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Abstract

With the increasing emergence of hardware/ software distributed systems, designers need in some ways efficient
methods and tools to improve the safeness of such systems and to reduce drastically their design engineering time.
In general, some traditional methods as simulation and testing are used to detect errors and bugs, but they are
inadequate to certify the correctness of complex systems. To accelerate the design and to avoid distributed systems
malfunctions, new mathematical-based techniques has been used to improve the deficiency of the old methods.
During the last two decades, Model checking and theorems proving have been the major research verification fields
intensively used to check the design correctness of some big projects (NASA lance rockets, Pentium chips, ect.) In
fact, despite the generalization of formal methods, some problems remain in suspense in producing a coherent
specification fully integrated semantics and avoiding the size complexity of designs.

In this paper, we present a hierarchical approach and an open environment to describe and to verify distributed
and concurrent systems. The system currently uses UML notation and provides rewriting logic, model checking,
theorem proving, and simulation techniques.

1. Introduction

Formal specification and verification are now widely accepted by the software engineering
community and industrial practitioners. The correct functioning of distributed systems has been
an issue of vital importance in the system development process. Nowadays, several formal
verification techniques and tools are available. They are divided into two major fields, a proof-
assistant program as ACL2 [8], which needs the interaction with specialist users by means of
lemmas to verify theorems, and fully automatic programs called model-checking based
essentially on temporal logics as for example CTL and LTL (Linear Temporal Logic) [5].
Following the development of model-checking programs a large number of tools called Model-
checkers have been developed for different applications in different areas. For instance, SMV
[10] for hardware systems, STEP for reactive systems, SPIN [20], for communication protocols
and UPPAAL [16] for timed systems. Despite their well-founded mathematical provability, these
tools lack in two major problems: a theoretical part, which is the state explosion that grows
exponentially with the number of states and transitions and an informal part used to design the



different components of the systems, their relations and their objectives using a known formalism
as UML (Unified Modeling Language) specification [4-17]. The result of the execution (i.e.,
verification) is the response of the system by YES, which mean that the model is correct and by
No, saying that a part of the model could be erroneous and finally gives a counter example (i.e.,
the behavior execution trace). Several other approaches try to use process algebra logic like CCS
[13] and LOTOS [3], embedded respectively in some tools like the Concurrency Workbench [18]
and CADP [19]. The problem with such kind of formalisms remains the heaviness to describe
multifunctional systems.

These considerations motivated the development of VALID-2, a specification, verification and
simulation environment, which is the result of many discussions with Professor A. Attoui at
LLP-CESALP Laboratory of Haute-Savoie University (France). The first version of a similar
environment has been developed at the LAMOS (University of Clermont-Ferrand, France) and a
naive form called VALID is obtained. It is available on-line at the following web address
www.univ-savoie.fr  and published in [1]. VALID, as it was designed, is just a simple
environment used for the formal specification of reactive systems.

The environment VALID-2 written in Java (JDK2), is completely different from VALID
environment developed in C++ of Borland (a naive C++ compiler). In fact, VALID-2 is based
mainly on Statecharts to describe formal objects and their relationships, and on OCL (Object
Constraint Language) to trace up all the functional rules of the systems [17]. VALID uses a
simple graphical form to describe the system, its objects and the communication links. The
dynamic behaviors are processed using rewriting rules. The termination of the generated
rewriting system is checked using the tool ORME, a primitive proof-checker [9]. VALID-2, uses
a specific programming language called SPECIF, which is a subset form of Maude language
which is a well-known efficient executable system developed at Stanford University [6]. Such
incorporation is due to the well-known rewriting logic and its reflective computation [12].
VALID did not embed neither a verification model-checker nor a simulation mechanism. Both
the model-checker and the simulation program are available in VALID-2, in addition to two
translators: one from UML description to Java code for the simulation, and the second for the
specification language SPECIF. VALID-2 embeds also other functionalities, which cannot be
fully presented in this article.

