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Abstract—This paper presents an experimental evaluation of 

the effectiveness of three hardware-based control flow checking 

mechanisms, using software-implemented fault injection (SWIFI) 

method.  The fault detection technique uses reconfigurable of the 

shelf FPGAs to concurrently check the execution flow of the 

target program. The technique assigns signatures to the target 

program in the compile time and verifies the signatures using a 

FPGA as a watchdog processor to detect possible violation 

caused by the transient faults. A total of 3000 faults were injected 

in the experimental embedded system, which is based on an 8051 

microcontroller, to measure the error detection coverage. The 

experimental results show that these mechanisms detect about 

90% of transient errors, injected by software implemented 

method. 

Index Terms — Control Flow Checking, Experimental 

Evaluation, FPGA, Fault Injection  

I. INTRODUCTION 

owadays, the widely use of processor based embedded 

and ubiquitous systems in high critical and real-time 

applications requires more investigations on reliability and 

fault-tolerance as essential attributes for these systems. Fault 

detection and coverage is the first step to design a fault-

tolerant computer system. 

 Transient faults are the major causes for computer system 

failures. It is reported in [1] and [2], that more than 70% of 

transient faults lead to control flow errors (CFE). Furthermore, 

faults in hardware components such as the program counter, 

the address circuitry, and the memory elements or the 

software bugs such as compiler and operating system bugs 

may result in control flow errors [19]. 

As the coverage of internal error detection techniques in 

COTS processors is relatively low [3, 4, 5], the use of 

additional error detection techniques seems to be necessary in 

order to make these systems reliable. To address this issue, 

several behavior-based error detection techniques, especially 

control flow checking (CFC) mechanisms [6, 7, 10, 11, 12, 

13, 14, 15, 16, 17, and 19], have been proposed.  

One important step in the design of fault-tolerant systems is 

their evaluation. Basically evaluation techniques are divided 

in two groups; Analytical methods, and experimental methods. 

Analytical techniques use mathematical models such as 

 

 

Markov chains [20] [21], fault trees [22], and Petri nets [23] to 

model the real system. Experimental evaluation techniques are 

usually done using fault injections. The injection of faults to 

the systems can be done in three ways: 

� Simulation-based fault injection 

� Physical fault injection  

� Software-based fault injection 

Simulation-based fault injection has been used in [24], [25], 

and [26]. The main advantages of this method are its low cost 

and the ability to evaluate the system before real 

implementation. 

In the physical fault injection techniques [9, 27, 28], the 

target system is experimentally implemented and evaluated. 

The higher speed of the fault injection and precious results are 

the main advantage of this evaluation method in comparison 

to the simulation based injection methods. 

In software implemented fault injection techniques 

(SWIFI), instead of using hardware fault injector devices, 

injecting faults into the experimental system is up to the 

software [19, 21]. In addition to physical fault injection 

advantages, this technique has usually low costs and simpler 

implementations.  

In this paper, an experimental evaluation of three hardware-

based CFC mechanisms is presented. The detection 

mechanisms use a reconfigurable hardware to design and 

develop a watchdog processor. In the compile time, the 

detection mechanisms insert some assertions in the main 

program as the signatures and produce a rather small 

synthesizable hardware description code. Then the hardware 

description is implemented on a FPGA chip to build the 

watchdog processor. Being Independent from processor 

architecture and using of the shelf reconfigurable components 

are the main advantages of the proposed technique in 

comparison to the previous ones. 

A total of 3000 SWIFI faults were injected to the processor. 

The fault injection results are investigated and compared to 

determine the efficiency of the used fault detection 

mechanisms. 

The structure of this paper is as follows: Following the 

introduction, the error model is presented in Section 2. The 

proposed control flow checking mechanisms will be presented 

in details in the third section. The experimental evaluation 
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system is introduced in Section 4. In Section 5 the 

experimental evaluation result is provided. Finally Section 

seven concludes the paper and presents future works. 

II. THE ERROR MODEL 

A fault in a digital computer system can manifest itself in 

three different locations: 

� System Memory 

� System Buses 

� CPU internals 

The errors which may occur due to these faults can be 

modeled in three categories: 

� CPU Crashes 

� Data errors 

� Control Flow Errors (CFE) 

CPU crashes happen when the processor does not work as a 

Finite Sate Machine anymore, meaning that it goes off in an 

undetermined state. CPU crashes can be detected by a simple 

external watchdog timer; hence we do not consider these types 

of errors in the CFCSP mechanisms. Data errors can also be 

detected by some mechanisms like assertions, thus are not 

considered hereby. The CFCSP mechanisms are solely 

centered on detecting control flow errors. 

This paper focuses on the transient effects called SEUs 

(Single Event Upsets). Several reports have mentioned that 

the SEU is important not only for the circuits operating in the 

space, but also for the digital equipments operating at the 

ground level [17]. It is reported in [18] that the majority 

(>60%) of control flow errors differ from the correct ones in 

only a single bit (i.e. SEU) of an address. SEUs can also occur 

in memory cells’ contents (registers, internal memory, etc). 

However, memories are usually protected against SEUs by 

means of error detecting/correcting codes (Hamming code, 

CRC code, Reed-Solomon code, etc) [17]. Therefore, internal 

registers are of much importance. For example several reports 

have mentioned that SEUs in the Program Counter (PC) 

register are a major source of CFEs in comparison to other 

internal registers [18]. Thus in this paper we focus on a class 

of errors dubbed Program Sequence Change. These types of 

CFEs can only occur in CPU internals and in Address buses. 

In this class, basically the next instruction address changes in 

a way that the next instruction is not the right one in the 

correct program order. For instance a modification of the 

Program Counter (PC) register can result in such an error.  

III. THE PROPOSED CONTROL FLOW CHECKING MECHANISMS 

In order to more clarify the presentation, the following 

definition is made: 

Definition 1: A Basic Block (BB) is a sequence of non-

branching instructions (except in the last instruction or last 

consecutive instructions) or branch destinations (except in the 

first instruction) in which the execution always enters at the 

first instruction and leaves via the one of last branch 

instructions. 

In our CFC mechanisms (CFCSP), we have used control 

flow graph (CFG) as the main criteria. CFG is a simple 

directed graph, which its vertices represent basic blocks and 

its edges show the relation (jumps) from one BB to another 

BB. (Fig. 1) 

 
Figure 1. Program CFG and its related FSM  

 

The main idea of shadow processing is in making a FSM 

from the program’s CFG. The watchdog system will use this 

FSM as correctness criterion and concurrently checks the 

execution flow of the target processor. This requires the 

insertion of some signatures to each BB in the compile time. 

Beside the main mechanism which is based on mentioned 

FSM, three auxiliary mechanisms were used. Two block 

checking algorithms and a work load timer. The block 

checking algorithms use signatures in the main program to 

check if each BB is executed completely. The Work Load 

Timer is a simple hardware timer which is used to detect CPU 

crash errors. At the beginning of program execution the work 

load timer is initiated with a maximum allowed time in which 

the processor must send an alive signal. 

As it was said in the previous section, it is required to make 

some assertions into the microcontroller program and also, 

build a HDL code for the reconfigurable watchdog system. In 

order to accomplish these tasks, tool chain software is 

developed. This program processes the primitive 

microcontroller’s assembly program and gives two output 

files; final microcontroller’s assembly program and watchdog 

FPGA HDL code. (Fig. 2). 

 
Figure 2. Preprocessing Steps 

Detailed information on the error detection mechanisms can 

be found in [8]. 

IV. THE EXPERIMENTAL EVALUATION SYSTEM 

The experimental system which is used to evaluate the 

mentioned mechanisms is shown in figure 3. It consists of 
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four main components: 

1. A target 8051 microcontroller 

2. A Watchdog system 

3. A fault injector and result logging unit 

4. A Host computer 

 
Figure 3. Experimental system diagram 

A. Target Microcontroller 
All proposed mechanisms are independent from processors 

architectures. Therefore, it is preferable to choose a widely 

used commercial processor, which can simply be implemented 

and tested. To meet these characteristics, an 8051 is used. 

8051 has been used widely in industrial and commercial 

systems. 

B. Watchdog System 
The Watchdog system consists of a FPGA, which has 

connected pins to microcontroller output ports. The choice of 

FPGA should meet the minimum requirements of proposed 

mechanisms. In our evaluation sample system, we used an 

Altera MAX 7000S which has approximately 5000 gates, that 

is beyond the needs of our system. 

C. Fault Injection and Result Logging Interface 
In order to automatically inject faults and log the results, a 

fault injector and result logger is designed. The task of this 

component can be divided to two sections. 

I. Fault Injection  
Fault injection into the microcontroller must meet the 

conditions of considered fault model, SEU. Hardware faults 

that occur in CPUs, buses, and registers usually lead to 

software errors. Therefore, it is possible to mimic these 

software errors by the use of software implemented fault 

injection techniques (SWIFI). The Interface microcontroller 

interrupts target processor by setting hardware interrupt pin of 

the target microcontroller. The interrupted target processor 

leaves program execution, which is a standard workload 

program, saves its current program counter (PC) and starts a 

predefined interrupt routine. In this routine, a bit of saved 

program counter will be inverted. In each turn of fault 

injection the location of victim bit is changed in order to 

normally distribute the SEU on the PC. After that interrupt 

execution completed, the processor will load its PC to resume 

its main program, but the changed PC will lead to an 

unexpected jump in the runtime execution (CFE). 

