King Fahd University of Petroleum \& Minerals

College of Computer Sciences and Engineering
Department of Computer Engineering

COE 202: Fundamentals of Computer Engineering (071)

Assignment 1

(Note: All references to the text book are made to Morris Mano and Charles Kime, "Logic and Computer Design Fundamentals", Prentice-Hall, Second Edition, 2000.)

1. List the binary, octal, and hexadecimal numbers from 16 to 31 .
2. What is the exact number of bits in a memory that contains (a) 48K bits; (h) 384M bits; (c) 8 G bits?
3. What is the decimal equivalent of the largest binary integer that can be obtained with (a) 12 bits and (b) 24 bits?

4 Each of the following five numbers has a different base: (11100111) $)_{2},(22120)_{3}$, $(3113)_{4},(4110)_{5}$, and $(343)_{8}$. Which of the five numbers have the same value in decimal?
5. Convert the following numbers from the given base to the other three bases listed in the table:

Decimal		Binary		Octal
			Hexadecimal	
369.3125	$?$		$?$	$?$
$?$	$10111101.10 ?$		$?$	$?$
$?$	$?$	326.5	$?$	
$?$	$?$	$?$	F3C7.A	

6. Convert the following decimal number to the indicated base using methods shown in the text book in examples 1-3 on page 16 and 1-6 on page 17: 1938.257 to hexadecimal
7. Perform the following binary multiplications: 1101×1001
8. In the following case, determine the radix r: $(\mathrm{BEE})_{\mathrm{r}}=(2699)_{10}$
9. Represent the decimal numbers 694 and 835 in BCD, and then show the steps necessary to form their sum.
10. Find the binary representation for the following BCD number:
11. What bit position in an ASCII code must be complemented to change the ASCII letter represented from uppercase to lowercase and vice versa?
12. Decode the following ASCII code: 10010101101111110100011011100100000 100010011011111100101.
