King Fahd University of Petroleum \& Minerals

College of Computer Sciences and Engineering
Department of Computer Engineering

COE 202: Fundamentals of Computer Engineering (071)

Assignment 3

(Note: All references to the text book are made to M. Morris Mano, "Digital Logic and Computer Design", Prentice-Hall, 1979.)

1. Design BCD to 7 segment display using ROM.
2. Design a circuit that changes the binary code to gray code using DCD/Encoder.
3. Design a combinational circuit that detects an error in the representation of a decimal digit in BCD. In other words, obtain a logic diagram whose output is logic-1 when the inputs contain an unused combination in the code.
4. Implement the four Boolean functions listed using three half-adder circuits (Fig. 4-2e on page 120 of the text book).
a. $\mathrm{D}=\mathrm{A}$ xor B xor C
b. $\mathrm{E}=\mathrm{A}^{\prime} \mathrm{BC}+\mathrm{AB}^{\prime} \mathrm{C}$
c. $\mathrm{F}=\mathrm{ABC}^{\prime}+\left(\mathrm{A}^{\prime \prime}+\mathrm{B}^{\prime}\right) \mathrm{C}$
d. $G=A B C$
5. Implement the Boolean function:
$\mathrm{F}=\mathrm{AB} \mathrm{CD}^{\prime}+\mathrm{A}^{\prime} \mathrm{BCD}^{\prime}+\mathrm{AB}^{\prime} \mathrm{C}^{\prime} \mathrm{D}+\mathrm{A}^{\prime} \mathrm{BC}^{\prime} \mathrm{D}$
with exclusive-OR and AND gates.
6. Implement an 8×1 Multiplexer.
7. Design an excess-3-to-BCD code converter using a 4-bit full-adders MSI circuit
8. (a) Using the AND-OR-INVERT implementation procedure, (described in Section 3-7 on page 93 of the text book), show that the output carry in a full-adder circuit can be expressed as:

$$
\mathrm{C}_{\mathrm{i}+1}=\mathrm{G}_{\mathrm{i}}+\mathrm{P}_{\mathrm{i}} \mathrm{C}_{\mathrm{i}}=\left(\mathrm{G}_{\mathrm{i}} \mathrm{P}_{\mathrm{i}+}+\mathrm{G}_{\mathrm{i}} \mathrm{C}_{\mathrm{i}}\right)^{\prime}
$$

(b) IC type 74182 is a look-ahead carry generator MSI circuit that generates the carries with AND-OR-INVERT gates. The MSI circuit assumes that the input terminals have the compliments of the G's, the P's, and of C_{1}. Derive the Boolean functions for the look-ahead carries $\mathrm{C}_{2}, \mathrm{C}_{3}$, and C_{4} in this IC. (Hint: Use the equation-substitution method to derive the carries in terms of $\mathrm{C}^{\prime}{ }_{\mathrm{i}}$).
9. How many don't-care inputs are there in a BCD adder?
10. Modify the BCD-to-decimal decoder of Fig. 5-10 (page 170 of the text book) to give an output of all 0 's when any invalid input combination occurs.
11. Design a BCD-to-excess-3 code converter with a BCD-to-decimal decoder and four OR gates.
12. A combinational circuit is defined by the following three functions:
a. $F_{1}=x^{\prime} y^{\prime}+x y z '$
b. $F_{2}=x^{\prime}+y$
c. $F_{3}=x y+x^{\prime} y^{\prime}$

Design the circuit with a decoder and external gates.
13. A combinational circuit is defined by the following two functions:
a. $\quad \mathrm{F}_{1}(\mathrm{x}, \mathrm{y})=\Sigma(0,3)$
b. $F_{2}(\mathrm{x}, \mathrm{y})=\Sigma(1,2,3)$

Implement the combinational circuit by means of the decoder shown in Fig. 5-12 (page 172 of the text book) and external NAND gates.
14. Construct a 5×32 decoder with four 3×8 decoder/ demultiplexers and a 2×4 decoder. Use a block diagram construction as in Fig. 5-14 (page 173 of the text book).
15. Implement a full-adder circuit with multiplexers.
16. The 32 X 6 ROM together with the 2^{0} line as shown in the following figure converts a 6-bit binary number to its corresponding 2-digit BCD number. For example, binary 100001 converts to BCD 0110011 (decimal 33). Specify the truth table for the ROM

17. Prove that a 32 X 8 ROM can be used to implement a circuit that generates the binary square of an input 5-bit number with $\mathrm{B}_{0}=\mathrm{A}_{0}$ and $\mathrm{B}_{1}=0$ as in Fig. 5-24(a)
(page 187 of the text book). Draw a block diagram of the circuit and list the first four and the last four entries of the ROM truth table.
18. Derive the PLA program table for a combinational circuit that squares a 3-bit number. Minimize the number of product terms. (See Fig. 5-24 (page 187 of the text book) for the equivalent ROM implementation.)
19. List the PLA program table for the BCD-to-excess-3 code converter defined in Section 4-5 on page 125 of the text book.

