
IN
US 20200183650A1

(19) United States
(12) Patent Application Publication (10) Pub . No .: US 2020/0183650 A1
MUDAWAR (43) Pub . Date : Jun . 11 , 2020

Publication Classification (54) RADIX - 1000 DECIMAL FLOATING - POINT
NUMBERS AND ARITHMETIC UNITS USING
A SKEWED REPRESENTATION OF THE
FRACTION

(51) Int . Ci .
G06F 77491 (2006.01)
G06F 7/508 (2006.01)

(52) U.S. CI .
CPC ... GO6F 774912 (2013.01) ; G06F 2207/4911

(2013.01) ; G06F 7/508 (2013.01)
(71) Applicant : KING FAHD UNIVERSITY OF

PETROLEUM AND MINERALS ,
Dhahran (SA)

(72) Inventor : Muhamed Fawzi MUDAWAR ,
Dhahran (SA)

(73) Assignee : KING FAHD UNIVERSITY OF
PETROLEUM AND MINERALS ,
Dhahran (SA)

(57) ABSTRACT

A system , structure and method using radix - 1000 (instead of
radix - 10) are implemented to represent and operate on
decimal floating - point numbers . Instead of using a 10 - bit
declet to encode a DPD , the system , structure and method
herein use a declet to encode a BCK (Binary Coded 1000
values) , where the letter K is the abbreviation of the number
1000. A skewed representation of the fraction field is then
used to avoid the loss of decimal digits in arithmetic
operations when shifting and rounding the fraction are
required .

(21) Appl . No .: 16 / 214,925

(22) Filed : Dec. 10 , 2018

116

swap LZ Exponent
Difference

Expand & Swap

S

Smax Emax YS SA SB

120 - bit Fraction
ADD / SUB

Sign
Z ZX

Normalize
130 sty

SR Exp inc Round & Pack

SR ER

Patent Application Publication Jun . 11 , 2020 Sheet 1 of 7 US 2020/0183650 A1

1 5 + wbits 10 x k bits

S Combination field Coefficient continuation field

FIGURE 1

????? e bits fbits
Exponent = E Fraction = F

FIGURE 2

Patent Application Publication Jun . 11 , 2020 Sheet 2 of 7 US 2020/0183650 A1

SA SB EA EB
art 136

SWAD Exponent
Difference

Expand & Swap

S RSA
R - Shift

Smax Emax YA SA SB ys 104
YX

120 - bit Fraction
ADD / SUB

SA

Sign
CO Z

Normalize
5 2

cum N X

Exp Round & Pack

SR

FIGURE 3

Patent Application Publication Jun . 11 , 2020 Sheet 3 of 7 US 2020/0183650 A1

Cout J.com SA 7c SB 1

11 Edift
> 15

2's Comp

Smax Emax Swap RSA

FIGURE 4

Patent Application Publication Jun . 11 , 2020 Sheet 4 of 7 US 2020/0183650 A1

VB VB VB
0 Mn 104 204 204 205 of

RSA 1:01 3 3 RSA 101 1 2 3 RSA { 1:01 3 . 2

104 104 104 104
3 RSA3 : 2 2 3 RSA : 2) 2 RSA3 : 21 2

S

FIGURE 5

Patent Application Publication Jun . 11 , 2020 Sheet 5 of 7 US 2020/0183650 A1

YAXI EOP YSki YAKO YSxo
to to

+24 Go
PornAdd / Sub

YAKat . YSka1
+10 +10
10 - bit

Add / Sub

70
post

Correct

710

10 TK21 10 TKO 10 - bit Adder

LT - Correct

B. 1291-2000 + 241 * 1000 CC 710
Zko 2x11

YXS YX

Zxi CMP CLA EOP + 23S

Unit be X

FIGURE 6

Patent Application Publication Jun . 11 , 2020 Sheet 6 of 7 US 2020/0183650 A1

Z
LZ CO

CLZ Z ZX 29:33 2X
of of

Do Extra CO LSA S
??

jant X

N

FIGURE 7

Patent Application Publication Jun . 11 , 2020 Sheet 7 of 7 US 2020 / 0183650A1

(5:01 X RDir SR (333 3S

?? ? ?

? R - Decision

10 79.00
32 9 ?

AN

FIGURE 8

RN

5

FIGURE 9

US 2020/0183650 A1 Jun . 11 , 2020
1

RADIX - 1000 DECIMAL FLOATING - POINT
NUMBERS AND ARITHMETIC UNITS USING

A SKEWED REPRESENTATION OF THE
FRACTION

SUMMARY

Field of the Invention

[0001] This invention relates to the field of computer
arithmetic . More precisely , it relates to radix - 1000 decimal
floating - point numbers of various sizes (32 bits , 64 bits , and
128 bits) that use a skewed representation of the fraction to
maintain precision and accurate arithmetic on decimal float
ing - point numbers . It also relates to the implementation of
radix - 1000 floating point arithmetic units in a method ,
system and / or computer program product capable of use of
floating point arithmetic units for calculation and process
ing .

DISCUSSION OF THE RELATED ART

[0002] The IEEE 754-1985 standard was established for
binary floating - point numbers . See David Stevenson , et al . ,
“ IEEE Standard for Binary Floating - Point Arithmetic ” ,
IEEE Std 754-1985 , March 1985 , incorporated herein by
reference in its entirety . The widely adopted 1985 standard
defined the format and encoding of single , double , and
extended - precision binary floating - point data that included
normal and subnormal numbers , signed zeros , signed infi
nites , and special “ not a number ” (NaN) values . The 1985
standard defined arithmetic , conversion , comparison opera
tions , rounding rules , special arithmetic on signed zeros ,
infinities , and NaNs . The major drawback of binary floating
point numbers is its inability to represent decimal fractions
(such as 0.2) exactly in binary . The binary fraction must be
rounded to the required precision .
[0003] The more recent IEEE 754-2008 standard (D.
Zuraz , M. Cowlishaw , et al . , “ IEEE Standard for Floating
Point Arithmetic ” , IEEE Std 754-2008 , August 2008 , incor
porated herein by reference in its enti ty) extended the
original IEEE 754-1985 by adding decimal floating - point
numbers . The need for decimal floating - point is important
for financial applications , such as banking , taxes , and cur
rency conversions . The use of binary floating - point numbers
is inadequate for such applications because of rounding
errors , which can be significant in some applications . See M.
Cowlishaw , “ Decimal Floating - Point : Algorism for Com
puters ” , 16th IEEE Symposium on Computer Arithmetic
(ARITH'03) , p . 104-111 , June 2003 , incorporated herein by
reference in its entirety .
[0004] Although the IEEE 754-2008 decimal floating
point standard can represent decimal fractions exactly with
finite precision , the decimal format is complex . The format
has three fields : a sign bit , a combination field , and a
coefficient continuation field . The coefficient continuation
field uses 10 - bit declets to encode Binary Code Decimal
(BCD) digits . This encoding scheme is known as Densely
Packed Decimal (DPD) . See M. Cowlishaw , “ Densely
Packed Decimal Encoding " , IEE Proceedings Computers
and Digital Techniques , vol . 149 , p . 102-104 , May 2002 ,
incorporated herein by reference in its entirety . Each declet
requires logic to unpack the three BCD digits and then pack
them at the end of each operation . See Id .; and S. Carlough ,
A. Collura , S. Mueller , and M. Kroener , “ The IBM ZEnter

prise - 196 decimal floating - point accelerator ” , in Proceed
ings of the 20h IEEE Symposium on Computer Arithmetic ,
Germany , p . 139-146 , July 2011 , incorporated herein by
reference in its entirety . Internally , the decimal floating - point
unit uses BCD digits in arithmetic operations . This is
inefficient and increases the area of the decimal floating
point unit in comparison with a binary floating - point unit .
[0005] Decimal floating - point numbers are based on the
IEEE 754-2008 standard . See D. Zuraz , M. Cowlishaw , et
al . , “ IEEE Standard for Floating - Point Arithmetic ” , IEEE
Std 754-2008 , August 2008 , incorporated herein by refer
ence in its entirety . The standard defines decimal interchange
formats , called decimal32 , decimal64 , and decimal128 , of
widths 32 , 64 , and 128 bits , respectively . The format has
three fields : a sign bit , a combination field , and a coefficient
continuation field , as shown in FIG . 1. The combination field
has 5 + w bits that encode the leading digit of the integer
coefficient and the biased exponent E. It was defined this
way to encode an extra leading digit in the coefficient and to
maximize the exponent range . The coefficient continuation
field has 10xk bits (k declets) that encode 3xk decimal digits
in DPD .
[0006] The integer coefficient C consists of ? decimal
digits , where p is the precision : p = 7 , 16 , and 34 for deci
mal32 , decimal64 , and decimal128 , respectively . The
numerical value of a finite decimal floating - point number is :
(-1) * xCx109 , where q = E - Bias . Prior work on decimal - point
numbers was led by the IBM zEnterprise decimal floating
point accelerator . See Id . Other work on the implementation
of decimal - point operations and units are documented in L.
K. Wang and M. J. Schulte , “ Decimal Floating - Point Adder
and Multifunction Unit with Injection - Based Rounding ” , in
Proceedings of the 18th IEEE Symposium on Computer
Arithmetic , France , June 2007 ; L. K. Wang , M. J. Schulte , J.
D. Thompson , and N. Jairam , " Hardware designs for Deci
mal Floating - Point Addition and Related Operations " , IEEE
Transactions on Computers , 58 (3) , March 2009 ; L. K.
Wang and M. J. Schulte , “ A Decimal Floating - Point Adder
with Decoded Operands and a Decimal Leading - Zero
Anticipator ” , in Proceedings of the 19th IEEE Symposium on
Computer Arithmetic , 2009 ; A. Wahba and H. Fahmy , “ Area
Efficient and Fast Combined Binary / Decimal Floating Point
Fused Multiply Add Unit ” , IEEE Transactions on Comput
ers , Vol 66 , No 2 , February 2017 , p . 226-239 ; and A.
Vazquez , E. Antelo , and P. Montuschi , “ Improved Design of
High - Performance Parallel Decimal Multipliers ” , IEEE
Transactions on Computers , Vol 59 , No 5 , May 2010 , p .
679-693 , each incorporated herein by reference in its
entirety . All of this work is based on the IEEE 754-2008
standard .
[0007] However , as noted above , even the revised IEEE
754-2008 standard uses Radix 10 for representing decimal
floating - point numbers and for decimal floating - point arith
metic . IBM has implemented Radix - 10 Floating - point units
inside their recent processors . In contrast , as will be
explained further hereinbelow , the present invention intro
duces a novel representation of FLOATING - POINT num
bers based on radix - 1000 and a SKEWED representation of
the fraction . The invention also presents detailed implemen
tation of floating - point arithmetic units that can be of various
sizes (32 - bit , 64 - bit , and 128 - bit) .
[0008] U.S. Pat . No. 7,644,115 B2 is directed to systems
and methods for performing large - radix numeric operations .
A first number may be segmented into large - radix segments ,

US 2020/0183650 A1 Jun . 11 , 2020
2

[0014] The publication entitled “ Floating Point Number
Format with Number System with Base of 1000 ” , IBM
Technical Disclosure Bulletin (1998) describes floating
point numbers with a base of 1000 (instead of 2) and
discloses that the format is superior to Binary Code Decimal
(BCD) . In contrast to the present invention , there is no
representation of the Radix - 1000 floating - point numbers and
no implementation of Radix - 1000 floating point units .
Rather , this publication goes the opposite direction and
implements decimal floating - point units based on Radix 10 ,
BCD , and DPD , with a much more complex representation
and implementation .