Briefly VALID-2 is based on four modules: (/) a graphical description like-UML module, using
a visual interface, (2) a prototyping and code-generation module which translates the UML
graphical description as input giving formal modules using a specification language based on
rewriting logic semantic and a native reflexive Maude code, and a computable Java-code. (3) An
animation and simulation module based on the Simjava package [11] and (4) a verification of
specifications module operators translated as rewrite rules extended with some new operators.
The system integrates modularity and abstraction and follows the main principles of an Object-
Oriented approach inspired by Maude system and Java programming language.

This paper is organized as follows: Section 2, gives an overview of the system components,
which are the syntax and the semantic of the SPECIF language, UML description as a
specification language, the model-checker called VERIF. Section 3, presents the simulation
module, while Section 4, conclude the paper.
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Figure 1 : The overall VALID-2 architecture

2. Overview of VALID-2 Environment

As it was already mentioned, the architecture of VALID-2 as depicted in figure 1, is centered on
some independent programs and systems, which interact together and monitored by a supervisor.
In this section we detail some of them, especially the SPECIF system, the UML (the description
is introduced through an example), the model-checker VERIF and the simulation and animation
program.

2.1. Syntax and Semantic of the SPECIF Language

In contrast to LOTOS and ESTEREL [2], the syntax of the SPECIF language is closely similar to
the Maude language and it is based on Rewriting logic as developed by Meseguer et al. and well
introduced in [12]. The most important particularity is its capacity to use a single theory for the
formal specification of data structure and the dynamic behaviour of systems. The paradigm of
theories in this case is built as a generalisation of the object-oriented and functional programming
and retains the basic concept of the formal module. A formal module is allowed to describe a
module as in Obj3 [12]. To be more accurate about Maude system the reader is invited to consult
the site www.csl.sri.com.

Our approach is based on a simple theory representing an object as a Formal Module. In the
SPECIF language, a system configuration is defined through a number of objects and messages
and represents the formal description of a concurrent system. Each object (formal module)
possesses intrinsic properties. Messages are generated by external stimuli or internal interruption.
The same message can be sent to different objects. In another words SPECIF language takes also
some advantages from the language developed by Attoui et al. in [1]. It presents the following
characteristics to describe the syntactic form:
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2.1.1. The alphabet of the SPECIF language

In algebraic specifications, as in most declarative languages, the notion of Type is used to
distinguish different kinds of values, such as integers, strings, Boolean values, and so on. The
declaration of names identifiers and symbols is performed using, “Type object, Attribute,
Attributes, Msg, Configuration, Value, Objectld, Classld and Atributld”. For example we declare
names of type integer, Boolean and list of natural as follows :

types Nat Boolean List .

2.1.2. Hierarchical and structural relation between the syntactic entities (the objects)

In order-sorted algebraic specification [12], a Type T may have subtype. Intuitively, a subtype
declaration is performed as :

subType t' <t

which means that the subtype t' is included in the (super) type ¢. That is, each element of ¢’ is
also an element of t. In SPECIF language the following declarations are accepted.

subType Objectld, Classld, Attributld < Value .
subType Attribut < Attributs .
subType Object, Msg < Configuration .

2.1.3. How to built operation of a formal module

We use function symbols (or operator symbols) to define the values of each type, and to define
the functions on the domains. In the SPECIF language, a declaration of a function symbol has
the following form :

op < _:_>: Objectld Value = Object .

op _;_: Attributld Value = Attribut .
op _, : Attributs Attribut = Attributs [ assoc comm id = Null Prior = Value] .
op _ _ : Configuration Configuration = Configuration [assoc comm id = Null] .

Where Objectld, Attributld, Attributs, Attribut and Configuration are called the arity and the
names at the right of each operation is called the co-arity. The symbol operators are the function
symbols (e g. “:”, “;” ect .). In the SPECIF language as in Maude it is possible to declare that an
operation is commutative (comm), associative (assoc), the identity (id) and priority toward a set

of operators.

We note that the arity of the symbol function may be empty, in such case the function is called a
constant. For example :

Type Boolean .

op true : = Boolean . - the symbols true and false are considered as a logical constant of type boolean ;

op false : = Boolean .
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We note, that in formal methods all the symbol declarations (types and operations) are not pre-
declared as in the usual programming languages (e g. C, C++, Java ...). The users have to declare
all the operations and type names he may need.

