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Abstract

We present an automatic and terminating approach for verifying e-commerce protocols. It is based on a
powerful formal declarative programming language based on rewriting logic. The model checking is an
endeavor to the axiomatization of computational tree logic operators and offer a new deductive ability to
transform Kripke structure formula to normal form and thus to check easily its validity. A computation and
deduction scheme will be introduced to prove the feasibility of rewriting logic to deal with verification
systems. Experimental results are obtained from the application of the developed tool to an e-business
procedure based on an IEC (International Electrotechnical Commission) standard 625-1 1979 interface
protocol for programmable measuring instruments.
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1. Introduction

The large demand for electronic access to information and electronic transactions in internet
and World Wide Web have demonstrated that providers and consumers need a reasonable
protection for their transactions. Thus, numerous protocols have been proposed that claim to
guaranty the integrity of transaction between interveners. However, many of such protocol
procedures fail to prevent transaction errors. Nowadays, specifications and verification of
reactive systems such as digital hardware circuits are conveniently given in modal logics. A
failure in the computer software system could have serious consequences and cause the loss
of human lives and hundred’s of millions (eg. Ariane rocket flight 501 and Intel's Pentium
processor).

The system that is to be checked can be directly verified using three main categories which
are formal techniques as the theorem provers such as ACL2 [1], Model-Checking as the
symbolic model checker of McMillan (SMV) [2], and the well-known simulation techniques.
Unhappily, simulation techniques are not capable to trace out all the behavior expectations
and the proof systems (provers) are hard to be used by inexperienced practitioner.

During the last decades, a lot of techniques and theoretical formalisms have been proposed to
abstract human thinking to resolve complex problems. Among such formal techniques,
Rewriting Logic due to Meseguer et al. [3], constitutes a universal framework for unifying



different computational models as Turing computable numbers, Petri Nets [4], linear logic
[5], and has been extended to real-time concepts of concurrent and hybrid system and so on.
Maude system [3], developed by the team of Meseguer at the SRI Laboratory, which is
similar to ELAN [6] and Cafe-Obj is essentially based on the semantic of the rewriting logic.

In this paper we give an overview of the rewriting logic and its application to obtain solution
of critical systems based-constraints. Experimental results are obtained from the application
of the developed tool to verify a part of the trade procedure of an e-business protocol based
on an IEC (International Electrotechnical Commission) standard 625-1 1979 interface
protocol for programmable measuring instruments [7]. We present two attempts to deal with
verification based on rewriting logic. The first one is a deductive method modulo some
axioms of CTL operators, and the second try to compute CTL fixpoints using a SAT
procedure written in Maude. Both the two methods give a good results, but in case of
complex systems they fail in a reasonable time.

The paper is organised as follows. In section 2 we introduce the theory of rewriting logic.
Section 3 presents the Maude System and its language and section 4 deals with the
verification of Specification using Rewriting Logic. Section 5, presents computational tree
logic as a model of verification and we give all the theoretical aspects of model checking and
the rewriting logic approach as a model of deductive computation. Finally, in section 5 we
demonstrate the feasibility of our approach on a benchmark.

2. The Theory of Rewriting Logic

The specification language is based on Rewriting logic as developed by Meseguer et al. [3].
Rewriting logic is a unified and reflexive logic based on both rewriting theory and equational
logic extended to membership equational logic which gives a rigorous expressiveness and a
good integration of logics . A signature in this logic is a pair (2, E) with 2'a ranked alphabet
of function symbols and E a set of J-axioms (equations). The sentences are rules of the
forms [t4]g—[ts]g With 74 and g are J-terms and a theory is a rewrite system S = (2, E, L,
R), where L is a set of labels and R is a collection of labelled and possibly conditional rules.
This generalises the usual notion of theory, which is typically defined as a pair consisting of
a signature and a set of sentences. When specifying real-time systems, a time domain
satisfying general axioms is needed. We then define a parameter called fime. The time is
considered as a particular action, acting on states of the system. The result of time action is
considered as stimuli and is specified using a rewrite rule.