SUMMARY OF THE INVENTION

wherein numbers of the segments are generated such that
radix of the segment is greater than radix of the first number .
As a result , a plurality of disparate processor - based com
puting systems may be configured to perform various
numeric operations on the large - radix segments of the num
ber and output results of a numeric operation as a number
whose radix is equal to the radix of the first number .
[0009] In U.S. Pat . No. 7,644,115 B2 unlike the present
invention , the numbers that are manipulated are fixed - point
numbers that might include a fraction ; they are not floating
point numbers . There is no exponent field ; there is no format
for the number itself (just a string of characters) ; and there
is no hardware implementation . As will be explained further
hereinbelow , the present invention incorporates features
such as using 32 bits , 64 bits , and 128 bits to store a
radix - 1000 decimal floating - point number in binary with an
exponent field and a skewed representation of the fraction ,
none of which are present in this prior art . Instead , U.S. Pat .
No. 7,644,115 B2 discloses the use of segmentation instruc
tions to segment large numbers and requesting the operating
system to store large - radix numbers and segments in a data
structure (arrays , lists , etc.) .
[0010] U.S. Pat . No. 6,546,411 B1 is directed to a high
speed radix 100 parallel adder that provides an improved
method and apparatus for performing decimal arithmetic
using conventional parallel binary adders . In a first aspect , a
method for implementing decimal arithmetic using a radix
(base) 100 and a method for implementing radix 1000
numbering system are disclosed . The first aspect implements
decimal arithmetic utilizing radix 100 , where one - hundred
decimal numbers , 0 through 99 , are represented using seven
BCD bits . In a second aspect , a specialized high - speed radix
100 parallel adder is disclosed . In effect , numbers are
segmented into several large - radix segments . The radix of a
segment may be 100 , 1000 , 10000 , 100000 , 1000000 , etc.
Next , the segmentation instructions may request the oper
ating system to store the large - radix segments in one or more
data structures in memory , such as arrays , dynamic arrays ,
linked lists , stacks , queues , etc.
[0011] In U.S. Pat . No. 6,546,411 B1 , the radix 100
numbering system is used for inventing a High - Speed Radix
100 Parallel Adder . This reference is directed to integer
arithmetic , not floating - point arithmetic . In integer arithme
tic , there is no exponent field , no fractions , no exponent
logic , no alignment , no normalization , and no rounding
logic .
[0012] In the publication entitled “ Revisiting the Newton
Raphson Iterative Method for Decimal Division " by Mario
P. Vestias and Horacio C. Neto (Sep. 5-7 , 2011) , the focus is
on faster decimal division , using the Newton - Raphson itera
tive method . In this publication , the implementation con
verts 3 BCD digits into a 10 - bit DPD (Densely Packed
Decimal used in IEEE 754-2008) . In the paper , the imple
mentation converts a 20 - bit binary number to radix - 1000
(FIG . 4) then uses an inefficient ripple - carry radix - 1000
adder (FIG . 5) .
[0013] In contrast to the publication by Vestias and Neto ,
as will be explained further hereinbelow , the present inven
tion does not do any division , but only addition and sub
traction . The invention does not use BCD or DPD , but only
BCK (Binary Coded 1000 values) . The invention does not
convert binary numbers , and instead uses a much more
efficient Radix - 1000 adder / subtractor for adding and sub
tracting fractions .

[0015] In one aspect the present invention is directed to a
system , structure and method using radix - 1000 (instead of
radix - 10) to represent and operate on decimal floating - point
numbers . Instead of using a 10 - bit declet to encode a DPD ,
this invention uses a declet to encode a BCK (Binary Coded
1000 values) , where the letter K is the abbreviation of the
number 1000. This invention also uses a skewed represen
tation of the fraction field to avoid the loss of decimal digits
in arithmetic operations when shifting and rounding the
fraction are required .
[0016] A minor drawback of radix - 1000 is the loss of a
BCK digit , or three BCD digits , when incrementing the
exponent field by 1 (right - shifting the significand by 10 bits) .
This is the case when adding / subtracting two radix - 1000
floating - point numbers that have different exponent values .
This is also the case when a carry is obtained , and shifting
and rounding are necessary . A difference of 1 in the radix
1000 exponent is equal to a difference of 3 in the radix - 10
exponent . To alleviate this drawback , this invention uses a
skewed representation of the fraction field .
[0017] The present invention is further directed to a pro
cessing circuit comprising logic circuitry that performs radix
1000 decimal floating - point arithmetic . Among the features
of the present invention , the logic circuitry operates on
operands having a sign bit , an exponent field representing an
exponent on a 1000 base and a fraction field representing a
number having an absolute value that is less than one . The
fraction field comprises a plurality of declets representing
the numbers 0-999 and a format indicator . The logic cir
cuitry performs the radix 1000 decimal floating - point arith
metic using one of a plurality of skewed representations of
operands as indicated by the format indicator . In addition ,
the logic circuitry includes expansion circuitry that expands
the fraction field F [115 : 0] into its number representation
X [119 : 0] according to :
fmt [1 : 0] = F [115 : 114]
if fmt [1 : 0] = 11 then X [119 : 117] = F [5 : 3] else X [119 : 117]
= 000 ;
if fmt [1] = 1 then X [116 : 114] = F [2 : 0] else X [116 : 114] = con
cat { 0,0 , F [114] } ;

X [113 : 6] = F [113 : 6] ;

[0018] if fmt [1 : 0] = 11 then X [5 : 3] = 000 else X [5 : 3] = F [5 :
3] ;

if fmt [1] = 1 then X [2 : 0] = 000 else X [2 : 0] = F [2 : 0) , wherein
fmt [1 : 0) is the format indicator .

US 2020/0183650 A1 Jun . 11 , 2020
3

DETAILED DESCRIPTION OF THE
INVENTION

[0019] Further features of the present invention include a
special sub - circuit of the processing sub - circuit that is used
for the Addition and Subtraction of radix - 1000 expanded
fractions .
[0020] Another feature of the present invention is a Nor
malize sub - circuit that may include a special sub - circuit that
does the normalization of the radix - 1000 result fraction . The
normalization process is conditional and depends on
whether the input fractions are normalized or not .
[0021] As another feature , in a Round sub - circuit , a radix
1000 normalized fraction is rounded according to the round
ing mode and the normalized fraction format .
[0022] As another feature , in a Pack sub - circuit , a radix
1000 rounded fraction is packed according to its final
format .
[0023] As an even further feature , in an Exception handler
sub - circuit , arithmetic on special Overflow or Invalid values
produces special Overflow or Invalid results . This feature
also includes the ability to detect and produce an Overflow
result when the normalized exponent value becomes too
large . It also includes the ability to produce an Inexact flag
when the produced radix - 1000 fraction is rounded or trun
cated .
[0024] In contrast to the prior art as discussed above , even
the revised IEEE 754-2008 standard uses Radix 10 for
representing decimal floating - point numbers and for decimal
floating - point arithmetic . IBM has implemented Radix - 10
Floating - point units inside their recent processors . In con
trast , as will be explained further hereinbelow , the present
invention introduces a novel representation of FLOATING
POINT numbers based on radix - 1000 and a SKEWED
representation of the fraction . The invention also presents
detailed implementation of floating - point arithmetic units
that can be of various sizes (32 - bit , 64 - bit , and 128 - bit) .
[0025] These and other features , functionalities and objec
tives are attained with , for example , a method and system for
executing a machine instruction in a central processing unit
comprising circuitry .

[0036] The embodiments of the present invention will be
described hereinbelow in conjunction with the above - de
scribed drawings . This invention uses radix - 1000 (instead of
radix - 10 as done in the prior art) to represent and operate on
decimal floating - point numbers . It is a deviation from the
IEEE 754-2008 standard . Instead of using a 10 - bit declet to
encode a DPD , this invention uses a declet to encode BCK
(Binary Coded 1000) values , where the letter K is the
abbreviation of the number 1000. The advantages of using
radix - 1000 are many as outlined below :

[0037] 1 – It is related to radix - 10 . Each BCK digit is
equivalent to three BCD digits . Decimal fractions that
can be represented exactly in radix - 10 can also be
represented exactly in radix - 1000 .

[0038] 2 — BCK digits are simpler than DPD . The cod
ing efficiency is the same (97.7 %) . However , unlike
DPD , there is no need to unpack and then pack BCK
digits .

[0039] 3 Internally , a radix - 10 floating - point unit uses
BCD digits , whereas a radix - 1000 floating - point unit
uses BCK digits . For example , a 128 - bit decimal float
ing - point unit requires as many as 36 BCD digits (144
bits) for its internal representation , including BCD
digits for guard and rounding [5] . On the other hand , a
radix - 1000 floating - point unit requires only 12 BCK
digits (120 bits) for its internal representation , which is
far more efficient .