2.1.4. Building the rewriting rules in the SPECIF language

Rules in the SPECIF language are similar of those of the Maude language enriched by the
adjunction of the Timing characteristic as an optional requirement. A concurrent rewriting rule is
presented to the system as follows :

My, ..., Mp<Oq:Cy| listeAt;> ... <Oy, :Cyy listeAt,> =>
<0i1:Cj| listeAtn;> ... <Oj:Ciy| listeAtnj>
<Qu:Dy liste1At;> ... <Qp : Dy| listelAt,> M’y ..., M’y [Timing].

Such description shows a set of n concurrent objects declared in parallel (for example the first
object O; belonging to the class C; with its list of attributes listeAtn; is declared as <O;:Cy|
listeAt;>). The My, ... , M, are n messages which could be used to pass information to the
objects and to guide the interaction between the objects. The arrow (=>) in the description, is the
link between the left side and the right side of the rule, which means that the left side is
transformed to the right side. After the interaction between objects (communication by message
passing), a new message is created (M’y, ... , M’y) and perhaps new objects are also created. The
symbol [Timing] is optional and it depends on the timing operators used in such case. We note
that we have developed some symbolic timed operators as the “Until”, “Next”, “Before”, ”At”,
which have been well-defined in [15].

2.2 Modeling Concurrent Systems

The description and the modeling steps are similar to those developed in UML. The method uses
two different specification stages which are the following :

2.2.1. Architecture and Interface

In general, embedded systems are modelled in term of objects. An object is a representation of an
entity in the real world; it contains information and offers services. A system is therefore
composed of interacting objects. As objects belonging to a class of objects and evolve in an
environment, they need some particularities to react with each others. In such case, the objects
are defined formally as an information specification as developed in [7] and composed of the
following elements:

1. A configuration of information objects.
2. The behaviour of those objects.

3. Environment contracts for the objects in the systems.

In such case, information objects are modelled directly by SPECIF objects. The roles that objects
play in the information specification are modelled by SPECIF classes, whose members are the
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objects exhibiting behaviour compatible with the ones identified by each role. The communities
are compositions of information objects, and therefore are modelled by SPECIF configurations,
which are multisets of objects and messages.

The general philosophy to represent the information of the whole system (environment) is as
follow: The first stage consists of the representation of the different information objects of the
system by processing through abstraction levels. It is imperative to respect the natural object
hierarchy. At a given level only information objects and messages belonging to a referred level
are excited and then highlighted. A complex system is then decomposed into subsystems using a
composition relation. This stage is performed through a graphical editor and respects the
hierarchical descendant description of the system. At a given abstraction level, the user defines
the attributes of the corresponding information object (for example, attribute state of the objects
Sender and Receiver of a communication protocol specification). The interface of each visible
object is also described (its input and output messages and its attributes). At each level, each
object is considered as a system itself and therefore it can be decomposed in the same manner as
the system father with its referred attributes and messages. Objects without messages and
attributes receive the Null value.

2.2.2. The System Behavior

The dynamics of the systems also called behavior, is performed by assigning to each object a set
of rules which describe how the different events associated with the messages modify the state of
each object. For example, assume that two objects (a sender and a receiver) communicate by
sending information (messages). In the following, we demonstrate that SPECIF language
authorizes the construction of synchronous and asynchronous communications.