3. The Maude System and its Language

The Maude language specifies rewriting logic theories. Data types are defined algebraically
by equations and the dynamic behavior of a system is defined by rewrite rules which describe
how a part of the state can change in one step.

A Maude program (at the meta-level) defines different strategies guiding the execution of
another Maude program. In this way Maude provides a flexible execution strategy and
parameterized programming language where the user can define all the strategies he needs
for analyzing his specification. The current version of the interpreter can perform up to 1.3
million rewrites per second, making Maude a very sophisticated tool which uses all kinds of
techniques to improve performance and competitive with general- purpose programming
languages in terms of efficiency.
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The Maude system is a rewrite based interpreter for order-sorted logic [8]. The basis for the
executable program is a theory. Theories can be defined using the notion of sorts, subsorts,
variables, operators or operations and properties on these operators. The properties on the
basic objects are axiomatized by equations and rewrite rules.

To better explain how Maude could perform a computation step, we present a classical
example known as natural numbers in Peano form. The data structure of Peano form deal
with the non-negative integers built up using the 0 and S function symbols. Every element of
this structure can be represented by a variable-free (ground) term that evolves 0 and S only.
Suppose now we define the addition operation + by the following axioms:

x + 0 = X (D
X+ S(y) Sx+y) 2)

It is clear that adding two integers using the above two equations, yields a non negative
integer. For instance, S(S(0)) + S(S(0)) equates to S(S(S(S(0)))) by deductive reasoning in
term of the application twice the second axioms and once the first. Using such reasoning way,
we can easily demonstrate by induction the property of associativity as follow :

(x+y)+z = x+(y+z) >(x+y)+S@)=x+(y+5(2)). )

Proof: We reason using the left and the right sides of the equation. We deduce from the left
hand side (LHS),

LHS: (x+y)+S(z) = S(x+y)+z) --- by rule 2
S(x+y)+z) = SKx+(y+2z) --- by induction hypothesis

The right hand side (RHS) gives :

RHS: x+(y+S(z)) = x+S(y+2z) --- by rule 2
x+S(y+z) = SE+(y+z) --- by rule 2

4. Verification using Rewriting Logic

Maude language and its respective tool may be used for verifying assumption of critical
systems. Maude is able to combine synchronous and asynchronous modelling of the
rewriting logic and the robustness and the flexibility of object-oriented construction (for
architecture and data design). Modeling critical systems one need to represent the relative
behaviour using what we call a Boolean Automaton. Such representation is basically a kind
of finite state machine encoded by a set of Boolean variables and equations. Boolean
variables are used to represent program signals (lines of communication) and states. Each
Boolean variable may be true or false, it depends of the presence of such signal. Input and
output signals (variables) are joined to form Boolean equations. Thus, CTL (Computation
Tree Logic) [9], a branching time temporal logic with future operation, can be used for
specifying properties. Using the Symbolic Model Checker [2] and the relations in term of
equations furnished by the Boolean Automaton, one can verify for example the Safety and
the Fairness specification. In the sequel we introduce Propositionnal Calculus Logic
presented as a module in Maude, which will be used by the system to obtain a reduction
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form in term of normal form. Such presentation is followed by a description of the CTL logic
and a symbolic model checking algorithm.

S. Computational Tree Logic as a Model of Verification

In recent years, there has been much effort to extend the wide range of theory and methods
for verification of critical real time systems. The result of such intensive work was the ability
to make difference between on modal-temporal of finite and infinite verification models and
others like simulation, theorems proving compilers and equivalence checking. Temporal
logic models called model checking are divided into two well known methods-- a linear
temporal logic (PTL, LTL, PLTL) [10-11] introduced by Pnueli as a formal language used
for modelling and checking critical systems. Such temporal logics are called linear, because
the qualitative notion of time is linear, because at each moment of time there is only one
possible successor state and thus only one possible future. The other kind of temporal logic
introduced by Clarke & Emerson in [9-12] and independently by Quielle & Sifakis [11],
takes into account non deterministic and branching time notions of concurrent systems. Such
logic is called Computational tree logic (CTL), which was extended some time after to CTL*
the union of both LTL and CTL, and TCTL (Timed CTL) to verify real time systems. The
family of CTL logic is not based on a linear notion of time, but on a branching notion of
time. Branching time refers to the fact that at each moment there may be several different
possible futures. Temporal logics are interpreted using the satisfaction relation defined in
terms of computation, noted «, s |= A, which means that the temporal formula A is verified
(holds) on a path (a sequence of states) of a model « also called Kripke structure and takes s
as the first state of the path. The semantics of CTL is based on tree of states rather than a
sequence of states as in linear temporal logics.

The temporal operators in branching temporal logic allow the expression of properties of
(some or all) computations of a system. For example the CTL operators EF ¢ (there exist a
computation along which F¢ holds), EG ¢, AF ¢ and AG ¢.

The most elementary statements about systems that one can make in CTL are atomic
propositions, as in the definition of PLTL. The set of atomic propositions is denoted by AP,
with typical elements p, ¢, and r.

A decision procedure for the propositionnal calculus provides the usual truth constants (true,
false) and the following usual connectives (operators): A (and), v (or), nor (exclusive or), =
(implication), < (equivalence) and the negation operator —. The procedure reduce the
tautology formulae to the constant true and all the others to the canonical form modulo
associativity and commutativity.

Thus the logic of CTL consists of Propositional Logic augmented with path quantifiers and
temporal operators are defined as follows:

e Path quantifiers - describe branching structure of the tree,

— A (for all computation paths)
— E (for some computation path = there exists a path)

e Temporal operators - describe propetrties of a path through the tree

— X (next time, next state)
— F (future state, eventually, finally)
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— G (always, globally)
— U (until)
— R (release, dual of U)

Definition 1. (Syntax of CTL) The syntax of CTL is made out of state formulae and path
formulae (a path is a sequence of states connected via transitions) and is the smallest set of
all state formulae as introduced by the following assumptions:

(i) pis a state-formula

(if) If ¢ is a state-formula, then —¢ is a state-formula

(iii) If ¢ and ¥ are state-formulae, then ¢V is a state-formula
(iv) If ¢ is a path-formula, then E ¢ and A ¢ are state-formulae
(v) If ¢ is a state-formula, then X ¢ is a path-formula

(vi) If$ and y are state-formulae, then ¢ U vy are state-formulae
(vii) Anything else is neither a state nor a path-formula

5.1 Semantic of Computational Tree Logic (CTL)
The semantics of CTL is defined over a Kripke structure K

Definition 2. (Kripke structure) A Kripke structure « is a tuple (S,7,Sy, AP, L) where
e Sisacountable set of states,

T < S x S is the transition relation,

Sp < Sis the set of initial states,

AP is the set of atomic propositions,

L : 822" is the labelling function

A formula is said to hold in « ifit is satisfied by every initial state of x.

Definition 3. (Path) A path in Kripke structure «(S,7,S), AP, L) is an infinite sequence of
states so Sy S2 ... such that (s;, si1) € T foralli >0.

{x ¢0‘¢ (S(lO)

fx
U

=0} (s}, 0)
D . 2,)\@,2)
S

{x=0} (s3,3) / (s3

3)
{x =t x=0) \
(sz‘/ \M) (s ) ) 34

"

Figure 1 : A Kripke structure and its infinite tree
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Using the CTL operators EX, EG and EU, it is possible to find equivalent forms of CTL
formulae.

H  AXe - EX(—9)

(i) EFo = E(True U o)

(i) AGo = — EF(—¢)

(iv) AFo = — EG(—9o)

V) AlpUyl = = E[-yU0 A= y)] A—EG(—y)
(V) A[pRy] = = E[-oU-=y]

(vi) E[pRy] = = A[-oU-—y]

Example of such formulae equivalence, the safety condition,
- AG(— (Gl A G2)) = - EF(G1AG2)

of the mutual exclusion (protocol), which signify that no both processes at the same time be
in the critical section, and the Fairness Condition,

- EF(G1vG2)=E(true U (Gl vG2))
which means, that eventually one process enter the critical section.

Definition 4. (Semantics of CTL)

Let p € AP be an atomic proposition, k a Kripke structure, a state s € S, @ and 'V a state
formulae of CTL, and ¢ a path-formula of CTL. The satisfaction relation |=is defined for the
state-formulae as follows :

e s|=p iff p e L(s).

o s=—@ iff  not (s |= D).

o s=dvY¥Y iff (o|=D)or(c=Y).

e sl=Eo iff o |= ¢ for some paths of k: o € Paths(s).
o sl=Ao iff o |= o forall paths of k : o € Paths(s).

While, the path-formula relation is defined as follow :

e oFXD iff o[l]F®.
e oFOUVY iff (Fj=0.([j]F v A (V05k<. o[k] |= D).

The interpretation of atomic propositions as the negation and the conjunction operators are as
usual.

Example of a deductive way to verify a specification in Computational Tree Logic.
Derivation of : EG @,
sFEG® <

{definition of EG}
S |= —AF - <
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{definition of F}

s|=— A(true U —-d)) &

{semantic of —}

—(s |= A(true U —®)) <

{semantic of AU }

—(Vo e Paths(s). (3j > 0. (c[j] |F =P A (V0<k<]. o[k] |=true) )) <
{s |= true for all state s; predicate calculus}

JoePaths(s).(Vj 2 0. o[j] = D)

In CTL model checking, there are two approach’s, one based on the axiomatisation of the
model formulae and the second is based on the fixpoints calculus. In the sequel of this
presentation the two methods will be developed and proved to be well-suited for the
rewriting logic.

5.1 Formulae Axiomatization version rewriting rules

An interesting research direction consists of the application of rewriting logic in combining a
rewrite system R with a set of simplification rules valid in Kripke structure.

We have seen that rather than a reasoning on the basis of the semantics, using the syntactic
form of CTL formulae, axioms can be deduced from atomic formulae and used to prove the
equivalence of CTL formulas. An important axiom for LTL is the expansion axiom for until:

PUyY & yv(DAX(DUWy)

For CTL, axioms similar to the expansion axiom exist. We note that the linear temporal
operator U can be prefixed with either an existential or a universal path quantifier, we have
axioms for E (® U y) and A (® U ). These axioms are listed in the last two rows of
Table 1. The soundness of these axioms can be proved using the semantics of CTL.

Table 1. Expansion axioms for CTL

EF ®= ® v EX(EF ©) (axiom 1)
AF ®= @ v AX(AF @) (axiom 2)
EG ®= ® A EX(EG ®) (axiom 3)
AGD = ® A AX(AG D) (axiom 4)
E(@Uvy) = yv(®AEXE®U vy)) (axiom 5)
AD@Uvy) = yv(@AAXAD U y)) (axiom 6)

In the following proof we can show that AF @ and ® v AX(AF ®) are equivalent, and so it
is for EG ® and ® A EX(EG ®), and thus they could be substituted to each other.

Proofof: {AF ® = ©v AX(AF @)}

AF O <

{definition of AF}

A(true U @) <

{axiom for A(® U y)}

O v (true A AX A(true U @))) <
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{predicate calculus, definition of AF}
@ v AX(AF ®).

Proofof . EG ®= ® A EX(EG D).

EGD <

{definition of EG}

{results after the derivation}
{predicate calculus}

O A AX((AF —)) <
{definition of AX}
{definition of EG}

O A EX((EG D).

The following simplification rules could be used to reduce the number of CTL temporal
operators and thus to find the normal form of a formula. We distinguish in table 2, two sets of
rules. The first set consists of rules built over temporal and Boolean operators, and the
second set consists of only temporal rules. The system of such rules decrease the depth of
releases, the number of operators, and thus they (the rules) could be verified to be
terminating, but not confluent.

Table 2. A rewriting CTL axioms

(i) AGDPAAG Y — AG(D A )
(i) EF®OVEFy — EF(®v y)
(iii) EG((y v EGD)v (® v EGy)) — EG® v EGy
(iv) AF((y A AF®)v (® A AFy)) - EGO A EGy
(V) A(PA @) U (A(PUY) A y° v A(@UY’) A
Y) > A@U y) A A(@°Uy’)

AGAG® - AG®

EFEF ® — EF ®

AGEFAGEF ® — EFAGEF @

EFAGEFAG ®— AGEFAG ®

EGEG ® — EG ®

AFAF ® — AF @

AFEGAF @ — EGAF ®

EGAFEG ® — AFEG ®

AGEF ® — AG ®

AFAF ® — AF @

AFAGAF ® — AGAF @

EGEFEG ® — EFEG ®

AGAFAG ® — AFAG @

EFEGEF ® — EGEF @

A(GUA(OUY)) — A(®Uy)

AFEGAGAF ©® — EGAGAF @

EGAFEFEG ® — AFEFEG ®

AGAFEFAGEF ® — AFEFAGEF ®

EFEGAGEFAG ® — EGAGEFAG ®
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5.2 Fixpoints model checking

The CTL model-checking is a procedure based on the theorem of Clarke and Emerson [12],
which is defined as : given a model (Kripke structure) and a CTL formula P, the algorithm
will return a set of those states of the model that satisfy P. Temporal logic formulas are
evaluated to a state in the model as a basic CTL formulae :

EX (f) |true in state s if fis true in some successors of s (there exists a next state of s
for which f'holds)

AX (f) |true in state s if fis true for all successors of s (for all next states of s fis
true)

EG (f) |true in s if fholds in every state along some path emanating from s (there
exists a path ...)

AG (f) |true in s if fholds in every state along all paths emanating from s (for all
paths, globally)

EF (g) | there exists a path which eventually contains a state in which g is true

AF (g) | for all paths, eventually there is state in which g holds

fUg |true if there is a state in the path where g holds, and at every previous state f'
holds

Typical of CTL formulae (for example for a sender and receiver of ABP protocol) are:

EF ( start » —ready): eventually a state is reached where start holds and ready does not
hold
AG (req A AF ack) : any time request occurs, it will be eventually acknowledged

We remark that EGp and E[¢ U ] are computed respectively as the greatest fixpoint using
the recursive function 1(Z) = ¢ A EX Z and the least fixpoint function ©(Z) = ¢ v (¢ A EX
7). The fixpoints are determined iteratively by approximations as defined by Theorem 1 and
Theorem 2. A computation in such case lead to seek the states that satisfy the required
property and reachable in one more step.

The following theorems (1 and 2), introduce the fixpoint approximation theory.

Theorem 1. (Tarski & Knaster, 1955)
o If fis a monotonic function, then it has a least fixpoint, W Z.[ f(Z)] = N {Z | f(Z)=
7}, and a greatest fixpoint, v Z.[ f(Z)] = {Z | f(Z)=Z}.
o [ffis monotonic, f has the least (greatest) fixpoint which is the intersection (union)
of all the fixpoints.

Theorem 2. (Tarski & Knaster, 1955)
o Iff is U- continuous , uZ.[f{ Z)] = Ui f1 (D), i= 1;00and
e iffis N-continuous , VZ[f( Z)] = Nifi(S), i=1; .

Each fixpoint can be computed as the limit of a series of approximations. The following
theorem due to Clarke & Emerson determines CTL operators fixpoints.
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Theorem 3. (Clarke and Emerson, 1981) [12].

Afp = pvAXAFp = uZ[pvAXZ]
EFp = pvEXEFp = =ul[pvEXZ]
AGp = pAAXAGp = vZ[prAXZ]
EGp = pAEXEGp = vZ[pAEXZ]
A(pUg) = qvprAXA(pUg) = puZ[qvprAX2)]
E(pUy = qv(p AEXE(pUg) = uZ[qv(pAEXZ)]

Model checking algorithms in the simple form proceed as follows:

Given a model xand a temporal logic formula ¢, find a set of states that satisfy ¢
{s € S: M,s|= ¢ } is performed using the following algorithms :

Algorithm 1.

Step 1:
Step 2:
Step 3:
Step 4:
Step 5:

Algorithm 2

label each state s with the set label(s) of sub-formulas of ¢ which are true in s.
i = 0; label(s) = L(s)

i =i+ 1; Process formulas with (7 -/) nested CTL operators

Add the processed formulae to the labelling of each state in which it is true
Continue until closure. Result: M,s |= ¢ iff ¢ € label

e eval takes a CTL formula as its argument and returns the rewriting form after
transformation for the set of states that satisfy the formula,

¢ function eval( f)

casec

fan atomic proposition. return f;

f=-p return — eval(p);
f=pvq return eval(p) veval(g),
=EXp return  evalEX(eval(p));
f=E(Uq) : return evalEU(eval(p), eval(q), False);
1 =EGp return evalEG(eval(p), True)
end case

end function

* function evalEX(p) = Fv'(R Ap’)

* function evalEU(p, g, y)
v ' =q v(p nevalEX(y)) ;
if y’=y then returny;
else return evalEU( p, q, v');
end function;
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6. Experiment results

A contractual scenario is an e-business procedure based on an IEC (International
Electrotechnical Commission) standard 625-1 1979 interface protocol for programmable
measuring instruments. Such procedure which is a protocol, includes a 3-wire handshake
intended to synchronise the transmission of data bytes over a bus to allow a single source to
synchronise with a number of acceptors [7]. The trade procedure operates as follows: the
seller can indicate that he has goods available for delivery (GAV). The purchasers can
indicate that they are ready to take goods—that is, they request goods—(RFG) and can also
indicate when they have received goods (GAC). The required sequence of events for the
transfer of goods from the seller to the purchasers is as follows: GAV, RFG, GAC are
initially set to false (to say that the seller is not ready for transaction, because for whatever
reason some problems prevent him, for example because he has no goods available or
because for some other private reasons), and remain false until all purchasers are ready to
receive goods, at which time RFG becomes true. The seller may then assert GAV to true and
RFG become false. When all purchasers have accepted a specified quantity of goods, GAC
becomes true and only then, GAV may become false. Finally the purchaser’s set GAC back
to false and the cycle may repeat. To illustrate the verification of the trading protocol, one
must to describe the behaviour using states diagram. First of all, the requirement items
identified are transformed using specification parameters considered as Boolean variables.
We note that such problem has been approached in [15] using a composition technique based
on Integer Programming and Genetic Algorithms.
Consider the following trading protocol specification. A request can be made for goods, and
the goods can be sent. The following automaton graph (Kripke structure) models the trading
communication for setting the transactions. The states of the Kripke structure model are
explained as follows:
e The initial state PNR (Purchaser Not Ready), labelled by the predicate RFG F A
GAC F,
e The second state PR (Purchaser Ready), labelled by the predicate RFG_T A GAC _F,
e The third state PS (Purchaser Start transactions), labelled by the predicate RFG T A
GAC F,
e The last state PF (Purchaser Finish transactions) labelled by the predicate RFG F A
GAC T.

For simplicity we suppose that the prepositional variable used to model the communication
relations between purchaser’s and seller’s-- RFG F, RFG T, GAC F and GAC_T are
replaced respectively by ~Req, Req, ~Sent and Sent. Following the definition of Kripke
structure model, we obtain the graph sketched in figure 3.

Figure 2 : Purchaser view of trade procedure Kripke model
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In the same way, we model the symmetric part of the global system (trade protocol), which is
the Seller’s automaton. The states of the automaton will be labelled respectively by SNR
(seller’s not ready for transaction), SR (seller’s ready for transaction), SS (seller send the
product) and SF (seller’s finished transaction).

To model the global system, we have to obtain the simplified composition graph of the
seller’s and the purchaser’s automata. In such operation the labels are used in providing
synchronisation information in the composition, in the sense that a transition, t, from one
automaton synchronises with a transition, t’, from another if the labels of the two transitions
are both equivalently the same. To be effective we proceed by the juxtaposition of the
nodes (states) of the two automata and to construct the transition relations as discussed
above.

The state diagram in the following figure (figure 3) represents the composition graph of the
Purchaser automaton graph with those of the Seller automaton graph.

Figure 3 : Automaton of the Seller and Purchaser models Composition

We try now to be more exact. The above graphs are a graphical specification of the system. If
we consider the model of the purchaser (figure 2), such specification is translated into a
Boolean expression. The model uses four Boolean variables: Req, Sent, Req’, and Sent’. Req
and Sent represent variables in the present state, while Req” and Sent’ represent variables in a
next state. Each transition (arrow) in the state space is modelled as a conjunction of these
variables. For example the bottom arrow is modelled as: (—Req A —Sent) and (Req’ A
—Sent’). The whole graph is then a disjunction of these conjunctions. Therefore, in this
example the Boolean expression (transition relation) for the state space is:

R = (-Req A—=Sent AReq” A —Sent’)v(Rega—Sentn — Req’A —Sent’)v(Req
A —SentaReq’ A Sent’)v(Req A Senta —Req’ASent’)v (—Req A Sent A —Req’ A —=Sent’)

The following table (table 3) gives the results (satisfiability) of the trading protocol.. The
results show that the problem is satisfiable in the following cases:
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Table 3. Solutions of the trading protocol

Solutionn®| Req | Sent |Req’|Sent’
|
1 false | true |false | false
2 false | false | true | false
3 true | false | false | false
4 true | false | true | true
5 true | true |false| True

7. Checking some Properties of the E -business Trade Protocol

The ideal trade procedure (business protocol) must covers all the aspects of the exchange
mode between sellers and purchasers and to prevent conflict situations to provide safety
property (nothing bad will happen), liveness property (“something good will happen™) and
ill-defined contract. In the following, we give some conditions which must be checked to
avoid system disturbance.

We wish to establish that the transaction between seller and any of the » purchaser’s will
eventually terminate.

The condition is expressed below (S, is the initial state).

So|= G (EF (SNR A A ( PNR(1) A PNR(2) A ... A PNR(n)))).

Where :
SNR : seller not ready.
PNR : purchase not ready.
SR : seller ready.
PR : purchase ready .

For the second property which we have to verify is to establish that there is no situation
where a purchaser’s obligation to pay for goods is activated before such goods available and
delivered to him:
S0 [= AG((—PS(i) A PS(i)) = SellersGAV_T)

Where :

PS : purchase starts,
and :
SellersGav_T : good are available of the sellers
In the following assumption, we show how to verify specification.

* EX( Req A Sent)

=3v.(RAp)
=3 (Req’, Sent ’). (R A (Req * A Sent *))
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=3 (Req’, Sent *). ((—Req A —Sent A Req” A —Sent’) v ( Req A —=Sent A — Req” A —Sent”)
v (Req A —Sent A Req” A Sent’) v (Req A Sent A —Req’ ASent’) v (—Req A Sent A —Req’
A —=Sent’)) A (Req’ A Sent ’))

The solution using Maude system of such problem is : Req A — Sent.
Meaning that state (1, 0) satisfies EX (Req A Sent) which corresponds to the state S2 of the
figure 2.

EF(Req A Sent) = ny. ((Req A Sent) v EXy)
We proceed iteratively until to reach the fixpoint

1 1[0] = (Req A Sent) v EX0 = (Req A Sent )

12 0] = (Req A Sent) v EX(Req A Sent)

= (Req A Sent) v ( Req A — Sent) {from the result of EX(v O AV 1)}

=Req

1 3 [0] = (Req A Sent) v EX( Req )

=(Req A Sent ) v [3 (Req’, Sent”). (R A Req) ]

= (Req A Sent) v [ (Req’, Sent’). ((—Req A =Sent A Req” A =Sent’) v ( Req A —Sent
A —Req” A =Sent’) v (Req A =Sent A Req” A Sent’) v (Req A Sent A —Req’ ASent’) v
(—Req A Sent A —Req’ A —=Sent’)) A Req’) ]

We iterate until t= Tiv.
7.1 Some Programming Maude Codes

In the following, we introduce just a little part of the main Maude program defined as
follows:
e The functional MU module : present the abstract data type used to define MU-
calculus as an equivalence approach to the CTL operator according to the theorem
of Clarke & Emerson (1981) [Theorem 3]. The general form is,

NuY (<> (YANMuZ(pV<>2)))),

and the operators Mu and Nu represent least and greatest fixed point operators
respectively.

e The CTL module presents the structure (operators and operations) and the simplification
rules.

Remarks : other modules have been neglected as for example the satisfaction module (SAT) based on
a Reduced Binary Decision Diagram.[13-14]

(fmod MU is

sorts Variable Prop Formula .

subsort Variable < Formula .

subsort Prop < Formula .

ops True False : > Prop .

op ~_: Formula - Formula [ prec 52 ] . *** Negative operator
op _A_:Formula Formula - Formula [ comm prec 55 ]. *** AND operator
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op _V_:Formula Formula = Formula [ comm prec 59 ]. ***OR -//-
op <> :Formula = Formula [ prec 53 ].

op ‘[‘]_: Formula = Formula [ prec 53 ].

op Mu__: Variable Formula = Formula [ prec 61 ].

op Nu__: Variable Formula = Formula [ prec 61 ].

endfim)

(fmod CTL is

protecting SAT .

protecting MU .

sort CTLFormula .

subsort Prop < CTLFormula .

op! :CTLFormula = CTLFormula [ prec 53 ].

ops EX_: CTLFormula - CTLFormula [ prec 53 ].

ops EG_ : CTLFormula > CTLFormula [ prec 63 ].

ops E U :CTLFormula CTLFormula = CTLFormula[ prec 63 ] .
ops AX : CTLFormula - CTLFormula [ prec 53 ].

ops EF_, AF ,AG_:CTLFormula - CTLFormula [ prec 63 ].
ops A U :CTLFormula CTLFormula - CTLFormula [ prec 63 ].
*#% equivalence between CTL operators according to the theorem 3
VarP Q P1P2:Formula.

eq AFP = PYAXAFP.

eq EFP = PVEXEFP.

eq AGP= PNAXAGP.

eq EGP = PAEXEGP.

eq APUQ)=QV(PNAXAPUQ).

eq EPUQ) =QV(PNEXEPUQ)).

**x* other reduction equivalence rules could be written in this part of the program, for example those
presented in the Table 2. ****

endfim)

8. Conclusion

Software and Hardware become more and more difficult to prove their correctness without
errors due to the size (variables and constraints) of the corresponding mathematical models.
To handle the complexity of the design, the necessity of looking for new techniques and
algorithms become imperative.

We have shown that testing Boolean formulae, specifying the dynamic structure of a critical
system is considered as an efficient Model Checking algorithm. The manipulation of such
formulae becomes more easy using a rewriting-based system framework like Maude. The
efficiency of Maude language is performed because of the deduction system of inference
rules which can simulates both sequential and parallel distributed systems. Such rules
facilitate the normalisation (normal form) of the corresponding model to deal practically with
CTL and to compare the specification and the implementation of critical systems in term of
the axiomatization of the Boolean equations. As an extension of the actual work, we plan to
generalize the rewriting logic directly to express CTL logic using the eval function presented
in the Algorithm 2, instead of fixpoints-search model checking algorithms. This future
perspective opens interesting implementation problems due to the efficiency of the
theoretical point of view aspect of rewriting logic and the efficient Maude engine which is
planned to execute 15 millions instruction per second.
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