such as the program counter,

the address circuitry, and the memory elements or the

software bugs such as compiler and operating system bugs

may result in control flow errors [19].

As the coverage of internal error detection techniques in

COTS processors is relatively low [3, 4, 5], the use of

additional error detection techniques seems to be necessary in

order to make these systems reliable. To address this issue,

several behavior-based error detection techniques, especially

control flow checking (CFC) mechanisms [6, 7, 10, 11, 12,

13, 14, 15, 16, 17, and 19], have been proposed.

One important step in the design of fault-tolerant systems is

their evaluation. Basically evaluation techniques are divided

in two groups; Analytical methods, and experimental methods.

Analytical techniques use mathematical models such as

Markov chains [20] [21], fault trees [22], and Petri nets [23] to

model the real system. Experimental evaluation techniques are

usually done using fault injections. The injection of faults to

the systems can be done in three ways:

� Simulation-based fault injection

� Physical fault injection

� Software-based fault injection

Simulation-based fault injection has been used in [24], [25],

and [26]. The main advantages of this method are its low cost

and the ability to evaluate the system before real

implementation.

In the physical fault injection techniques [9, 27, 28], the

target system is experimentally implemented and evaluated.

The higher speed of the fault injection and precious results are

the main advantage of this evaluation method in comparison

to the simulation based injection methods.

In software implemented fault injection techniques

(SWIFI), instead of using hardware fault injector devices,

injecting faults into the experimental system is up to the

software [19, 21]. In addition to physical fault injection

advantages, this technique has usually low costs and simpler

implementations.

In this paper, an experimental evaluation of three hardware-

based CFC mechanisms is presented. The detection

mechanisms use a reconfigurable hardware to design and

develop a watchdog processor. In the compile time, the

detection mechanisms insert some assertions in the main

program as the signatures and produce a rather small

synthesizable hardware description code. Then the hardware

description is implemented on a FPGA chip to build the

watchdog processor. Being Independent from processor

architecture and using of the shelf reconfigurable components

are the main advantages of the proposed technique in

comparison to the previous ones.

A total of 3000 SWIFI faults were injected to the processor.

The fault injection results are investigated and compared to

determine the efficiency of the used fault detection

mechanisms.

The structure of this paper is as follows: Following the

introduction, the error model is presented in Section 2. The

proposed control flow checking mechanisms will be presented

in details in the third section. The experimental evaluation

Experimental Evaluation of Three Concurrent

Error Detection Mechanisms

 Alireza Vahdatpour, Mahdi Fazeli, Seyed Ghassem Miremadi

Dependable Systems Laboratory

Computer Engineering Department

Sharif University of Technology

Tehran, Iran

Email: {vahdatpour, m_fazeli}@ce.sharif.edu, miremadi@sharif.edu

N

67

The 18th International Confernece on Microelectronics (ICM) 2006

system is introduced in Section 4. In Section 5 the

experimental evaluation result is provided. Finally Section

seven concludes the paper and presents future works.

II. THE ERROR MODEL

A fault in a digital computer system can manifest itself in

three different locations:

� System Memory

� System Buses

� CPU internals

The errors which may occur due to these faults can be

modeled in three categories:

� CPU Crashes

� Data errors

� Control Flow Errors (CFE)

CPU crashes happen when the processor does not work as a

Finite Sate Machine anymore, meaning that it goes off in an

undetermined state. CPU crashes can be detected by a simple

external watchdog timer; hence we do not consider these types

of errors in the CFCSP mechanisms. Data errors can also be

detected by some mechanisms like assertions, thus are not

considered hereby. The CFCSP mechanisms are solely

centered on detecting control flow errors.

This paper focuses on the transient effects called SEUs

(Single Event Upsets). Several reports have mentioned that

the SEU is important not only for the circuits operating in the

space, but also for the digital equipments operating at the

ground level [17]. It is reported in [18] that the majority

(>60%) of control flow errors differ from the correct ones in

only a single bit (i.e. SEU) of an address. SEUs can also occur

in memory cells’ contents (registers, internal memory, etc).

However, memories are usually protected against SEUs by

means of error detecting/correcting codes (Hamming code,

CRC code, Reed-Solomon code, etc) [17]. Therefore, internal

registers are of much importance. For example several reports

have mentioned that SEUs in the Program Counter (PC)

register are a major source of CFEs in comparison to other

internal registers [18]. Thus in this paper we focus on a class

of errors dubbed Program Sequence Change. These types of

CFEs can only occur in CPU internals and in Address buses.

In this class, basically the next instruction address changes in

a way that the next instruction is not the right one in the

correct program order. For instance a modification of the

Program Counter (PC) register can result in such an error.

III. THE PROPOSED CONTROL FLOW CHECKING MECHANISMS

In order to more clarify the presentation, the following

definition is made:

Definition 1: A Basic Block (BB) is a sequence of non-

branching instructions (except in the last instruction or last

consecutive instructions) or branch destinations (except in the

first instruction) in which the execution always enters at the

first instruction and leaves via the one of last branch

instructions.

In our CFC mechanisms (CFCSP), we have used control

flow graph (CFG) as the main criteria. CFG is a simple

directed graph, which its vertices represent basic blocks and

its edges show the relation (jumps) from one BB to another

BB. (Fig. 1)

Figure 1. Program CFG and its related FSM

The main idea of shadow processing is in making a FSM

from the program’s CFG. The watchdog system will use this

FSM as correctness criterion and concurrently checks the

execution flow of the target processor. This requires the

insertion of some signatures to each BB in the compile time.

Beside the main mechanism which is based on mentioned

FSM, three auxiliary mechanisms were used. Two block

checking algorithms and a work load timer. The block

checking algorithms use signatures in the main program to

check if each BB is executed completely. The Work Load

Timer is a simple hardware timer which is used to detect CPU

crash errors. At the beginning of program execution the work

load timer is initiated with a maximum allowed time in which

the processor must send an alive signal.

As it was said in the previous section, it is required to make

some assertions into the microcontroller program and also,

build a HDL code for the reconfigurable watchdog system. In

order to accomplish these tasks, tool chain software is

developed. This program processes the primitive

microcontroller’s assembly program and gives two output

files; final microcontroller’s assembly program and watchdog

FPGA HDL code. (Fig. 2).

Figure 2. Preprocessing Steps

Detailed information on the error detection mechanisms can

be found in [8].

IV. THE EXPERIMENTAL EVALUATION SYSTEM

The experimental system which is used to evaluate the

mentioned mechanisms is shown in figure 3. It consists of

2

3

5

4

5

2

Else than 2

Else than 3 & 4

Else than 5

Else than 2

Else than 5

1

2

3 4

5

1

2

3 4

5

Error

Final Assembly

Program

Detection of
Program BBs

Constructing
Program CFG

Asserting

Signatures and

Instructions

Making HDL for

Watchdog FPGA

Primitive Assembly
Program

Synthesizable HDL

Code for Watchdog

Altera MAX 7000

FPGA
Target 8051

Microcontroller

68

The 18th International Confernece on Microelectronics (ICM) 2006

four main components:

1. A target 8051 microcontroller

2. A Watchdog system

3. A fault injector and result logging unit

4. A Host computer

Figure 3. Experimental system diagram

A. Target Microcontroller
All proposed mechanisms are independent from processors

architectures. Therefore, it is preferable to choose a widely

used commercial processor, which can simply be implemented

and tested. To meet these characteristics, an 8051 is used.

8051 has been used widely in industrial and commercial

systems.

B. Watchdog System
The Watchdog system consists of a FPGA, which has

connected pins to microcontroller output ports. The choice of

FPGA should meet the minimum requirements of proposed

mechanisms. In our evaluation sample system, we used an

Altera MAX 7000S which has approximately 5000 gates, that

is beyond the needs of our system.

C. Fault Injection and Result Logging Interface
In order to automatically inject faults and log the results, a

fault injector and result logger is designed. The task of this

component can be divided to two sections.

I. Fault Injection
Fault injection into the microcontroller must meet the

conditions of considered fault model, SEU. Hardware faults

that occur in CPUs, buses, and registers usually lead to

software errors. Therefore, it is possible to mimic these

software errors by the use of software implemented fault

injection techniques (SWIFI). The Interface microcontroller

interrupts target processor by setting hardware interrupt pin of

the target microcontroller. The interrupted target processor

leaves program execution, which is a standard workload

program, saves its current program counter (PC) and starts a

predefined interrupt routine. In this routine, a bit of saved

program counter will be inverted. In each turn of fault

injection the location of victim bit is changed in order to

normally distribute the SEU on the PC. After that interrupt

execution completed, the processor will load its PC to resume

its main program, but the changed PC will lead to an

unexpected jump in the runtime execution (CFE).

In order to make the injections time distributed and random,

a series of random numbers has been generated by a PC and

used as injection times.

At the time of fault injection, also watchdog FPGA and the

timer should be restarted. Furthermore, the interface

microcontroller should keep the start time of injection in order

to log the detection latency of the proposed mechanisms.

II. Result Logging
After the fault was injected, the interface microcontroller

waits to get either error detection signal or program

completion signature. The first condition happens when the

watchdog FPGA has been able to detect the CFE. After

getting error signal, interface will get detected error type from

the FPGA. Detection latency and the type of detected error

also would be sent to the host computer for more offline

analysis.

In the case of getting program completion signatures, a

result checking program starts to see if the results of program

execution (memory saved results) are as they were expected.

If the results of the executed program are unexpected values,

it means that a CFE has occurred and the detection system

could not detect it. But there is also the rare possibility that the

changed PC in interrupt routine does not lead to CFE and

hence no error will be detected.

D. Host Computer
The task of this computer is to collect data from its

RS232 serial port, which is connected to the interface system,

and keep them in the database.

V. EXPERIMENTAL RESULTS

In this section the CFCSP evaluation results which are

extracted by physical fault injection are presented. Three

workload programs, all written in Assembly language, were

used in the experiment: a linked list, a matrix multiplication

and a bubble sort. A reasonableness checking function is

added to all of the workload programs to verify the

correctness of the results. A total of 3000 faults in SWFI

method were injected into the evaluation system while

running each workload. The error detection coverage of

CFCSP mechanisms is then extracted for this fault injection

method.

As mentioned in previous section, since in SWIFI method

the content of program counter register is directly changed

and a CFE error is produced, it is actually an error injection

method, not a fault injection method. The experimental results

for each work load are shown in table 1. As it is shown in this

table the average of 10% of injected errors are not detected by

none of the error detection mechanisms.

TABLE 1. DETECTION COVERAGE ACCORDING TO EACH MECHANISM

TABLE 2. THE CFCSP CONTROL FLOW ERROR DETECTION COVERAGE BESIDE

PERFORMANCE AND MEMORY OVERHEAD

Workload Memory

Overhead

Performance

Overhead

Error detection

Latency

Bubble Sort 104% 82% 2.9 ms

Link List 60% 77% 1.7 ms

Matrix Multiply 56% 42% 1.1 ms

Total Average 73% 67% 1.9 ms

Detection

Type

Execution

Flow

Enter

-Exit

Block

Complete

Execution

Time

Out
Undetected Total

Bubble 57% 10% 5% 11% 16% 84%

Matrix

Multiply
69% 10% 5% 13% 3% 97%

Link List 58% 5% 15% 11% 11% 89%

Total

Average
61.3% 8.3% 8.3% 11.6% 10% 90%

Target
Microcontroller

Fault Injection and
Result Logging

Interface

Watchdog
FPGA

`

Host Computer

69

The 18th International Confernece on Microelectronics (ICM) 2006

A brief comparison between the proposed mechanisms and

the previous hardware based methods is shown in table 3.

Since most of the previous mechanisms are based on the

monitoring the processor buses or the exact execution of the

program, they are not useable in COTS processors. On the

other hand, mechanisms which can be used in COTS

processor are mainly based on the debugging features of a

specific processor family and are not applicable to any kinds

of processors or platforms. A key advantage of The CFCSP

technique is that it is a processor independent technique and

also can be used in COTS processor. In comparison with the

other techniques, it provides high error detection coverage as

well as having acceptable overheads.