[0040] 4 - A simpler shifter is required to aligning the
BCK digits in radix - 1000 because there are at most 12
BCK digits to shift in the case of addition or subtrac
tion , while a more complex shifter is needed to align
the BCD digits in radix - 10 .

[0041] 5 — A smaller binary adder is required to add the
12 BCK digits (120 bits) in radix - 1000 , while a larger
one is needed to add the 36 BCD digits (144 bits) in
radix - 10 .

[0042] The potential drawback of radix - 1000 is the loss of
a BCK digit , or three BCD digits , when incrementing the
exponent field by 1 (right - shifting the significand by 10 bits) .
This is the case when adding / subtracting two radix - 1000
floating - point numbers that have different exponent values .
This is also the case when a carry is obtained , and shifting
and rounding are necessary . A difference of 1 in the radix
1000 exponent is equal to a difference of 3 in the radix - 10
exponent . To alleviate this drawback , this invention uses a
skewed representation of the fraction field .

BRIEF DESCRIPTION OF THE DRAWINGS

[0026] The present invention is illustrated in the accom
panying drawings , wherein :
[0027] FIG . 1 illustrates an example decimal interchange
floating - point format according to the IEEE 754-2008 stan
dard ;
[0028] FIG . 2 illustrates an example Radix - 1000 decimal
floating - point interchange format according to the present
invention ;
[0029] FIG . 3 shows a 128 - bit Radix - 1000 DFP Unit
according to the present invention ;
[0030] FIG . 4 shows an exponent difference block dia
gram according to the present invention ;
[0031] FIG . 5 shows a right - shifter block diagram accord
ing to the present invention ;
[0032] FIG . 6 shows a fraction Add / Subtract block dia
gram according to the present invention ;
[0033] FIG . 7 shows a Normalize block diagram accord
ing to the present invention ;
[0034] FIG . 8 shows a Round block diagram according to
the present invention ; and
[0035] FIG.9 shows a Packing the Result Fraction accord
ing to the present invention ;

A New Radix - 1000 Floating - Point Interchange Format :
[0043] The radix - 1000 floating - point interchange format
according to the present invention consists of three fields : a
sign bit s , a biased exponent field E with e bits , and a fraction
field F with f bits , as shown in FIG . 2. This format is simpler
than the IEEE format that uses a combination field and a
trailing coefficient field . The numeric value of the radix
1000 Decimal Floating - Point (DFP) number is (-1) ºx0.Fx
1000E - Bias
[0044] In this invention , DFP32 , DFP64 , and DFP128 are
the names of the suggested radix - 1000 DFP numbers . Only
a few bits are needed for the exponent field , leaving the
remaining bits for the fraction field . The biased exponent
range is 0 to 2-2 . The Bias is equal to 2-1 . The maximum

US 2020/0183650 A1 Jun . 11 , 2020
4

bits , the actual precision is a variable . It varies between 5
and 7+ for DFP32 , between 14 and 16+ for DFP64 , and
between 32 and 34+ decimal digits for DFP128 .

exponent scale factor is 1000 + Bias = 10 + 3xBias and the mini
mum is 1000 - Bias = 10-3xBias . Table 1 shows the suggested
parameters of the DFP32 , DFP64 , and DFP128 numbers .
The length of the exponent and fraction fields can be chosen
differently , depending on whether a wider exponent range or
a higher precision is desired . The special exponent value
E = 2e –1 is reserved for infinity and NaN . When E = 2 ° -1 , the
most significant bit of F specifies whether the number is
infinity or NaN .

A Skewed Representation of the Fraction Field
[0047] To remedy the loss of precision , Table 3 shows a
two - format skewed representation of the fraction F. The
maximum decimal values of the two - format representation
of the fraction are denoted as Max FO and Max F1 . The
actual precision of the two - format representation of F is now
improved . It is 6 to 7+ decimal digits for DFP32 , 15 to 16+
decimal digits for DFP64 , and 33 to 34+ decimal digits for
DFP128 .

TABLE 1

Suggested Radix - 1000 Decimal
Floating - Point Parameters

Radix - 1000
DFP Number DFP32 DFP64 DFP128 TABLE 3

32 bits
1 bit

6 bits

64 bits
1 bit

8 bits

128 bits
1 bit

11 bits

Two - Format Skewed Representation of
the Radix - 1000 Fraction

DFP32 =

= 25 bits 55 bits 116 bits

Format length
Sign
Exponent field
(e bits)
Fraction field
(f bits)
Biased
exponent range
Bias 2e - 1 - 1
Max Scale =

DFP64

E = 0 to
62
31

E = 0 to
254
127

E = 0 to
2046
1023

Max FO 0.015 , 999 , 999
Max F1 0.999 , 999 , 9
Max F0 = 0.015 , 999 , 999 , 999 , 999,999
Max F1 = 0.999 , 999 , 999 , 999 , 999 , 9
Max FO = 0.047 , 999 , 999 , 999 , 999,999 , 999 ,
999 , 999 , 999,999 , 999
Max F1 0.999 , 999 , 999 , 999 , 999 , 999 , 999 ,
999 , 999 , 999 , 999 , 9

DFP128
=

1000 + Bias
1000 + 31
10 + 93

1000-31
1000 + 127

10 + 381
1000-127 Min Scale

1000 + 1023
10 + 3069

1000-1023
10-3069 1000 - Bias 10-93 10-381

7+ digits 16+ digits 34+ digits Maximum
Precision
Numeric value + 0.F X 10.F x + 0.F x

1000 € -3 1000 € -127 1000 € -1023

[0048] Since there are three decimal digits in each BCK ,
it is better to have a three - format skewed representation of
the fraction F. Table 4 shows a three - format representation
of the DFP32 , DFP64 , and DFP128 fractions with maximum
decimal values : Max FO , Max F1 , and Max F2 . The actual
precision is 7 , 16 , and 34 decimal digits for DFP32 , DFP64 ,
and DFP128 , respectively . Radix - 1000 Fraction Field

TABLE 4

Three - Format Skewed Representation of
the Radix - 1000 Fraction

DFP32 =

[0045] The simplest representation of the fraction field F
is to split the field into 10 - bit declets , starting at the
least - significant fraction bit and moving backwards . Each
10 - bit declet is a BCK digit that encodes three decimal digits
in binary (000 to 999) . Since the fraction field is not multiple
of 10 bits , the upper bits of the fraction field encode fewer
than 1000 decimal values . This fixed - format representation
of the fraction field F is shown in Table 2. The maximum
precision for DFP32 , DFP64 , and DFP128 are 7+ , 16+ and
34+ decimal digits , respectively . The + means that the
precision can exceed 7 , 16 and 34 digits in some limited

DFP64

Max FO 0.009 , 999 , 999
Max F1 0.099 , 999,99
Max F2 = 0.999 , 999 , 9
Max FO = 0.009 , 999 , 999 , 999 , 999 , 999
Max F1 = 0.099 , 999 , 999 , 999 , 999,99
Max F2 = 0.999 , 999 , 999 , 999 , 999,9
Max FO 0.031 , 999 , 999 , 999 , 999 , 999 , 999 ,
999 , 999 , 999,999 , 999
Max F1 0.127 , 999 , 999 , 999 , 999 , 999,999 ,
999 , 999 , 999,999,99
Max F2 = 0.999 , 999 , 999 , 999 , 999 , 999 , 999 ,
999,999 , 999 , 999 , 9

DFP128

cases .

TABLE 2

Fixed - Format Representation of the Radix - 1000 Fraction
DFP32

DFP64 =

25 bits = 5b , 10b , 10b
Max F 0.031 , 999 , 999
55 bits 5b , 10b , 105 , 106 , 106 , 10b
Max F = 0.031 , 999 , 999 , 999 , 999,999
116 bits 6b , 106 , 105 , 106 , 10b , 106 , 10b ,
10b , 105 , 10b , 10b , 10b
Max F = 0.063 , 999 , 999 , 999 , 999 , 999 , 999 ,
999 , 999 , 999 , 999,999

DFP128

Expanding the Fraction Field
[0049] The two- and three - format skewed representations
of the fraction field are simple to implement . The fraction F
is expanded from 25 to 30 bits for DFP32 , from 55 to 60 bits
for DFP64 , and from 116 to 120 bits for DFP128 . The format
is defined according to the upper bits of the fraction field .
Only the upper and lower BCKs of the fraction field are
expanded . The middle BCKs are not modified .
[0050] Consider the DFP128 three - format fraction , shown
in Table 4. Let F * [115 : 0] be the 116 - bit fraction , where bit 115
is the most significant and bit 0 is the least - significant . The
format fat is defined according to the two most - significant
bits of the fraction : fmt / 1 : 0J = F (115 : 114] . Let X (119 : 0] be the

[0046] Although the fixed - format representation of the
radix - 000 fraction F is the simplest to implement in hard
ware , its major drawback is the loss of precision when
converting a radix - 10 decimal number into radix - 1000 or
when shifting and rounding the result of an arithmetic
operation . Because right - shifting is done by multiples of 10

US 2020/0183650 A1 Jun . 11 , 2020
5

F (113 : 0]

120 - bit expanded fraction for DFP128 . It consists of 12
BCK digits , equivalent to 36 decimal digits . The expansion
logic is described in Table 5. There are three formats to
expand . If fmt 1) is 8 then X [119 : 0 ; = { 5'60 , F154 : 07 } , where {
} is the concatenation operator and the upper 5 bits of X are
zeros . Second , if fmt 1:07 is 2 " b10 then X (119 : 07 = { 3 ' b0 , F [2 : 0] F [113 : 10] , F19 : 3) * 10 } . The 7 - bit F19 : 37 is multiplied by 10. This
requires an adder to compute the least - significant BCK as a
shifted addition . Third , if fmt (1 : 0) is 2 ' b?l then X (119 : 0) = { F
[5 : 0] ; F19 : 6 * 100 } . The 4 - bit F [9 : 3] is multiplied by
100 that can be implemented with simple logic .
[0051] The expansion logic can be further simplified by
multiplying the 7 - bit F19 : 3] by 8 or the 4 - bit F [9 : 6] by 64 , as
shown in Table 5b . The least - significant BCK is computed
as : X19 : 0 = { F19 : 3) , 3'b6 } , or { F19 : 6) , 6b9 } , or F 19 : 0) . This
eliminates the need to multiply by 10 or 100. A second
advantage is simplifying the rounding logic . Rather than
dividing the least - significant BCK of the result by 10 or 100
in the rounding step , division by 8 or by 64 becomes trivial .
Packing the result fraction also becomes trivial . Multiplying
F19 : 37 by 8 generates 125 valid BCK values (000 to 992) ,
while multiplication by 10 generates only 100 values (000 to
990) . Similarly , multiplying by 64 generates 16 valid
BCK values (000 to 960) , while multiplication by 100
generates only 10 values (000 to 900) . Therefore , multipli
cation by 8 and 64 provides a better granularity for the
least - significant BCK , which is preferably rounded for inex
act arithmetic results .

20x10-2 , 200x10-3 , etc. All of these are equivalent repre
sentations according to IEEE 754-2008 . The drawback of
cohorts is the additional complexity added to the hardware
implementation when adding or subtracting decimal floats .
Given two decimal numbers A and B with exponents EA and
EB , the preferred exponent of the result is min (EA , EB) for
addition and subtraction according to IEEE 754-2008 . One
coefficient is left - shifted to decrease its exponent (according
to the number of leading zeros) and the other coefficient is
right - shifted to increase its exponent to match the exponent
of the left - shifted coefficient .
[0054] To alleviate the problem of multiplicity of repre
sentation and to simplify the implementation , the radix - 1000
fraction field should be normalized . This means that the
largest fraction and the smallest exponent value should be
used . The most - significant BCK digit in the fraction field F
should be non - zero . For example , the decimal number 0.2
should be represented uniquely as : 0.200,000 , ... x1000 ° .
The only exception is Zero , which cannot be normalized .
The exact number Zero is represented uniquely with E = F = 0 .
[0055] If a fraction is not normalized , it indicates the loss
of significant digits . For example , the number 0.000,200 ,
000 , ... x10001 is not normalized . It can be approximated ,
but not exactly equal to 0.2 . The precision is counted starting
at the most - significant nonzero digit . If a number is not
normalized then its fraction cannot be left - shifted and nor
malized , because what comes after the least - significant
fraction digit is unknown (not necessarily zero) . Therefore ,
there is no left - shifting of a radix - 1000 fraction field when
it is not normalized . Only right - shifting is used on the
fraction of the lesser exponent when adding / subtracting
radix - 1000 decimal floating - point numbers .

F19 : 61

TABLE 5

Logic for expanding the DFP128 three - format fraction into 12 BCK digits

:

F (2 : 0) or

==

* 10 : F19 : 0) // F19 : 3] * 10 , or F19,0]

a) Expansion Logic using Multiplication by 10 and 100 for the least
significant BCK
fmt [1 : 0] = F [115 : 114] // 2 - bit format
X [119 : 117] = (fmt [1 : 0] = b11) ? F [5 : 3] : 3 ' b0 // Either F [5 : 3] or zeros
X (116 : 114] = (fmt [1] 1) ? F [2 : 0] = { 0 , 0 , F [114] } || Either F
{ 0,0 , F [114] }
X [113 : 10] = F [113 : 10] // No change in 104 bits
X [9 : 0) = (fmt (1 : 0) ' b11) ? F [9,61 * 100 : // Either F [9 : 6] * 100 , or

(fmt [1 : 0] b10) ? F [9 : 3] b) Simpler Expansion Logic using Multiplication by 8 and 64 for the
least
significant BCK
fmt (1 : 0] = F (115 : 114] 1 / 2 - bit format
X [119 : 117] = (fmt [1 : 0) ' b11) ? F [5 : 3] : 3 ’ bo // Either F [5 : 3] or zeros
X [116 : 114] (fmt [i] 1) ? F [2 : 0] : { 0,0 , // Either F * [2 : 0]
F [114] }
{ 0 , 0 , F [114] }
X [113 : 6] = F [113 : 6] // No change in 108 bits
X [5 : 3) = (fmt (1 : 0) : ' b11) ? 3 ' b0 : F [5 : 3] // Either zeros or F [5,3]
X [2 : 0) = (fimt [1] 1) ? 3 ' 60 : F [2 : 0] // Either zeros or F [2 : 0)

==

== or

==

128 - Bit Radix - 1000 Floating - Point Unit
[0056] This section describes the implementation of a
radix - 1000 DFP128 unit 1000 that performs addition , sub
traction , and comparison of radix - 1000 numbers according
to the present invention . The top - level design of the structure
and operation of the radix - 1000 DFP128 unit 1000 is shown
in FIG . 3. The three - format representation is used for the
116 - bit fraction F , as shown in Table 4. The precision is 34
decimal digits in all three formats but can exceed 34 in some
limited cases . The radix - 1000 DFP128 unit according to the
invention , as well as all other units , circuits and modules ,
along with the blocks , functions , sub - modules and sub
circuits within the units , circuits and modules , as disclosed
hereinafter , may be implemented as physical electronic
circuits as would be known to those of skill in the art , or their
equivalents in software or firmware .
[0057] Given two DFP128 numbers A and B , SA and SB
are the input sign bits , EA and EB are the input biased
exponents , and FA and FB are the input fractions of A and
B , respectively , as shown in FIG . 3 .
[0058] The Expand & Swap block 1002 enlarges the input
fractions FA and FB from 116 to 120 bits , as described in
Table 5b . The Expand logic expands only the most signifi
cant 6 bits and least - significant 6 bits of the fractions FA and
FB . However , it does not modify 108 bits of FA and FB . The
120 - bit expanded fractions are called XA and XB . The
expanded fractions are swapped if EA < EB . The 120 - bit
swapped outputs are called YA and YB , where YA = swap ?
XB : XA and YB = swap ? XA : XB .
[0059] In addition , the Expand & Swap block 1002 out
puts an LZ signal that indicates whether there is a leading

[0052] The three - format fraction representation of DFP32
and DFP64 is slightly more complex to expand . The upper
5 bits of the fraction (with 32 possible values) specify three
different formats multiplied by the ten decimal digits . Mul
tiplication by 10 and 100 is necessary for the least - signifi
cant BCK only .

Normalized Radix - 1000 Fraction Field

[0053] Unlike binary floating - point numbers which must
be normalized , decimal floating - point numbers need not be
according to the IEEE 754-2008 standard . This means that
a decimal number can have multiple representations , called
cohorts . For example , the decimal number 0.2 can be
represented using different integer coefficients as : 2x10- ?,

US 2020/0183650 A1 Jun . 11 , 2020
6

[0067] The Sign block 1012 computes the sign of the
result SR , based on the effective operation EOP , the sign bit
SA , the sign bit Smax (sign of YA) , and the LT signal (when
EOP is subtraction) .
[0068] The Round & Pack block 1014 receives a 120 - bit
normalized result N and two X bits from the Normalize
block 1006. It also receives the result sign SR and a 2 - bit
round direction RDir . The 120 - bit result N is normalized
according to its format , and then packed into a 116 - bit result
fraction FR . Since rounding might produce an output carry ,
post - normalization is done to the rounded result in the same
step . An output Inc signal indicates the presence of an output
carry and is used to increment ER .
[0069] Finally , the Exp block 1018 computes and outputs
the result exponent ER = Emax + EC + Inc . The 5 - bit signed
exponent correction EC is sign - extended and added to
Emax .

Exponent Difference

zero BCK in XA or XB . Only the leading BCK is examined :
LZ (XA [119 : 110] ! = 0) (XB (119 : 110] ! = 0) . The LZ signal is
used by the Normalize block 1006. If LZ is 1 then fraction
FA or FB is not normalized , and the result of an arithmetic
operation cannot be normalized when there are leading zeros
in the result .

[0060] In contrast , the DFP accelerator on the IBM z196
unpacks the integer coefficient encoded in DPD into BCD .
The unpacking logic for DPD is more complex and applies
to all BCD digits . The output of the unpacker on the z196
consists of 36 BCD digits , or 144 bits , which is much longer .
[0061] The Exponent Difference block 1008 computes the
difference of the 11 - bit biased exponents EA and EB . It
produces four outputs : swap = sign (EA - EB) is used to swap
the expanded fractions XA and XB when (EA < EB) , Emax
is the maximum exponent value , Smax is the sign of the
swapped fraction YA with exponent Emax , and RSA is the
absolute difference of EA and EB that saturates at 15. RSA
is a 4 - bit right shift amount used by the R - Shift block 1004 .
Only a 4 - bit shift amount is required by the right - shifter
because there are only 12 BCKs in an expanded fraction , and
right - shifting beyond 12 produces a zero output .
[0062] The R - Shift block 1004 right - shifts the 120 - bit
fraction YB according to the 4 - bit right - shift amount RSA .
It produces three outputs : a 120 - bit shifted fraction YS , a
10 - bit extra BCK YX that is shifted - out , and a sticky bit S ,
which is the OR - reduction of the shifted - out bits that appear
after YX . The 10 - bit YX and the sticky bit S are used by the
120 - bit Fraction Adder / Subtractor block 1010 to compute
the 120 - bit result Z and its 10 - bit result extension ZX .

[0063] It should be emphasized that there is no left - shifter
to left - shift YA , when YA has leading zeros . As stated in the
previous section , if an input fraction is not normalized then
it cannot be normalized . The concept of cohorts used in the
IEEE 754-2008 standard does not apply here . This simplifies
the implementation .
[0064] The effective operation signal EOP is computed as :
EOP = SA SB‘Op , where Op is the arithmetic operation
select signal (ADD is O and SUB 1) and “ is the XOR
operation (see XOR block 1011) . EOP is equal to Op if Aand
B have identical signs (SA is equal to SB) . Otherwise ,
EOP = Op . Subtraction is also used to compare A with B.
[0065] The 120 - bit fraction Add / Subtract block 1010
receives two 120 - bit input fractions YA and YS , an effective
operation signal EOP , a 10 - bit YX BCK shifted - out by the
R - shifter 1004 , and a sticky bit S. It produces a 120 - bit result
Z , a 10 - bit result extension ZX , an output carry Co , and a
less than LT signal that indicates whether YA < YB . The Co
signal is valid only for addition (when EOP is 0) and always
6 for subtraction . The LT signal is valid only for subtraction
(when EOP is 1) and always 0 for addition . The 10 - bit ZX
is used as a round BCK for addition and a guard BCK for
subtraction .
[0066] The Normalize block 1006 receives a 120 - bit result
Z , a 10 - bit result extension ZX , and a carry bit Co from the
fraction adder / subtractor 1010. It also receives a leading
zero bit LZ from the expand unit 1002 (indicating whether
FA or FB is not normalized) and a sticky bit S from the
right - shifter 1004. It produces a 120 - bit normalized result N ,
a 5 - bit exponent correction EC used to compute the expo
nent of the result ER , and two X bits used for rounding the
normalized result N.

[0070] The structure and operation of the Exponent Dif
ference block circuit 1008 are shown in FIG . 4. In this
embodiment , internally , the Exponent Difference block 1008
incorporates an adder sub - block 1008a to compute the
difference of the 11 - bit biased exponents EA and EB :
Ediff = (EA - EB) = (EA + ~ EB + 1) . EA and EB are inputted into
the adder sub - block 1008a , wherein EB is inverted when
inputted into the adder sub - block 1008a . The adder sub
block 1008a outputs the 11 - bit difference Ediff which is then
examined via sub - block 1008b to detect whether its absolute
value is > 15 . The > 15 sub - block 1008b outputs 1 if abs
(Ediff) > 15 , according to swap . The sign of the difference
between EA and EB is the complement of the output carry :
swap = sign (EA - EB) = - Cout . Cout which is also outputted
from the adder sub - block 1008a is inverted to generate
swap , and then inputted into the multiplexers 1008c and
1008d . EA and EB , along with swap , are further inputted
into the multiplexer 1008d to output Emax which is the
maximum exponent value .
[0071] The input sign bits SA and SB , along with swap ,
are inputted into the multiplexer 1008c to generate Smax
which is the sign of the swapped fraction YA with exponent
Emax . The lower 4 bits of Ediff are further inputted into the
2’s complement sub - block 1008e wherein the 2’s comple
ment is computed when the sign of the difference is negative
(swap is) . The lower 4 bits output of the 2's complement
sub - block 1008e is inputted along with the output of the > 15
sub - block 1008b and the ' b1111 signal into the multiplexer
1008f to generate RSA . RSA is the absolute difference of EA
and EB that saturates at 15. RSA is a 4 - bit right shift amount
used by the R - Shift block 1004. Only a 4 - bit shift amount is
required by the right - shifter 1004 because there are only 12
BCKs in an expanded fraction , and right - shifting beyond 12
produces a zero output .
[0072] The swap signal signal selects Emax = max (EA ,
EB) = swap ? EB : EA and the sign bit Smax = swap ? SB : SA .
Finally , the right - shift amount RSA is computed as :
RSA = max (abs (Ediff) , 15) . It saturates at 15 when abs (Ediff)
> 15 .

Right Shifter
[0073] The structure and operation of the Right - Shifter
block circuit 1004 is shown in FIG . 5. It uses two stages only
to right - shift a 120 - bit expanded fraction YB by a 4 - bit right

US 2020/0183650 A1 Jun . 11 , 2020
7

GG = Gul (P11 & G10) | (P11 & P10
P10 & ... & P1 & G.)

G ... | (P11 &

GP = P 11 & P10 & & Pi & PO

RSA (1 : 0)

shift amount RSA . Four - way multiplexers 1018a - 1018f are
used to reduce the number of stages and delay in the circuit
1004. The first stage using multiplexers 1018a - 1018c right
shifts the 120 - bit YB by 0 , 10 , 20 , or 30 bits , according to

(least - significant two bits of the shift amount) . The
second stage using multiplexers 1018d - 1018f right - shifts the
120 - bit output Y1 of the first stage by 0 , 40 , 80 , or 120 bits ,
according to RSA13 : 21 (most significant two bits of the shift
amount) , to then output the 120 - bit shifted fraction YS .
Zeros are inserted as upper (most - significant) bits when
right - shifting .
[0074] In parallel , a 10 - bit extra BCK YX is produced
using also two stages (4 - way multiplexers) . YX is the last
BCK that is shifted out according to the 4 - bit shift amount
RSA . It is produced from YB and Y1 as shown in FIG . 5 .
[0075] In parallel , a sticky bit S is produced , which is the
OR - reduction of all bits that are shifted out after the YX
BCK . Large fan - in reduction OR - gates (or trees) 1020a
1020e are used to reduce the 10 - bit YB19 : 00 , the 20 - bit
YB the 30 - bit Y1 [29:00 , the 70 - bit Y1 and the P [19 : 0] [69 : 0]
110 - bit Y1 [109 : 0) into a single output bit . To minimize cost ,
the reduction OR - tree gates are shared . For example , ' YB
[19 : 0 (! YB (19 : 101) (' YB19 : 01) , where TYB 19 : 07 means the
reduction - OR of YB (19 : 0) . Similarly , Y169 : 0 + (Y169 : 30)
(1Y129 : 9]) and Y (109 : 0) = (Y1 (109 : 70) | (14169 : 30)) (Y1 | 29 : 0)) .
The output of the first - stage multiplexer 1018c is also ORed
via OR - gates 1020C - 1020e in the second stage into the
second - stage multiplexer 1018f to determine S.

[0079] For subtraction , the generate and propagate signals
(G , to Gu and P , to Pul) outputted from the 10 - bit Adder
sub - blocks 1028 are inputted into the CMP / CLA unit 1034
and used to compare the fraction YA with YS . Given that
Tki = YAki + 1023 - YSki , the generate bit G is 1 when
(YAK . > YSki) . The propagate bit P is 1 when (YAK = OYSki) .
The group generate signal GG indicates whether (YA > YS) .
The group propagate signal GP indicates whether
(YA == YS) . The LT signal is defined as : LT = EOP & -GG &
~ GP . It is valid only for subtraction , and always zero for
addition .
[0080] The carry bit Co is defined as : Co = EOP & -LT &
-X , where X is the OR - reduction of all the bits that are
shifted out : X = (YX ! = 8) + S (see OR gate 1037) . Therefore ,
Co is 1 for subtraction (EOP is 1) , when YA > = YS (LT is 0) ,
and all the shifted - out bits are zeros (X is 0) .
[0081] The twelve carries (Co to C11) are produced in the
CMP / CLA unit 1034 , and depend on the value of Co , the
generate bits (G , to Gu) and the propagate bits (P. to P11) .
The output carry is defined as : Co = C12 & -EOP (see AND
gate 1035) . It is valid only for addition (when EOP is 0) . In
summary , the CMP / CLA unit 1034 outputs :

LT = EOP & GG & GP = EOP & (GG | GP) Fraction Add / Subtract
Co = EOP & ~ LT & ~ X = EOP & (GG | GP) & - X
C1 = Go (Po & Co)

C2 = Gil (P1 & Go) | (P1 & Po & Co)

C12 = Gul (Pul & G10) | ... | (P11 & P10 & ... & P. & Co) =
GG | (GP & Co)

Co = C12 & EOP

[0076] As shown in FIG . 6 , in the structure and operation
of the 120 - bit fraction Add / Subtract block 1010 , the 120 - bit
inputs YA and YS are split into twelve arrays of 10 - bit BCKS
(YAko to YAku and YSko to YSku) where YAKO = YA 19:07
YAx? - YA [19:10] .. , and YSko = YS19 : 0) , YSx? - YS [19:10) , etc. Each of the 10 - bit BCKs array is inputted into a
corresponding one of an array of twelve 10 - bit adders
1010a - 10101 . Fraction addition / subtraction is done in three
steps . The first step adds the twelve YAki and YSki BCKs in
parallel using the corresponding twelve 10 - bit Add / Sub
sub - blocks 1022a - 10221 . Within each 10 - bit Add / Sub sub
block 1022n , the YAKi BCKs are each inputted into a +24
sub - block 1024 along with an inverse of the EOP bit . The
YSki BCKs are inputted into an EOR gate 1026 along with
the EOP bit . The outputs of the +24 sub - block 1024 and the
EOR gate 1026 are inputted into the 10 - bit Adder sub - block
1028 .
[0077] For addition (EOP is 0) , each 10 - bit Adder sub
block 1028 computes a temporary sum Tri = (YAKi + 24) +
YSki : The +24 sub - block 1024 is used to skip the 24 invalid
values (1000 to 1023) , and adjust the sum when (YAKit
YSki) > 999 . For subtraction (EOP is 1) , the 10 - bit Adder
sub - block 1028 computes Tki = YAKi + ~ YSki = YAvi + 1023–
YSki = (YAxi + 24) + (999 - YSki) . Each 10 - bit Adder sub - block
1028 also produces a generate bit G ; and a propagate bit Pi .
The generate bit Gi indicates that Tki is greater than 1023 .
The propagate bit P ; indicates that Tki is equal to 1023. The
G , and P ; signals can be produced using fast logic , indepen
dently of Toy
[0078] The second step compares the magnitudes of YA
and YS when EOP is subtraction . It also produces all carries
(Co to C12) using a carry lookahead CMP / CLA unit 1034 .
The Group - Generate (GG) and Group - Propagate (GP) sig
nals are defined inside the CMP / CLA unit 1034 as follows :

[0082] In parallel , the 1000's complement of YX is com
puted as : 1000 - YX - S = - (YX + S + 23) , where S is the sticky
bit . The 10 - bit ZX BCK is generated as either ~ (YX + S + 23)
or YX , depending on EOP , LT , and X. It is selected as
- (YX + S + 23) for subtraction (EOP is 1) , when YA > = YS (LT
is 0) , and at least one of the shifted - out bits is non - zero (X
is 1) . Otherwise , ZX = YX . Structurally , YX is inputted
directly into a multiplexer 1036 and inputted into a +23
adder sub - block 1038 that also receives the sticky bit S. The
inverse of the output of the +23 adder sub - block 1038 is then
inputted into the multiplexer 1036. Multiplexer 1036 also
receives the output of the AND gate 1040 which is derived
from the logical adding of EOP , the inverse of LT , and X. ZX
is thus derived as follows :

ZX = (EOP & X & -L7) ? - (YX + S + 23) : YX

[0083] The third step is to post - correct the twelve 10 - bit
intermediate sums (Tko to Txi) in parallel and compute a
120 - bit result Z. Referring to FIG . 6 , from the 120 - bit
fraction Add / Subtract block 1010 , the twelve 10 - bit inter
mediate sums (Tko to Tku) are each inputted into Post
Correct sub - blocks 1030a - 10301 . Within each Post Correct
sub - block 1030n , the 10 - bit intermediate sums (Tko to Txu)

US 2020/0183650 A1 Jun . 11 , 2020
8

are inputted into a + 24 / + 1000 sub - block 1032 along with the
carry bit Ci , the carry bit Ci + 1 , and the LT bit , wherein the
carry bit Ci + 1 , and the LT bit are inputted into the + 24 / + 1000
sub - block 1032 through an AND gate 1036 and through a
NOR gate 1038. The output Zki is generated from the output
of the + 24 / + 1000 sub - block 1032 inputted into an EOR gate
1040 with the LT bit .
[0084] Given a 10 - bit T the 10 - bit post - corrected result
Zki is computed as either :

Kis

= 1
Zki = Tki +1000 + C ; = Tki - 24 + C ; // when LT O and Cit1
Zki = Tki + C // when LT O and Ci + 1
Zki = ~ (Tki + C ;) = 1023 - (Tki + C ;) / l when LT 1 and Ci + 1 0

Zki = ~ (Tki + 24 + C ;) = 1023 - (Tki + 24 + // when LT = 1 and Cit1 = 1

C ;)

=

zeros . If Co and LZ inputted into the NOR gate 1046 are
both zeros , then the 4 - bit left - shift amount LSA - CLZ . The
outputs of the CLZ sub - block 1044 and the NOR gate 1046
are inputted into an AND gate 1048 which then outputs the
LSA signal . However , if Co or LZ is 1 then LSA = 0 . In
particular , if the carry - out bit Co is 1 then Z should be
right - shifted (not left - shifted) . On the other hand , if the
leading - zero flag LZ is 1 , then it indicates that fraction FA
or FB is not normalized , and hence no left - shifting can be
done to Z. Co and LSA are inputted into the Subtract
sub - block 1050 to generate the exponent correction EC
signal .
[0089] If LSA is non - zero , the 120 - bit result Z is concat
enated with ZX and left - shifted via the L - Shifter sub - block
1042 and the multiplexer sub - block 1052 to produce a
normalized result N. It should be noted that the left - shift
amount LSA cannot exceed 1 when the fractions FA and FB
are both normalized (LZ is 0) and the exponent difference is
greater than 1. However , LSA can exceed 1 if the exponents
EA and EB are equal or differ by at most 1 , in which case
the sticky bit S is always e . Therefore , the L - Shifter sub
block 1042 always inserts zero BCKs when the left shift
amount LSA > 1 .
[0090] If the carry bit Co is 1 then Z is right - shifted 10 bits
(one BCK) and the output of the L - Shifter sub - block 1042
is ignored . The exponent correction is computed as :
EC = Co - LSA . It can range from –12 to +1 . In summary :

LSA = -- (LZICO) ? CLZ : 8

to
[0085] Adding +1000 to the 10 - bit sum Tki is equivalent

adding -24 , because 1000 = 1024 (carry) -24 and the carry
is ignored in the 10 - bit post - correct adder . For addition , LT
is always 8 and only the first two cases apply . The 120 - bit
result is computed as : Z = YA + YS + Co , where Co is always 0
for addition .

0 Zki = Tki - 24 + C ; = YAKi + YSki + C ; Il when LT
Zki = Tki + C ; = (YAKi + 24) + YSki + C ; // when LT

O and Cit1
O and Cit1 1

N = (Co == S) ? { Z , ZX } << (LSA * 10) : { 10'61,2 (119 : 10] }
[0086] For subtraction , all four cases apply as shown
below . When LT is 0 (YA > = YS) , the 120 - bit result is
computed as : Z = YA - YS - 1 + Co , where Co = -X . Hence ,
Z = YA - YS when X is 0 , and Z = YA - YS - 1 when X is 1 .
When LT is 1 (YAKYS) , the negative result is converted into
positive and the 120 - bit result is computed as : Z = YS - YA
Co , where C , is always 8 .

EC = CO - LSA = CO + LSA + 1

1

[0091] In parallel , the Extra sub - block 1054 receives input
from to Co , S and LSA , along with Z12 : 07 and ZX , where
LSA is inputted into Extra sub - block 1054 through the NOR
gate 1056 , to generate two extra bits X , and X , used for
rounding N. The X bit is 1 when the shifted - out BCK that
appears immediately after N is greater or equal to 500 .
Otherwise , X , is 0. The shifted - out BCK can be Z [9 : 0) , ZX ,
or simply zero , cording to Co and LSA . The X , bit is the
OR reduction of all bits that are shifted - out after N. The two
X bits are defined by the following equations :

X1 = (Co) ? (Z 9:07 > = 500) :(LSA == 0) & (ZX > = 500)

=

Zki = Tki - 24 + C ; = YAKi + // when LT = 0 and Ci + 1 = 0
(999 - YSki) + Ci
Zki = Tki + C ; = (YAKi + 24) + // when LT = 0 and Ci + 1
(999 - YSki) + C ;
Zki = 1023 (Tki + C ;) = YSki - YAKi - C ; // when LT = 1 and Cit1 = 0
Zki = 1023 - (Tki + 24 + C ;) = YSK - // when LT = 1 and Cit1
(YAKI + 24) - Ci

1

= 1

Sign of the Result Xo = (Co) ? (Z19 : 01 ! =) = (ZX ! = 0) | S : (LSA == 0) & (ZX ! = 0))
S

[0087] For addition (EOP is 0) , with reference to FIG . 3 ,
the sign of the result is the sign of the first operand : SR = SA .
For subtraction , the sign of the result SR = Smax LT , where
Smax is the sign of the swapped fraction YA and LT is the
output of the 120 - bit fraction Add / Subtract block 1010
indicating that (YA VS) . Therefore ,

SR = (EOP == 0) ? SA : (S max LT) .

Normalization
(0088] The components of the Normalize block 1006 are
shown in FIG . 7. It can left - shift or right - shift its 120 - bit
input Z to produce a 120 - bit normalized output N , wherein
the 120 - bit input Z , the LSA signal input and the 10 - bit ZX
input are entered into the L - Shifter sub - block 1042. The
CLZ sub - block 1044 counts the number of leading zero
BCKs in Z and produces a 4 - bit CLZ count that ranges from
0 to 12 , where 12 indicates that all the 120 bits of Z are

Rounding
[0092] This invention implements four rounding direc
tions (RDir) defined by the IEEE 754-2008 standard :
[0093] RDir 0 : Round to nearest , with ties away from zero
[0094] RDir 1 : Round toward zero (truncate)
[0095] RDir 2 : Round toward positive (round up)
[0096] RDir 3 : Round toward negative (round down)
The structure and operation of Round operation of the
Round & Pack block 1014 (see FIG . 3) are shown in FIG .
8. The fmt sub - block 1058 produces a 3 - bit format f accord
ing to the upper 5 bits of N (N (119 : 115]) . Format f , is 1 if the
upper BCK of N is less than or equal to 31. Therefore ,
fo = ~ [N [119 : 115] , where ~ IN (119 : 115) means the NOR - reduc
tion of the upper five bits of N. Format f is 1 if the upper
BCK of N ranges from 32 to 127. Format f , is 1 if the upper
BCK of N is greater than 127. Therefore , f2 = IN (119 : 117] ,

US 2020/0183650 A1 Jun . 11 , 2020
9

which is the OR - reduction of the upper 3 bits of N. In
summary , the fmt sub - block 1058 outputs the following
three format bits :

[0101] If the propagate bit Pi is 1 then the corresponding
10 - bit incremented BCK is 0. The only exception is the
most significant temporary BCK T , 119 : 110) , which is 1 (not
zero) if P11 is asserted . This speculation means that if an
output carry C12 is generated and the rounded fraction is
renormalized then the most significant BCK of the result
will be 1. The CLA sub - block 1066 generates output carries
C2 to C12 , based on the values of P , to Pu and the carry bit
C1

fo = ~ N (119 : 115]
fi - | N (119 : 117] & ?N (116 : 115]

// N 119 : 110] < = 31
// N (119 : 110] > = 32 && N (119 : 110] < =
127

// N (119 : 115] > 127 f2 = N (119 : 117]

C2 = C1 & P1

C3 = C1 & Pi & P2

[0097] The R - decision sub - block 1060 generates the 7 - bit
round value RVal , according to the lower 6 bits of N , the two
X bits , the rounding direction RDir , the sign bit of the result
SR , and the 3 - bit format f . The rounding values can be 0 , 1 ,
8 , or 64. The use of 8 and 64 are for formats f ; and f2 . When
rounding to nearest , the round bit can be X1 , N2 , or N5 ,
depending on the format f . When rounding towards positive
or negative , the sticky bit can be X , (IN (2 : 0) IX .) , or
(IN (5:07 X.) , depending on f . The notation (IN 5 : 0 | X ,) means
the OR - reduction of the 6 - bit N , with Xo . The equations
of RVal are presented in Table 6 hereinbelow .

C12 = C1 & Pi & P2 & ... & Pul
Inc = C12

[5:07

Round Direction (RDir) Equation for RVal
0 : Round to nearest , with
ties away

[0102] Rounding and renormalization are done in one step
in the Round operation . If the carry C12 is 1 , then the result
fraction must be renormalized and the result exponent must
be incremented . Therefore , Inc = C12 is an output signal used
to increment the result exponent . RN is defined as the
120 - bit rounded and renormalized fraction . It is described
with the following equations . If the carry C12 is 1 then the
rounded result RN is also renormalized by having RN (119 :
110 = 1 and all other BCKS (R [109 : 100) down to R9 : 0)) equal
to 0. In this operation , the outputs of the 10 - bit incrementer
sub - blocks 1064a - 1064k are inputted into multiplexers
1068a - 1068k , along with the carries C , to C11 to generate the
120 - bit rounded fraction RN as follows :

RVal = (fo & X?) ? 1 :
(fi & N2) ? 8 :
(f2 & N5) ? 64 : 0
RVal = 0
RVal = (fo & Xo & -SR) ? 1 :
(fi & (IN (2 : 0] | Xo) & -SR) ? 8 :
(f2 & (N [5 : 0j X ,) & -SR) ? 64 : 0
RVal = (fo & Xo & SR) ? 1 :
(f ; & (IN (2 : 0) | X ,) & SR) ? 8 :
(f2 & ([N [5:01 | X) & SR) ? 64 : 0

1 : Round towards zero
2 : Round towards positive

3 : Round towards negative

RN (119 : 1101 = (C11) ? T (119 : 1107 : N (119 : 110]
RN (109 : 100] = (C10) ? T [109 : 100 : N (109 : 100]

[0098] Table 6 : Round Value according to the round
direction , format , result sign , and extra bits
[0099] The round value RVal is then inputted into the BCK
adder sub - block 1062 and added to the least - significant BCK
N19 : 0] to generate a 10 - bit temporary sum T19 : 0) , which is
computed as either (N 19 : 0+ + RVal + 24) or (N 19 : 0 + RVal)
depending on whether a carry C , is generated or not .

C1 = (N19 : 0j + RVal + 24) > 1023
RN 19.101 = (C) ? T19 : 10 : N (19:10

19 : 0) = (C12) ? 0 : T19 : 01 RN .

T19 : 0 = (C) ? (N9 : 0 + RVal + 24) :(N19 : 0 + RVal)
[0100] In parallel , the upper eleven BCKs of N (N (19:10 to
N , 119 : 110) are incremented independently to produce eleven
output BCKS T [19:10] to T (119 : 110] and eleven propagate bits
P , to P11 . Each of the 10 - bit incrementer sub - blocks 1064a
1064k produces a 10 - bit temporary BCK and a propagate bit
P , as follows :

Packing
[0103] The structure and operation of the Packing opera
tion of the Round & Pack block 1014 are shown in FIG.9 .
The Packing operation reduces the 120 - bit rounded fraction
RN into a 116 - bit result fraction FR . The fmt sub - block 1070
extracts the 3 - bit format g of RN according to the upper 5 - bit
RN (119 : 115] . Format go indicates that RN , [119 : 110] is less than
or equal to 31 , format gi indicates that RN
from 32 to 127 , and format g2 indicates that RN , [119 : 110] is
greater than 127 .

1

[119 : 110) ranges P1 = (N119 : 10 == 999)
T119 : 10] = (Pi) ? 0 : N (19:10]

= 999)
+1

P2 = (N129 : 20]
T129 : 20] = (P2) ? 0 : N [29:20] +1 go - | RN (119 : 115] // RN (119 : 110] < = 31

81 = ~ | RN (119 : 117] & [RN (116 : 115] // RN (119 : 110] > = 32 &&
RN [119 : 110) < = 127
// RN (119 : 110] > 127 82 = | RN (119 : 117) Pui = (N119 : 119 == 999)

T (119 : 1101 = (P11) ? 1 : N (119 : 110) +1 The 3 - bit format g of RN is then inputted into Pack sub
block 1072 along with the 120 - bit rounded fraction RN to
then output the 116 - bit result fraction FR .

US 2020/0183650 A1 Jun . 11 , 2020
10

[0104] The Pack logic is described in Table 7. There are
three formats and three ways to pack the result . If the format
is go then FR = { 0 , RN 114 : 0 }) . If the format is g , then
FR = { 2'b10 , RN 113 : 3] , RN (116 : 114] } and the least - significant
3 - bit FR2 : 0) = RN (116 : 114) . Finally , if the format is g , then
FR = { 2 " bi1 , RN , 113 : 6) , RN (119 : 114] } and the least - significant
6 - bit FR [5 : 0] = RN , [119 : 114] .

least partially on arithmetic representation and / or calcula
tions that rely or include the floating decimal point arith
metic units of the present disclosure .
[0111] In another embodiment , the instruction and / or the
logic of an instruction can be executed in a processing
environment that is based on one architecture (which may be
referred to as a “ native ” architecture) , but emulates another
architecture (which may be referred to as a “ guest archi
tecture) . In such an environment , for example , a Perform
Floating Point Operation instruction and / or logic thereof ,
which is specified in the z / Architecture and designed to
execute on a z / Architecture machine , is emulated to
execute on an architecture other than the z / Architecture®
These instructions may rely or reference , at least partially , an
arithmetic representation and / or calculation that includes the
floating decimal point arithmetic units of the present disclo

TABLE 7

Equations for acking the 116 - bit result fraction

// O if go and 1 FR [115] = ~ go
otherwise
FR [114] = (go) ? RN [114] : 82
FR (113 : 6] = RN 113 : 6]
bits
FR [5 : 3] = (82) ? RN 119 : 117] : RN [5 : 3]

// Either RN [114] or 92
11 No change in 108

// Either RN , ' [119 : 117] or
RN15 : 3] sure .
FR [2 : 0] = (81 | 82) ? RN (116 : 114] : RN [2:01 // Either RN (119 : 114] or :

RN 12 : 0)

Result Exponent
[0105] The Exp block 1018 , shown in FIG . 3 , computes
and outputs the result exponent ER = Emax + EC + Inc , where
EC is a 5 - bit signed exponent correction produced by the
Normalize block 1006 and Inc is an increment signal pro
duced by the Round function of the Round & Pack block
1014 indicating that the rounded result RN is also post
normalized .
[0106] There are three observations about EC and ER . The
first observation is when EC is -12 then N , RN , and FR must
all be zeros . This can happen in the case of subtraction , when
the input fractions FA and FB are equal and normalized .
However , it cannot happen if one of the input fractions FA
or FB is not normalized , because left - shifting the result
fraction is not allowed in that case . Therefore , if EC is -12
then ER = 0 .
[0107] The second observation is that if ER is incremented
to 2047 then overflow occurs . In this case , the result is
infinity , ER saturates at 2047 , and the most - significant bit of
FR must be zero .
[0108] The third observation is that if ER is decremented
below 8 then underflow occurs . In this case , ER saturates at
0 , and the result fraction FR is also reduced to zero .
[0109] In one embodiment , a processor of a processing
environment executes instructions or code that includes one
or more Floating Point Operations or calculations at least
partially dependent on decimal floating - point arithmetic
units . One embodiment of a processing environment to
incorporate and use one or more aspects of the present
invention includes , for instance , a z / Architecture® processor
(e.g. , a central processing unit (CPU)) , a memory (e.g. , main
memory) , and one or more input / output (1/0) devices
coupled to one another via , for example , one or more buses
and / or other connections (e.g. , wireless) .
[0110] A z / Architecture® processor is a part of a System
zTM server , offered by International Business Machines
Corporation (IBM®) . System zTM servers implement IBM's
z / Architecture , which specifies the logical structure and
functional operation of the computer . The System zTM server
executes an operating system , such as z / OS® , also offered
by International Business Machines Corporation . IBM® and
z / OS® are registered trademarks of International Business
Machines Corporation , Armonk , N.Y. , USA and may rely at

[0112] As examples , processing environment 1000 may
include a Power PC® processor , a pSeries® server , or an
xSeries® server offered by International Business Machines
Corporation , Armonk , N.Y .; an HP Superdome with Intel®
Itanium® 2 processors offered by Hewlett - Packard Com
pany , Palo Alto , Calif .; and / or other machines based on
architectures offered by IBM® , Hewlett - Packard , Intel® ,
Sun Microsystems or others . Power PC® , pSeries® and
xSeries® are registered trademarks of International Business
Machines Corporation , Armonk , N.Y. , U.S.A. Intel® and
Itanium® 2 are registered trademarks of Intel Corporation ,
Santa Clara , Calif .
[0113] A native central processing unit may includes one
or more native registers , such as one or more general
purpose registers and / or one or more special purpose regis
ters , used during processing within the environment . These
registers include information that represents the state of the
environment at any particular point in time and may rely or
reference , at least partially , an arithmetic representation
and / or calculation that includes the floating decimal point
arithmetic units of the present disclosure . While specific
embodiments have been described in detail in the foregoing
detailed description and illustrated in the accompanying
drawings , those with ordinary skill in the art will appreciate
that various modifications and alternatives to those details
could be developed in light of the overall teachings of the
disclosure . Accordingly , the particular arrangements dis
closed are meant to be illustrative only and not limiting as
to the scope of the invention , which is to be given the full
breadth of the appended claims and any and all equivalents
thereof .

1. A processing circuit comprising logic circuitry for
performing radix 1000 decimal floating point arithmetic ;
comprising :

an input fraction expanding circuit for expanding most
significant bits and least significant bits of at least two
input digital floating point radix - 1000 inputs , the input
fraction expanding circuit being configured to swap
expanded fractions of the at least two digital floating
point radix - 1000 inputs in response to a swap signal
based on the at least two input digital floating point
radix - 1000 inputs , thereby generating expanded frac
tion outputs corresponding to the at least two input
digital floating point radix - 1000 inputs ;

an exponent difference circuit for determining a difference
between biased exponents of the at least two digital
floating point radix - 1000 inputs in response to input

US 2020/0183650 A1 Jun . 11 , 2020
11

ting the biased exponents and the input sign bits of the
at least two input digital floating point radix - 1000
inputs ,

the exponent difference circuit being configured to gen
erate at least one of a swap signal , a result exponent
signal , a result sign data signal corresponding to a
swapped expanded fraction data signal and a maximum
exponent data signal , and right shift data signal , the
swap signal being outputted to the input fraction
expanding circuit to control swapping of the expanded
fractions ;

a right - shift circuit for right - shifting one of the expanded
fraction outputs corresponding to the at least two digital
floating point radix - 1000 inputs in response to the right
shift data signal , and for generating a sticky bit data
signal and a shifted - out BCK data signal ;

an add / subtract circuit for performing at least one of an
adding and a subtracting computation with respect to
the expanded fraction outputs to thereby generate an
add / subtract result data signal ;

a normalizing circuit for normalizing the add / subtract
result data signal in response to the sticky bit data
signal and the shifted - out BCK data signal , and gen
erating a normalized add / subtract result data signal ; and

a round and pack circuit for generating a normalized
fraction output signal in response to the normalized
add / subtract result data signal , the sign data signal and
a round direction data signal .

2. A processing circuit according to claim 1 , further
comprising :

an effective operation circuit for generating an effective
operation data signal in response to the input sign bits
of the at least two digital floating point radix - 1000
inputs and an arithmetic operation select signal , the
effective operation data signal being inputted into the
add / subtract circuit , wherein the add / subtract circuit
performs at least one of an adding and a subtracting
computation with respect to the expanded fraction
outputs to thereby generate an add / subtract result data
signal in response to the effective operation data signal .

3. A processing circuit according to claim 2 , further
comprising :

a sign circuit for determining the result sign data signal in
response to at least a sign of a swapped expanded
fraction data signal , a sign data signal corresponding to
one of the at least two input digital floating point
radix - 1000 inputs , and the effective operation data
signal .

4. A processing circuit according to claim 1 , wherein the
exponent difference circuit includes :

an adder circuit for generating the difference between
biased exponents of the at least two digital floating
point radix - 1000 inputs and an output carry signal ,

a first multiplexer circuit for generating the maximum
exponent data signal ,

a second multiplexer circuit for generating the sign of a
swapped expanded fraction data signal in response to
the input sign bits of the at least two digital floating
point radix - 1000 inputs and the swap signal ,

a third multiplexer circuit for generating the right shift
signal in response to the difference between biased
exponents from the adder circuit and an absolute value
determination circuit , wherein

the swap signal is outputted from the adder circuit in
response to the biased exponent difference from the
adder circuit .

5. A processing circuit according to claim 2 , wherein the
right - shift circuit includes first and second stages of multi
plexers , wherein

the first stage of multiplexers are configured to generate a
first stage right - shift output and a first stage right - shift
last BCK output based on a second one of the expanded
fraction outputs that is right - shifted in response to least
significant bit data of the right shift signal ,

the second stage of multiplexers are configured to gener
ate a second stage right - shift output and a second stage
right - shift BCK output based on the first stage right
shift output that is right - shifted in response to most
significant bit date of the right shift signal to then
generate a shifted fraction portion of the shifted - out
BCK data signal ,

the first stage of multiplexers are further configured to
generate a first stage sticky bit data signal that is
right - shifted in response to least significant bit data of
the right shift signal ,

the second stage of multiplexers are further configured to
generate the sticky bit data signal that is right - shifted in
response to most significant bit date of the right shift
signal .

6. A processing circuit according to claim 5 , wherein the
add / subtract circuit includes

a plurality of 10 - bit BCK add / subtract sub - circuits and a
plurality of post - correct sub - circuits each connected to
a corresponding one of the plurality of 10 - bit BCK
add / subtract sub - circuits , and

a carry look ahead circuit that compares magnitudes of the
swapped fraction expanded fraction with the shifted
out BCK data signal to then generate a plurality of carry
output data signals corresponding to each of the plu
rality of 10 - bit BCK add / subtract sub - circuits and post
correct sub - circuits .

7. A processing circuit according to claim 1 , wherein the
normalizing circuit includes

an exponent correction circuit configured to generate an
exponent correction signal in response to the add /
subtract result data signal , a leading zero count signal ,
a carry - out bit signal and a leading - zero flag bit , and

a multiplexer circuit that generates the normalized add /
subtract result data signal in response to the add /
subtract result data signal concatenated with a result
extension of the add / subtract result data signal that is
left - shifted .

8. A processing circuit according to claim 1 , wherein the
round and pack circuit includes

a rounding decision circuit for generating a rounding
value data signal in response to the normalized add /
subtract result data signal and a rounding direction
signal , and

a plurality of BCK incrementer circuits for generating a
corresponding plurality of temporary BCK data signals
and propagate bits in response to the normalized add /
subtract result data signal , the plurality of BCK incre
menter circuits each being configured to output 10 - bit
segments of a rounded normalized add / subtract result
data signal .

9. A processing circuit according to claim 1 , wherein each
of the digital floating point radix - 1000 inputs includes a

US 2020/0183650 A1 Jun . 11 , 2020
12

fraction field comprising a plurality of declets representing
numbers 0-999 and a format indicator .

10. A processing circuit according to claim 1 , wherein the
input fraction expanding circuit is configured to expand a
skewed fraction field into an expanded representation of a
fraction field F [! 15 : 0] into a number representation X [119 :
0] according to :

fmt [1 : 0] = F [115 : 114]
if fmt [1 : 0] = 11 then X [119 : 117] = F [5 : 3] else X [119 : 117]

= 000 ;
if fmt [1] = 1 then X [116 : 114] = F [2 : 0] else X [116 : 114]

= concat { 0,0 , F [114] } ;
X [113 : 6] = F [113 : 6] ;
if fmt [1 : 0] = 11 then X [5 : 3] = 000 else X [5 : 3] = F [5 : 3] ;
if fmt [1] = 1 then X [2 : 0] = 000 else X [2 : 0] = F [2 : 0] ,
wherein fmt [1 : 0] is the format indicator .
11. A method implemented in a computer or data pro

cessing system for performing radix 1000 decimal floating
point arithmetic ; comprising the steps of :

inputting at least two input digital floating point radix
1000 inputs ;

expanding most significant bits and least significant bits
of the at least two input digital floating point radix
1000 inputs , the step of expanding including swapping
expanded fractions of the at least two digital floating
point radix - 1000 inputs in response to a swap signal
based on the at least two input digital floating point
radix - 1000 inputs , thereby generating expanded frac
tion outputs corresponding to the at least two input
digital floating point radix - 1000 inputs ;

determining a difference between biased exponents of the
at least two digital floating point radix - 1000 inputs in
response to inputting the biased exponents and the
input sign bits of the at least two input digital floating
point radix - 1000 inputs ;

generating at least one of a swap signal , a result exponent
signal , a result sign data signal corresponding to a
swapped expanded fraction data signal and a maximum
exponent data signal , and right shift data signal ;

inputting the swap signal to control swapping of the
expanded fractions ;

right - shifting one of the expanded fraction outputs corre
sponding to the at least two digital floating point
radix - 1000 inputs in response to the right shift data
signal ;

generating a cky bit data signal and a shifted - out BCK
data signal ;

performing at least one of an adding and a subtracting
computation with respect to the expanded fraction
outputs to thereby generate an add / subtract result data
signal ;

normalizing the add / subtract result data signal in response
to the sticky bit data signal and the shifted - out BCK
data signal ;

generating a normalized add / subtract result data signal ;
and

generating a normalized fraction output signal in response
to the normalized add / subtract result data signal , the
sign data signal and a round direction data signal .

12. A method according to claim 11 , further comprising
the steps of :

selecting an arithmetic operation ;
generating an effective operation data signal in response

to the input sign bits of the at least two digital floating
point radix - 1000 inputs and an arithmetic operation
selection ;

performing at least one of an adding and a subtracting
computation with respect to the expanded fraction
outputs to thereby generate an add / subtract result data
signal in response to the effective operation data signal
and the arithmetic operation selection .

13. A method according to claim 12 , further comprising
the steps of :

determining the result sign data signal in response to at
least a sign of a swapped expanded fraction data signal ,
a sign data signal corresponding to one of the at least
two input digital floating point radix - 1000 inputs , and
the effective operation data signal .

14. A method according to claim 11 , wherein the step of
determining a difference between biased exponents
includes :

generating the difference between biased exponents of the
at least two digital floating point radix - 1000 inputs and
an output carry signal ,

generating the maximum exponent data signal ,
generating the sign of a swapped expanded fraction data

signal in response to the input sign bits of the at least
two digital floating point radix - 1000 inputs and the
swap signal ,

generating the right shift signal in response to the differ
ence between biased exponents , wherein

the swap signal is outputted in response to the biased
exponent difference .

15. A method according to claim 12 , wherein the step of
right - shifting circuit includes

generating via a first stage of multiplexers a first stage
right - shift output and a first stage right - shift last BCK
output based on a second one of the expanded fraction
outputs that is right - shifted in response to least signifi
cant bit data of the right shift signal ,

generating via a second stage of multiplexers a second
stage right - shift output and a second stage right - shift
BCK output based on the first stage right - shift output
that is right - shifted in response to most significant bit
date of the right shift signal ;

generating a shifted fraction portion of the shifted - out
BCK data signal ;

generating a first stage sticky bit data signal that is
right - shifted in response to least significant bit data of
the right shift signal ; and

generating the sticky bit data signal that is right - shifted in
response to most significant bit date of the right shift
signal .

16. A method according to claim 15 , wherein the step of
performing at least one of an adding and a subtracting
computation includes

comparing magnitudes of the swapped fraction expanded
fraction with the shifted - out BCK data signal to then
generate a plurality of carry output data signals .

17. A method according to claim 11 , wherein the step of
normalizing includes

generating an exponent correction signal in response to
the add / subtract result data signal , a leading zero count
signal , a carry - out bit signal and a leading - zero flag bit ,
and

US 2020/0183650 A1 Jun . 11 , 2020
13

generating the normalized add / subtract result data signal
in response to the add / subtract result data signal con
catenated with a result extension of the add / subtract
result data signal that is left - shifted .

18. A method according to claim 11 , wherein the step of
rounding circuit includes

generating a rounding value data signal in response to the
normalized add / subtract result data signal and a round
ing direction signal ,

generating a corresponding plurality of temporary BCK
data signals and propagate bits in response to the
normalized add / subtract result data signal , and

outputting 10 - bit segments of a rounded normalized add /
subtract result data signal .

19. A method according to claim 11 , wherein each of the
digital floating point radix - 1000 inputs includes a fraction
field comprising a plurality of declets representing numbers
0-999 and a format indicator .

20. A method according to claim 19 , wherein performing
of the radix 1000 decimal floating point arithmetic uses
skewed representations of operands as indicated by the
format indicator .