The following example, represents the Bank operations in term of balancing from credit to debit
and vice-versa of two accounts Customl (Cl) and Custom2 (C2). To be more accurate, the
information contained in such example could be manipulated using two kinds of rules:
synchronous and asynchronous where (transfer Mont From C1 to C2), credit(C1, Mont) and
debit(C2, Mont) are the messages. The following cases describe the synchronous and
asynchronous rules:

Casel: Synchronous rule
crl [rulel] (transfer Mont From C1 to C2) < Cl: Account | solde: S1> < C2: Account | solde: S2>
=>
< C1: Account | solde: SI-Mont> < C2: Account | solde: S2 + Mont> if (S1—Mont >=0)

Case2: Asynchronous rules

crl [rule2] credit(C1, Mont) < Cl: Account | solde: S1 > => < Cl1: Account | solde: S1-Mont> if SI— Mont >=0
rl  [rule3] debit(C2, Mont) < C2: Account | solde: S2> => <C2: Account | solde: S2 + Mont>.
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In the synchronous rule (case 1), the object C1 (< C1: Account | solde: S1 >) and the object C2
(< C2: Account | solde: S2>) interact concurrently. Influenced by the message (transfer Mont
from Cl1 to C2), they exchange the value Mont and subtract it from solde: S1 and add it to solde:
S2. The result of such concurrent rule ( < Cl: Account | solde: SI-Mont> < C2: Account | solde:
S2 + Mont>) is a new configuration where the (transfer Mont From C1 to C2) have been
deleted.

We can imagine from the structure of such operations, that for the case of asynchronous rules,
there is no interaction between objects, they proceed sequentially. The first object will lose the
quantity Mont deduced from solde: S1, and added to solde: S2 of the second object.

2.2.3. Relation between UML/OCL description and the SPECIF language

UML is the standard description language for object-oriented technologies (OOT). In that way,
the proposed unification concerns only the notation and not the unification process. The system
specification in UML is represented by diagrams (Class, UseCase, Collaboration, Sequence,
State, Statechart and Activity diagrams) used to describe Statecharts and automata-graphs. To
specify constraints, UML offers the Object Constraint Language (OCL). OCL is well-suited to
specify invariants on classes and types. UML has been extended to UML-RT, to enable
specification of real-time systems. Let’s begin with a simple example as proposed in [7], the use
of the UML class diagrams for the description of the structure of the communities. Such example
is based on a library at a University. As in [7], we develop just a part of the specification
description: all academic staff, postgraduate and undergraduate students. There are prescribed
periods of loan and limits on the number of items allowed on loan to a borrower at any given
time.

In such example, we can identify three special kinds of borrowers (academic staff, undergrads
and postgrads), and two kinds of items (books and periodicals). Such example is represented by
the UML class diagram as depicted in the following figure (figure 2). The correspondence
between UML model classes and the SPECIF language as shown in [7], using Maude language
is straightforward. In this paper, we demonstrate the translation between just some parts of the
example as described in figure 2.

For example the class Library is written in SPECIF as follows:

class Library | Address : String, Institution : String , LoanPeriods : Date, MaxLoans : Nat , SuspondedUsers :
Boolean .

In our example, the Borrow is modeled by the following class:

Type BorrowerStatus .
ops suspended released : = BorrowerStatus .
class Borrower | address : String, borrowedlItems : Nat, fines : Money, status : BorrowerStatus, name : string .

To define the subclass related with the class Borrower, one can declare what follows :

subclasses Academic Undergrat Postgrat < Borrower .
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Such three subclasses are automatically defined by inheritance. Before that, we have to declare
such subclasses as classes in the following way :

class Academic | dept: String, faculty : String.
class Postgrat | dept: String, tutor : String .
class Undergrat | tutor: String, faculty : String.

The other classes and their subclasses could be defined in a similar way.

The description of the system’s behavior could be interpreted by the following dynamic rule.
Such operation concerns for example the borrower borrowing of a book; the book, a librarian, the
library, and the Calendar. To borrow a book, one needs that the book not be on the loan, the
borrower not to be suspended and the number of borrowed books be smaller than the allowed
number. Such possible procedure is performed using the following rule as in [7] :

crl [borrow-books] : borrow(O, I, B) < B : Borrower | borrowedItems : N > <1 : Book | status : free > <L : Library |
mawLoans : ML, loanPeriod : LP, suspendedUsers : False> <O: Librarian | >< C : Calendar | date : Today > =>
< B : Borrower | borrowedltems : N+ 1 > <I : Book | status : onloan > <L : Library | > <O: Librarian | >< C :
Calendar | > <A : Loan | dueDate : Today + LP(class(<B : Borrower | >), Book)], initialDate: Today, borrower : B,
item : I> If suspendedUsers = False and N < ML|[class(<B : Borrower | >)).

We stop now our explanation concerning the transformation of UML diagrams into SPECIF
language. This could be engaged us to develop the entire system.

« Communities » Borrower

-Adress -Adress
-Institution -Borroweditte

-LoanPerids -fines
-MaxLoans -name
-suspendedUsers -status
| | V4 N
| |
: : «role » «role » «role »
' 1
dept dept tutor
faculty tutor faculty

Figure 2 : Structure of a side of the library community.

2.3 Model Checking embedded inside VERIF

2.3.1 Model Checking

Model checking (see figure 3) is a formal analysis technique used to automatically validate
behavioural specifications of hardware and software systems. Such specifications are described
using a common language called temporal logic or some words generated using Buchi automata
[21-24]. There are two mainly approaches to model checking. First, symbolic model checking
[22-23], uses binary decision diagrams and their extension to represent specification and
implementation as a whole formula in the form of a fixpoint computation [5]. Second, Explicit
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state model checking, a technique based on the representation of the problem using Kripke
Structure—a state transition graph. The properties are described as temporal logic formulae. The
solution is performed using particular algorithms and it depend on the choice of the temporal
logic. For example in case of Computational Tree Logic (CTL), Clarke & Emerson technique is a
well suited solution for the branching non deterministic problems [5]. The Linear Temporal
Logic (LTL) could be applied to find states or traces, which satisfy a requirement specification.
There are two types of algorithms to verify LTL formulae, a Buchi automata-based due to Vardi
et al. [24]. The other one is a tableau-based also called axiomatic method. Both CTL and LTL
formulae properties could be verified using fixpoint computations as in mu-calculus logic.

The operation in critical systems imposes constraints on the system (software and hardware).
These constraints gather all the problems involved in the time and the reliability. The problem of
the time constraints consists in being able to sufficiently and quickly process so that the resulting
action makes sense, while remaining within the limits of operation of the system

Description of
the problem

Properties
databases

model checking
Engine

Diagnostic &
conter-
gxample

Figure 3 : Model Checker Architecture

The first part of the verification module (VERIF) is built using extended rewriting rules to handle
timing requirement. The complete operational semantic rules is presented in [15].

The second part implemented in VERIF module is the axiomatization of the Propositional
Temporal Logic, a well-known temporal logic introduced by Pnueli in [14], and well adapted for
the verification of reactive systems. Thus, using such logic, one can more easily specify how we
want the system to behave without thinking about a particular behaviour. The following code is
just a segment of the PTL model-checker:

2.3.2 Syntax of the Propositional Temporal Logic

Linear time prepositional temporal logic (PTL) has been developed by Manna & Pnueli in [2]
and discussed in many works [3]. Formulae of PTL are built from a set AP of atomic
propositions and are closed under the application of Boolean connectives, the unary X (next,
written O or @), the binary temporal connective U (until) and two auxiliary operators : the unary
operator [] (Always) and another operator <> (eventually). PTL is interpreted over computations,
which are executions (Path’s). The interpretation function assigns truth values to the elements of

Top



AP at each time instant (natural number). Such computations are viewed as infinites words over
the alphabets 2°F. The formal meaning of temporal logic formulae is defined using the notion of
Kripke structure.

Definition 1 (Kripke structure) A Kripke structure is a tuple M = (S, p, s, 1) where

S is a countable set of states,

p < S x S is a transition relation satisfying Vs € S: 3s’eS : (s, s°) €p,
n:S > 2% is an interpretation function on S,

So € S is the set of initial states.

Definition 2 (Path). A path in Kripke structure is an infinite sequence of states (so, si, S2, ...) €
S such that (s;, si+1) € p forall i > 0.

A path is thus an infinite sequence of states such that between successive states transitions do
exist. For path o = s¢ 51 s, ... and integer i > 0, ofi]| denotes the (i+1)-th state of . The set of
paths that start in state s is denoted Paths(s). As each state in a Kripke structure is required to

have at least one successor, it follows Paths(s) = & if's ¢ Sy for any state s.

The following example gives an overview of the principles elements of the above definitions.

Sa
S3
0 X @

Figure 4 : A simple Kripke structure

In such structure we define the following components :

AP = {p1, p2} ; M=(S, p, sp, ®) such that :
S = {80, 81, 82, 83, 84} ; P = {(80,51), (80,52), (81,82), (51,83), (S1,84), (82,52), (83,80), (4, S4)}
s’ =503 m(s0) = {p1} 3 W(s1) = {p1} 3 W(s2) = D 5 m(s3) = {p1, P2}, M(sa) = P2}

The two computations in M : (S¢,51,53,50,51,83, ... ) and (S¢,S2,52,52, ... ) correspond to the infinite
sequences :
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(n(dSOa ‘II(Sl), 713(53), ‘II(S()), ‘II(Sl), 713(53), ) = ({pl}a {pl}a {pla p2}a{p1}9 {pl}a {pla pZ}a )
an

(1(sg), m(s2), m(s2), ™(S2), ... ) =({p1},9, 9,9, ....)

The path (s, si, s2) 1s not an execution because it is finite, and the path (s1,53,50,51,54,54,54, ... )
either is not an execution because it is not prefixed by the initial state sy.

The infinite sequence ({p2}, {p1}, {P2}.{p1}> {p2}, {p1}, ...), is not a sequence defined on the
language Ly, because such type of execution is not contained in M.

Definition 3. Let AP be a set of atomic propositions. The propositional temporal logic over AP,
denoted PTL(A4P), is defined as the least set closed under the following rules:

24" = PTL(4P)

If /g € PTL(4P), then f v g € PTL(4P).
If f € PTL(AP), then — f e PTL(4P).
If f € PTL(AP), then []f € PTL(AP).
If f € PTL(AP), then 0f e PTL(4P).
If f,g € PTL(4P), then f U g € PTL(4P).
If f € PTL(AP), then <>f e PTL(4P).

Nk wd =

Intuitively the following temporal formula states that :

- [1/. is the proposition that from every time instant, now and in the future the formula f
will be true.

- < > f, is the proposition that the formula f will ever perhaps now but definitely
sometime in the future, become true.

- f U g, is the proposition that the formula f will be true at least for all time instant from

the present until (but not including) the time when g becomes true, and the latter must

eventually happen.

- (@ f, 1s the proposition that f is true in the next time instant. The one immediately
following the present.

For a set AP, each formula f € PTL(AP) denotes a set || f| of runs over AP, defined by the
following rules,

1. |Soll is the runs sgs;s;... € AP” such thatsy € Sy, for all Sy < AP”.
v el = |Iflwlgl (v theunion of two sets).
| =fIl = AP®\|f] (all the runs except those of [/]]).
| [0/ isthe set of runs sgs; sy ... € AP such that the run s; s+ ... isin ||f] for all i.
| O] isthesetofruns sps;s;... € AP® suchthattheruns;s,... isin ||f] for alli.
If U gl is the set of runs s¢s; sy ... € AP® such that there is an i > O such that s; sj; ...
isin [|g]| and sjsj+; ... isin [|f| foralliforall j<i.

AN

Other Boolean connective could be defined as follows :
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- False = —True
- fAag=—((—f) v (—=g)) (conjunction)

- fog=(-Hvg (implication)
and other temporal operators :

- O0f=TrueUg (Eventually)

- Uf==0-f (Henceforth)

and others like the release operator (R) and the week until operator (W).

The following module gives the approximation of the PTL syntax written in Maude logic.

Formal Module PROP-TEMPORAL-LOGIC is

type Formula .
ops true false : = Formula .
op _* :Formula Formula < Formula [assoc comm prec 15] .
op _+ :Formula Formula = Formula [assoc comm prec 19] .
op ++ :Formula Formula < Formula [assoc comm prec 24] .
op ! :Formula-> Formula [prec 10] .
op -> :Formula Formula - Formula [prec 21] .
op <->_ :Formula Formula = Formula [prec 23] .
op []_: Formula - Formula [prec 13] .
op @_: Formula - Formula [prec 11] .
op <>_: Formula < Formula [prec 12] .
op _Uw_: Formula Formula = Formula [prec 15] .
op U _:Formula Formula = Formula [prec 14] .
vars XY ZV : Formula .
eq !(true) = false .
eq !(false) = true .
eq <> false = false .
eq <> true = true .
eq<><>X=<>X.
eq <> [I(<= X) = [I(=X).
eql@X=@(]X).
eq[XUwY)=[]X+Y).
eq@X*Y)=@X*@Y .
eq@X+Y)=@X+@Y.
e XUX+2)=XUY)+XU2Z).
eqfalse UX=X.
eq X U false = false .
eqtrue UX=<>X.
|

endformalModule
As it was introduced in the last presentation, the semantics of the PTL logic could be defined

using a satisfaction relation noted M, s [=f, where M is a Kripke structure, s an initial state of
M and f a formula of PTL(4P). The meaning of such relation is to give a satisfaction function
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between the states of a path (execution) and the formula f. In other words it is to say that the
formula f* holds for each state of a path with s its initial state.
Such satisfaction relation is declared in Maude using the following module :

Formal Module SATISFACTION is
Protecting PROP-TEMPORAL-LOGIC .
Type State < States .

Op |=_:State Formula - State .
endformalModule

Using such code program (Model-checker), we have verified some well-known benchmarks as
depicted in the following table.

Table 1. Experimental Results of the PTL model-checker

Model name | Time PTL- | rewrites | Time
tool Number | (ms)
Muller C 0.1s 70 40
Larsl 3.0s 124 0
adder 0.1s 195 0
Mul4 158.7s 216 10
Dffl 0.0 53 20
Josko3 105.6 s 21 10
Josko4 18.0s 20 10
Mutex1 135 91 30
Mutex2 19.1s 93 20
Peterson - 103 160
Scc-event - 23 10
Josko5 - 20 10
Muller-C2 - 20 10
Mutex - 65 10
CallHear - 34 10
Hailpern - 70 20

3. Simulation and Animation Module

Simulation technique is nothing more than the imitation of reality. It proceeds by building a
discrete model of reality. A random generator is used to take samples from, for example, order
arrivals, processing times, batch sizes, etc., using a user-defined distribution. Well known
distributions are: negative exponential, normal, Erlang and uniform laws.

A package is usually designed and a concept such as delay is translated into processing. Packages
can make an animation of the simulated process and sees if the model is running the way it is
supposed to, and reporting execution results. The correctness of the model and the correctness of
the results are checked using some statistical tests (e g. x test).

When simulating a distributed system, visualization of the system behavior seems necessary and
become more critical for larger specifications. The system of a specification is given using the
notion of traces or runs which can be taken as the composition of concurrent actions labeling
transition system and taking into account the states and the transitions of a run. The behavior of a
system is the set of all the runs also said paths. For example figure 4 represents the well-known
Alternating Bit Protocol (ABP), the animation protocol of the simulation and the generated
traces.
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3.1. The Simjava Packages

Java is an object-oriented programming language for writing portable applications which can be
embedded in html. Java tool offers some advantages as for example, security, simplicity and
reliability and the use of libraries called packages. The Java’s most interesting feature is its
support for concurrency through threads which are small parts of the java program that can be
executed in parallel and uses timed parameter. Such features are very useful to develop
simulation software. All such characteristics have been embedded in the core of Simjava which
is a discrete event simulation package [11], written by Ross McNab and Fred Howell in Java
Language and based on Hase++ library developed in C++. Conceptually Simjava is based on the
three packages: eduni.SimJava, eduni.SimAnim and eduni.SimDiag.

3.2. Illustration by Example

In the following, we illustrate the graphical system using a rapid description of the ABP protocol
(Alternating Bit Protocol) [10]. The ABP protocol is composed of a sender, a receiver, a data
channel, a medium link between the sender and the receiver, and the acknowledge channel
linking the receiver with the sender (receiver to the sender). A producer generating messages
(data-frames), is simulated using a random numbers generator, and a consumer which is the last
element of the system (figure 6).

Da!acharme.f

[Frosies] == /m [Comsumar]

Figure 5 : Graphical description of the ABP protocol.

We will give more detail of the behavior and the functionality of the ABP protocol. As we can
see in figure 5 graphic, the protocol is a distributed system composed of the following objects:
the producer at the left side, the sender object, in the center side both the data channel (top) and
the acknowledge channel (bottom) and finally, the receiver and the consumer at the right side.

In this work we will not explain how we have created such graphic, we give just a part of the
generated Java-code, for example, we will detail the sender object. First of all we have to declare
the following libraries of the Java programming language and some extension libraries of the
SimJava.

import java.awt.®;
import java.awt.event.*;
import eduni.simjava.*;
import eduni.simanim.*;
import java.applet.*;
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//****The Sender code is:

public class Sender extends Sim_entity {
//*** The sender has three communication ports—1 input and 2 outputs
private Sim_port Portl;
private Sim_port Port3;
private Sim_port Port2;
static int state=0;
public Sender ( String name,int x,int y )
{ super ( name,"Inter".x,y );
//**¥* Declaration of the ports position in the sender box
Portl =new Sim_port("Port1","portRed",Anim_port. LEFT,10);
|
|
|
add_port(Portl);
Port3 =new Sim_port("Port3","portRed",Anim_port. BOTTOM,10);
add_port(Port3);
{ Protocol ABP.tab[0]=0;
Protocol_ABP jobField.insertText("Envoie encore le "+Protocol_ABP.i +" message\n",1);
sim_schedule(Port2, 0.0, 1,Protocol ABP.tab);
if(Protocol_ABP.show_msg) sim_trace(1, "S Port2 M"+Protocol_ABP.i);
4 else{ Protocol ABP jobField.insertText("Bien\n",1);
state=0;

I

The other objects code are generated in a similar way, except for the producer object code which
contains a random generation function that could be chosen by the user. For example in the code
generated using the ABP protocol (figure 5), such declaration is in the following form :

public class Producer extends Sim_entity {
private Sim_port Portl;
private Sim_uniform_obj delay;
private int max;
public Producer ( String name, int max, int x, int'y )
{
super ( name, "Emetteur", X,y );
Portl =new Sim_port("Port1","portRed",Anim_port.RIGHT,10);
add_port(Portl);
delay = new Sim_uniform_obj("",0.2,10,(int)System.currentTimeMillis() )};

eidatimion = I = I sip
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Figure 6 : Simulation and Animation of ABP protocol run.
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4. Conclusion

We have presented a system based on a specification module called SPECIF, a simulation and a
verification module called VERIF. The VERIF system uses a functional description of temporal
rewriting logic and the PTL logic embedded in the system using an implementation based on the
axiomatization of PTL. The three modules are monitored by an internal program to link the
communication between them and to translate the graphical description into Java programs and
into rewriting modules. The results of the rewriting logic module are executed using Maude
system. As experimental results we have used VERIF module to verify some well-known
benchmarks as presented in Table 1. We have also shown how the translator program could
proceed to translate a graphic form as UML models to SPECIF form and to Java code used to
supply the simulation program to get the dynamic behavior by animation. We think that, the idea
of using formal methods to specify and to verify distributed software in an object programming
framework seems easy and could improve the understanding of many problems due to the
complexity in space and in time. We are now sure, from our experience in the development of
VALID-2, that the system could take more advantages from its open front-end to incorporate
existing specification and verification tools and new description as for example the notion of
time in RT-UML and temporal constraints. All such characteristics are easily monitored by the
rewriting logic of the Maude language. Until now, SimJava simulation packages seem well
adapted for sequential deterministic processes and the notion of multithreading are well
consumed, plus the timed primitives can solve many problems. Finally, we can say that VALID-2
has been lastly improved by incorporating a module ROBDD (reduced ordered binary decision
diagram) used for the symbolic simulation of hardware systems.
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