In order to make the injections time distributed and random, 

a series of random numbers has been generated by a PC and 

used as injection times. 

At the time of fault injection, also watchdog FPGA and the 

timer should be restarted. Furthermore, the interface 

microcontroller should keep the start time of injection in order 

to log the detection latency of the proposed mechanisms. 

II. Result Logging 
After the fault was injected, the interface microcontroller 

waits to get either error detection signal or program 

completion signature. The first condition happens when the 

watchdog FPGA has been able to detect the CFE. After 

getting error signal, interface will get detected error type from 

the FPGA. Detection latency and the type of detected error 

also would be sent to the host computer for more offline 

analysis. 

In the case of getting program completion signatures, a 

result checking program starts to see if the results of program 

execution (memory saved results) are as they were expected. 

If the results of the executed program are unexpected values, 

it means that a CFE has occurred and the detection system 

could not detect it. But there is also the rare possibility that the 

changed PC in interrupt routine does not lead to CFE and 

hence no error will be detected.  

D. Host Computer 
The task of this computer is to collect data from its 

RS232 serial port, which is connected to the interface system, 

and keep them in the database. 

V. EXPERIMENTAL RESULTS 

In this section the CFCSP evaluation results which are 

extracted by physical fault injection are presented. Three 

workload programs, all written in Assembly language, were 

used in the experiment: a linked list, a matrix multiplication 

and a bubble sort. A reasonableness checking function is 

added to all of the workload programs to verify the 

correctness of the results.  A total of 3000 faults in SWFI 

method were injected into the evaluation system while 

running each workload. The error detection coverage of 

CFCSP mechanisms is then extracted for this fault injection 

method.  

As mentioned in previous section, since in SWIFI method 

the content of program counter register is directly changed 

and a CFE error is produced, it is actually an error injection 

method, not a fault injection method. The experimental results 

for each work load are shown in table 1. As it is shown in this 

table the average of 10% of injected errors are not detected by 

none of the error detection mechanisms. 

TABLE 1. DETECTION COVERAGE ACCORDING TO EACH MECHANISM 

 

TABLE 2. THE CFCSP CONTROL FLOW ERROR DETECTION COVERAGE BESIDE 

PERFORMANCE AND MEMORY OVERHEAD 

Workload Memory 

Overhead 

Performance 

Overhead 

Error detection 

Latency 

Bubble Sort 104% 82% 2.9 ms 

Link List 60% 77% 1.7 ms 

Matrix Multiply 56% 42% 1.1 ms 

Total Average 73% 67% 1.9 ms 

Detection 

Type 

Execution 

Flow 

Enter

-Exit 

Block 

Complete 

Execution 

Time 

Out 
Undetected Total 

Bubble 57% 10% 5% 11% 16% 84% 

Matrix 

Multiply 
69% 10% 5% 13% 3% 97% 

Link List 58% 5% 15% 11% 11% 89% 

Total 

Average 
61.3% 8.3% 8.3% 11.6% 10% 90% 

Target  
Microcontroller 

Fault Injection and  
Result Logging  

Interface 

Watchdog  
FPGA 

` 

Host Computer
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A brief comparison between the proposed mechanisms and 

the previous hardware based methods is shown in table 3. 

Since most of the previous mechanisms are based on the 

monitoring the processor buses or the exact execution of the 

program, they are not useable in COTS processors. On the 

other hand, mechanisms which can be used in COTS 

processor are mainly based on the debugging features of a 

specific processor family and are not applicable to any kinds 

of processors or platforms. A key advantage of The CFCSP 

technique is that it is a processor independent technique and 

also can be used in COTS processor. In comparison with the 

other techniques, it provides high error detection coverage as 

well as having acceptable overheads. 

TABLE 3. COMPARISON OF THE CFCSP MECHANISMS WITH SOME OF THE 

PREVIOUS, HARDWARE-BASED CFC MECHANISMS 

VI. CONCLUSION AND FUTURE WORK 

Control flow checking mechanisms provide a viable 

solution to the modern embedded systems reliability 

requirements. The evaluation of three hardware based CFC 

mechanism was represented in this paper. Total of 3000 

software implemented fault injection were made in order to 

evaluate the performance of the proposed mechanisms. The 

experimental results showed that these mechanisms detect 

about 90% of transient errors in the average case. Also, in 

order to more evaluate these mechanisms, power supply 

disturbance (PSD) technique can be used as fault injection 

method. 
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