TABLE 3. COMPARISON OF THE CFCSP MECHANISMS WITH SOME OF THE

PREVIOUS, HARDWARE-BASED CFC MECHANISMS

VI. CONCLUSION AND FUTURE WORK

Control flow checking mechanisms provide a viable

solution to the modern embedded systems reliability

requirements. The evaluation of three hardware based CFC

mechanism was represented in this paper. Total of 3000

software implemented fault injection were made in order to

evaluate the performance of the proposed mechanisms. The

experimental results showed that these mechanisms detect

about 90% of transient errors in the average case. Also, in

order to more evaluate these mechanisms, power supply

disturbance (PSD) technique can be used as fault injection

method.

REFERENCES

[1] Pataricza A., I. Majzik, W. Hohl, J. Hoenig, “Watchdog Processors in

Parallel Systems”, Proc. of the 19th Symposium on Microprocessing and

Microprogramming (EUROMICRO'93), Spain, 1993, p.p. 69-74.

[2] Venkatasubramanian et al., “Low-Cost On-Line Fault Detection Using

Control Flow Assertions”, Proc. of the 9th IEEE International On-Line

Testing Symposium (IOLTS’03), 2003

[3] Chevochot P. and I. Puaut, “Experimental Evaluation of the Fail-Silent

Behavior of a Distributed Teal-Time Run-Time Support Built from

COTS Components”, Proc. of the IEEE/IFIP Int’l Conference on

Dependable Systems and Networks (DSN’01), July 2001, p.p. 304 -313.

[4] Avizienis A., “A fault tolerance infrastructure for high-performance

COTS-based computing in dependable space systems”, Proc. of the 10th

IEEE Pacific Rim International Symposium on Dependable Computing

(PRDC’04), March 2004, p.p. 336.

[5] Madeira H., R. R. Some, F. Moreira, D. Costa and D. Rennels,

“Experimental Evaluation of a COTS System for Space Applications”,

Proc. of the IEEE/IFIP International Conference on Dependable Systems

and Networks (DSN’02), June 2002. p.p. 325–330.

[6] Mahmood A. and E.J. McCluskey, “Concurrent Error Detection Using

Watchdog Processors – A Survey”, IEEE Trans. on Computers, Feb.

1988, p.p. 160 -174.

[7] Miremadi G. and J. Torin, “Evaluation Processor-Behavior Three Error-

Detection Mechanisms Using Physical Fault-Injection”, IEEE Trans. on

Reliability, Vol. 44, No. 3, Sept. 1995, p.p. 441-453.

[8] Vahdatpour et al., “Transient Error Detection in Embedded Systems

Using reconfigurable Components”, Technical report, Sharif University

of Technology, May 2006.

[9] Karlsson J., “Reliability Evaluation of a Fault-Tolerant Computer for a

Multi-phased Mission and a Use of Heavy-ion Radiation for Fault

Injection Experiments”, PhD Thesis, School of Electrical and Computer

Engineering, Chalmers University of Technology, 1990.

[10] Oh N., P. P. Shirvani, and E. J. McCluskey, “Control-Flow Checking by

Software Signatures”, IEEE Trans.On Reliability, Vol. 51, No. 2, March

2002.

[11] Kanawati G. A., V. S. S. Nair, N. Krishnamurthy, and J. A. Abraham,

“Evaluation of Integrated System-Level Checks for On-Line Error

Detection”, Proc. of lEEE Intemational Computer Performance and

Dependability Symposium, 1996, p.p. 292-301.

[12] Venkatasubramanian R., J. P. Hayes and B. T. Murray, “Low-Cost On-

Line Fault Detection Using Control Flow Assertions”, Proc. of the 9th

IEEE International On-Line Testing Symposium (IOLTS’03), July 2003,

p.p. 137–143.

[13] Goloubeva O., M. Rebaudengo, M. Sonza Reorda and M. Violante,

“Soft-Error Detection Using Control Flow Assertions”, 18th IEEE

International Symposium on Defect and Fault Tolerance in VLSI

Systems (DFT'03), Boston, Massachusetts Nov. 2003, p.p. 57-62.

[14] Mahmood A. and E.J. McCluskey, “Concurrent Error Detection Using

Watchdog Processors – A Survey”, IEEE Trans. on Computers, Feb.

1988, pp. 160 -174.

[15] Raul Barbosa, Jonny Vinter, Peter Folkesson, and Johan Karlsson, “

Assembly-Level Pre-injection Analysis for Improving Fault Injection

Efficiency”

[16] J. Arlat, Y.Crouzet, J. Carlson, P. Folkeson, E.Futchs and H. Lenbers,

“Comparison of Physical and Software-Implemented Fault Injection

Techniques”, IEEE Trans. on Computers, VOL. 52, NO. 9, Sep. 2003.

[17] Nicolescu B., R. Velazco1, M. Sonza-Reorda 2, M. Rebaudengo2, M.

Violante,“A Software Fault Tolerance Method for Safety-Critical

Systems:Effectiveness and Drawbacks”, Proceedings of the 15th

Symposium on Integrated Circuits and Systems Design

(SBCCI’02).2002, p.p. 101-106.

[18] Rimén M., J. Ohlsson and J. Karlsson, “Experimental Evaluation of

Control Flow Errors”, Proc. 1995 Pacific Rim International Symposium

on Fault Tolerant Systems (PRFTS), IEEE Computer Society Press, CA,

USA, December 1995.p.p. 238 – 243.

[19] M. Fazeli, R. Farivar, S. G. Miremadi, "A Software-Based Concurrent

Error Detection Technique for PowerPC Processor-based Embedded

systems", 20th IEEE International Symposium on Defect and Fault

Tolerance in VLSI Systems (DFT), California, 2005.

[20] Johnson B. W., “Design and Analysis of Fault-Tolerant Digital

Systems”, Addison-Wesley, 1989.

[21] Pradhan D. K., “Fault-Tolerant Computer System Design”, Prentice-

Hall, ISBN:0-13-057887-8, 1996.

[22] Ejlali A. and S. G. Miremadi, “Time-to-Failure Tree”, Proc. of the 49th

Annual Reliability and Maintainability Symposium (RAMS’03), Florida,

USA, pp. 148 -152, January 2003.

[23] Yin L., M. A. J. Smith, K. S. Trivedi, “Uncertainty Analysis in

Reliability Modeling”, Proc. of the 2001 Annual Reliability and

Maintainability Symposium, IEEE Press, pp. 229-234.

[24] Zarandi H. R., G. Miremadi and A. R. Ejlali, “SILVER: A Simulation-

Based Fault Injection Tool at Switch Level Using Verilog”, Proc. of the

SCIS & ISIS 2002 Conference, Tsukuba, Japan, 2002.

[25] Jenn E., J. Arlat, M. Rimen, J. Ohlsson, and J. Karlsson, “Fault Injection

into VHDL Models: The MEFISTO Tool”, Proc. of the 24th

International Symposium on Fault-Tolerant Computing (FTCS-24),

1994, pp. 336-344.

[26] Kanawati G. A., N. A. Kanawati, and J. Abraham, “EMAX: An

Automatic Etractor of High-Level Error Models”, Proc. of the American

Institute of Aeronautics and Astronautics, 1993, pp. 1297-1306.

[27] Folkesson P., “Assessment and Comparison of Physical Fault Injection

Techniques”, Thesis for the degree of PhD, Department of Computer

Engineering, CHALMERS University of technology, Sweden 1999.

[28] Steininger A., C. Scherrer, “On Finding an Optimal Combination of

Error Detection Mechanisms Based on Results of Fault Injection

Experiments”, Proc. of the 27th International Symposium on Fault-

Tolerant Computing (FTCS-27), USA, pp. 238-247, June 1997

CF

Mechanism
Coverage

Memory

Overhead

Hardware

Complexity

Performance

Penalty

Detectio

n

Latency

Usable

in

COTS

Processor

Independent

SIS 82% 6%~15% Low <10% 3.8ms No Yes

PSA
99.5%~9

9%
18%~27% Low - 7%~17% No Yes

TSM 93% 10%~16% Low <10% 3~6 Inst. No Yes

TTA 98% 24%~27% Medium 17%~18%
11~18

Inst.
No Yes

CIC
90%~98

%
5%~28% Medium

210%~245

%
 >80 cyc. Yes No

CFCSP
84%~97

%

56%~104

%
Low 42%~82%

1.1~2.9

ms
Yes Yes

70

The 18th International Confernece on Microelectronics (ICM) 2006

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

	Button2:
	Button3:

