

Performance Evaluation of Multidimensional Transpose Parallel
FFT Algorithm on PC Cluster

Humayun Baig Meerja and Sirajuddin Shaik
Department of Information and Computer Science
King Fahad University of Petroleum and Minerals

KFUPM#506, Dhahran 31261, Saudi Arabia
E-Mail: {humayun, siraj}@ccse.kfupm.edu.sa

Abstract

 In this paper, we present the performance evaluation of multidimensional transpose parallel Fast
Fourier Transform (FFT) algorithm on pc cluster, which is basic component in applications such as the
pseudospectral methods. This algorithm is implemented and analyzed on 8-processor cluster by taking 3D FFT as an
example. Communication is based upon the standard portable Message Passing Interface (MPI). We have shown that
processor scaling for execution time at fixed problem size can be obtained provided that transpose algorithm is
optimized for simultaneous block communication. We have also shown that for the large problem sizes speed up and
efficiency is good.

Keywords: FFT, Pc cluster, MPI, speedup, efficiency, communication time

1. Introduction

A large variety of FFT algorithms are available to scientists that use the conventional serial or
vector computers. However for parallel machines, the choice of FFT algorithms is very
limited. In applications such as the pseudospectral methods for solving partial differential
equations (PDE's), a number of multidimensional FFT's are computed per time step. The
other scientific and technical applications in which FFT used are Time Series and Wave
Analysis, solving Linear Partial Differential Equations, Convolution, Digital Signal
Processing and Image Filtering etc. The speed of the FFT computation is therefore very
critical to any large application using the pseudospectral method. Since such very large
computations are feasible mostly on only parallel machines using MPI �[1] , there is a need for
fast multidimensional FFT algorithms for parallel machines.

The approach to computing multidimensional FFT's on parallel machines is currently under
debate. There are two methods that are possible �[2]�[3]. One of the approaches is the

``Transpose Method''. In this method, planes between nodes divide data. For example, in the
three-dimensional transform, each node has a number of planes on which it computes two-
dimensional FFT's. Next, a distributed transpose rearranges the data in such a way that the
FFT along the third dimension can be computed locally. The parallel aspect of this approach
is limited to the distributed transpose, which is equivalent to a standard exchange problem
�[3]. Here, each node sends data to and receives data from all other nodes during distributed
transpose. This method is fairly easy and has been implemented for a number of applications.

The organization of material in this paper is as follows: Section 2 briefly describes and
discusses transpose parallel FFT algorithm for 3-dimention FFT, overview of the used cluster
architecture and the methodology used during the experiment. Section 3 analyzes the
performance of the transpose algorithm. Section 4 ends with conclusion.

2.0 Methodology:

2.1 The generalized Transpose Algorithm
In the two-dimensional transpose algorithm, the input size n is arranged in an n x n two-
dimensional array that is portioned along one dimension on p processes.

Figure 1: Data distribution in the three-dimension transpose algorithm for n-point FFT

on p processes

 As the extension of this scheme, the n data points to be arranged in a 1/31/31/3 nnn ×× three-
dimension array mapped onto a logical pp × two-dimension mesh of processes.figure1

illustrate this mapping. From the figure 1 each process has (n1/3 / p) x (n1/3 / p) x n1/3

=n/p elements of data .In general, the three-dimensional transpose algorithm works in five
phases:

1. In the first phase, n1/3 –point are computed on all the rows along the z-axis.
2. In the second phase, all the n1/3 cross-sections of size n1/3x n1/3 along the y-z plane are
transposed. (See Figure 2 (a)).

Figure 2: Three Dimensional transpose Algorithm

3. In the third phase, n1/3 –point FFT’s are computed on all the rows of the modifies array
along the z-axis.
4. In the fourth phase, n1/3x n1/3 cross-sections along the x-z plane is transposed (See Figure 2
(b)).
5. In the fifth and final phase, n1/3-point FFT’s of all the rows along the z-axis are computed
again.

2.2 Environment Setup

The performance analysis was implemented and ran on a cluster of PCs with the hardware
and software configuration shown in the Table 1.

Hardware 8 PIII nodes
Processor Speed 1.0 GHz
Memory 2.0 GB / node
Interconnection 100 Mb/s Fast Ethernet

Operating System Linux 2.4.9-31
Parallel Environment MPICH
Compiler gcc 2.96

Table 1: PC cluster configuration

2.3 Hypothesis:

During this experiment, we assume all our input sequences to be real numbers with no
complex numbers and all operations are in real numbers. We also assume the complex root of
unity (W) equals to one all the way during the experiment.

3.0 Evaluation and testing

3.1 Communication and Computation time
The performance of 3D FFT is under optimal conditions are compared for varying problem
sizes. This is shown in the Figure 3 Figure 4 Figure 5 respectively. Test cases are shown for
three problem sizes N=64,128,256 .the processors are varied from 1 to 8.A fully switched
network with optimal message passing is employed.

FFT TIME

0.0000

0.0200

0.0400

0.0600

0.0800

0.1000

0.1200

0.1400

2 4 8

no of processors

tim
e

in
 s

ec total

comm

comp

Figure 3: FFT times (total computation, communication) for different processors for

the size 64.

FFT TIME

0.0000

0.2000

0.4000

0.6000

0.8000

1.0000

1.2000

2 4 8

no.o f Procs.

tim
e

in
 s

ec
.

Total

comm

comp

Figure 4: FFT times (total computation, communication) for different processors for the
size 128.

FFT TIME

0
2
4
6

8
10
12

2 4 8
number of processors

tim
e

(s
ec

on
ds

)

total

comm

comp

Figure 5: FFT times (total computation, communication) for different processors for

the size 256.

The total time shown in Figure 3 Figure 4 Figure 5 is broken into computation and
communication times. As the number of processors increases total time taken by the 3d FFT
is decreases gradually. The communication and computation times are also almost decreases
as the number of processors increases and some times communication and computation times
are same .so the scaling with processors works as expected especially at the large number of
processors.

3.2Efficiency
The efficiency is the ratio of total time on one processor to P times the P processor total time
�[4]. The efficiency of the 3D FFT for different no of Processors and for different problem
sizes is shown in the Figure 6.

0

0.2

0.4

0.6

0.8

1

1.2

1 2 4 8

number of processors

E
ff

ic
ie

nc
y 64

128

256

Figure 6:3D FFT efficiency as a function the number of processors for sizes 64,128, 256.

 It is apparent from the Figure 6 that efficiency is better for larger problem sizes.

3.3 Speedup

Speedup is ratio of computational time on single processor to the computational time on n
processors. The projection speedup on different number of processors for 3D FFT for
problem sizes 64,128,256 is shown in Figure 7. From the figure it is clear that as the number
of processor increases the speedup gradually increases for larger problem sizes.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

sp
ee

du
p

2 4 8

number of processors

speedup vs no of procs.

size 64

size 128

size 256

Figure 7:3D FFT speedup projections on problem sizes 64,128,256.

4.0 Conclusion

 We have discussed the transpose algorithm for 3D FFT using MPI on distributed memory
multiprocessor computer. Using this algorithm, communication is arranged for non-
overlapping pair-wise communication between the processors, due to which we achieved
high efficiency and speedup (lower computation time) for multi- dimensional FFT’s.

5.0 References

[1] William Gropp, Ewing Lusk, and Anthony Skjellum (1994) Standard portable
Message Passing Interface (MPI).

[2] M. Quinn. Parallel Computing: theory and practice. (1993) McGraw Hill Higher
Education.

[3] V. Kumar, A. Grama, A. Gupta, and G. Karypis.(1994) Introduction to Parallel
Computing, design and analysis of algorithms. Addison Wesley Higher Education.

[4] P.Dmitruk, L.P.Wang, H.Matthaeus, R.Zhang, D.Seckel, Scalable Parallel FFT for
spectral simulations on a Beowulf cluster.

Acknowledgment
We would like to thank King Fahad University of Petroleum and Minerals for its support and
resources to carry out this work.

	Button4:
	Button2:
	Button1:

