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RADIX - 1000 DECIMAL FLOATING - POINT 
NUMBERS AND ARITHMETIC UNITS USING 

A SKEWED REPRESENTATION OF THE 
FRACTION 

SUMMARY 

Field of the Invention 

[ 0001 ] This invention relates to the field of computer 
arithmetic . More precisely , it relates to radix - 1000 decimal 
floating - point numbers of various sizes ( 32 bits , 64 bits , and 
128 bits ) that use a skewed representation of the fraction to 
maintain precision and accurate arithmetic on decimal float 
ing - point numbers . It also relates to the implementation of 
radix - 1000 floating point arithmetic units in a method , 
system and / or computer program product capable of use of 
floating point arithmetic units for calculation and process 
ing . 

DISCUSSION OF THE RELATED ART 

[ 0002 ] The IEEE 754-1985 standard was established for 
binary floating - point numbers . See David Stevenson , et al . , 
“ IEEE Standard for Binary Floating - Point Arithmetic ” , 
IEEE Std 754-1985 , March 1985 , incorporated herein by 
reference in its entirety . The widely adopted 1985 standard 
defined the format and encoding of single , double , and 
extended - precision binary floating - point data that included 
normal and subnormal numbers , signed zeros , signed infi 
nites , and special “ not a number ” ( NaN ) values . The 1985 
standard defined arithmetic , conversion , comparison opera 
tions , rounding rules , special arithmetic on signed zeros , 
infinities , and NaNs . The major drawback of binary floating 
point numbers is its inability to represent decimal fractions 
( such as 0.2 ) exactly in binary . The binary fraction must be 
rounded to the required precision . 
[ 0003 ] The more recent IEEE 754-2008 standard ( D. 
Zuraz , M. Cowlishaw , et al . , “ IEEE Standard for Floating 
Point Arithmetic ” , IEEE Std 754-2008 , August 2008 , incor 
porated herein by reference in its enti ty ) extended the 
original IEEE 754-1985 by adding decimal floating - point 
numbers . The need for decimal floating - point is important 
for financial applications , such as banking , taxes , and cur 
rency conversions . The use of binary floating - point numbers 
is inadequate for such applications because of rounding 
errors , which can be significant in some applications . See M. 
Cowlishaw , “ Decimal Floating - Point : Algorism for Com 
puters ” , 16th IEEE Symposium on Computer Arithmetic 
( ARITH'03 ) , p . 104-111 , June 2003 , incorporated herein by 
reference in its entirety . 
[ 0004 ] Although the IEEE 754-2008 decimal floating 
point standard can represent decimal fractions exactly with 
finite precision , the decimal format is complex . The format 
has three fields : a sign bit , a combination field , and a 
coefficient continuation field . The coefficient continuation 
field uses 10 - bit declets to encode Binary Code Decimal 
( BCD ) digits . This encoding scheme is known as Densely 
Packed Decimal ( DPD ) . See M. Cowlishaw , “ Densely 
Packed Decimal Encoding " , IEE Proceedings Computers 
and Digital Techniques , vol . 149 , p . 102-104 , May 2002 , 
incorporated herein by reference in its entirety . Each declet 
requires logic to unpack the three BCD digits and then pack 
them at the end of each operation . See Id .; and S. Carlough , 
A. Collura , S. Mueller , and M. Kroener , “ The IBM ZEnter 

prise - 196 decimal floating - point accelerator ” , in Proceed 
ings of the 20h IEEE Symposium on Computer Arithmetic , 
Germany , p . 139-146 , July 2011 , incorporated herein by 
reference in its entirety . Internally , the decimal floating - point 
unit uses BCD digits in arithmetic operations . This is 
inefficient and increases the area of the decimal floating 
point unit in comparison with a binary floating - point unit . 
[ 0005 ] Decimal floating - point numbers are based on the 
IEEE 754-2008 standard . See D. Zuraz , M. Cowlishaw , et 
al . , “ IEEE Standard for Floating - Point Arithmetic ” , IEEE 
Std 754-2008 , August 2008 , incorporated herein by refer 
ence in its entirety . The standard defines decimal interchange 
formats , called decimal32 , decimal64 , and decimal128 , of 
widths 32 , 64 , and 128 bits , respectively . The format has 
three fields : a sign bit , a combination field , and a coefficient 
continuation field , as shown in FIG . 1. The combination field 
has 5 + w bits that encode the leading digit of the integer 
coefficient and the biased exponent E. It was defined this 
way to encode an extra leading digit in the coefficient and to 
maximize the exponent range . The coefficient continuation 
field has 10xk bits ( k declets ) that encode 3xk decimal digits 
in DPD . 
[ 0006 ] The integer coefficient C consists of ? decimal 
digits , where p is the precision : p = 7 , 16 , and 34 for deci 
mal32 , decimal64 , and decimal128 , respectively . The 
numerical value of a finite decimal floating - point number is : 
( -1 ) * xCx109 , where q = E - Bias . Prior work on decimal - point 
numbers was led by the IBM zEnterprise decimal floating 
point accelerator . See Id . Other work on the implementation 
of decimal - point operations and units are documented in L. 
K. Wang and M. J. Schulte , “ Decimal Floating - Point Adder 
and Multifunction Unit with Injection - Based Rounding ” , in 
Proceedings of the 18th IEEE Symposium on Computer 
Arithmetic , France , June 2007 ; L. K. Wang , M. J. Schulte , J. 
D. Thompson , and N. Jairam , " Hardware designs for Deci 
mal Floating - Point Addition and Related Operations " , IEEE 
Transactions on Computers , 58 ( 3 ) , March 2009 ; L. K. 
Wang and M. J. Schulte , “ A Decimal Floating - Point Adder 
with Decoded Operands and a Decimal Leading - Zero 
Anticipator ” , in Proceedings of the 19th IEEE Symposium on 
Computer Arithmetic , 2009 ; A. Wahba and H. Fahmy , “ Area 
Efficient and Fast Combined Binary / Decimal Floating Point 
Fused Multiply Add Unit ” , IEEE Transactions on Comput 
ers , Vol 66 , No 2 , February 2017 , p . 226-239 ; and A. 
Vazquez , E. Antelo , and P. Montuschi , “ Improved Design of 
High - Performance Parallel Decimal Multipliers ” , IEEE 
Transactions on Computers , Vol 59 , No 5 , May 2010 , p . 
679-693 , each incorporated herein by reference in its 
entirety . All of this work is based on the IEEE 754-2008 
standard . 
[ 0007 ] However , as noted above , even the revised IEEE 
754-2008 standard uses Radix 10 for representing decimal 
floating - point numbers and for decimal floating - point arith 
metic . IBM has implemented Radix - 10 Floating - point units 
inside their recent processors . In contrast , as will be 
explained further hereinbelow , the present invention intro 
duces a novel representation of FLOATING - POINT num 
bers based on radix - 1000 and a SKEWED representation of 
the fraction . The invention also presents detailed implemen 
tation of floating - point arithmetic units that can be of various 
sizes ( 32 - bit , 64 - bit , and 128 - bit ) . 
[ 0008 ] U.S. Pat . No. 7,644,115 B2 is directed to systems 
and methods for performing large - radix numeric operations . 
A first number may be segmented into large - radix segments , 
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[ 0014 ] The publication entitled “ Floating Point Number 
Format with Number System with Base of 1000 ” , IBM 
Technical Disclosure Bulletin ( 1998 ) describes floating 
point numbers with a base of 1000 ( instead of 2 ) and 
discloses that the format is superior to Binary Code Decimal 
( BCD ) . In contrast to the present invention , there is no 
representation of the Radix - 1000 floating - point numbers and 
no implementation of Radix - 1000 floating point units . 
Rather , this publication goes the opposite direction and 
implements decimal floating - point units based on Radix 10 , 
BCD , and DPD , with a much more complex representation 
and implementation . 

SUMMARY OF THE INVENTION 

wherein numbers of the segments are generated such that 
radix of the segment is greater than radix of the first number . 
As a result , a plurality of disparate processor - based com 
puting systems may be configured to perform various 
numeric operations on the large - radix segments of the num 
ber and output results of a numeric operation as a number 
whose radix is equal to the radix of the first number . 
[ 0009 ] In U.S. Pat . No. 7,644,115 B2 unlike the present 
invention , the numbers that are manipulated are fixed - point 
numbers that might include a fraction ; they are not floating 
point numbers . There is no exponent field ; there is no format 
for the number itself ( just a string of characters ) ; and there 
is no hardware implementation . As will be explained further 
hereinbelow , the present invention incorporates features 
such as using 32 bits , 64 bits , and 128 bits to store a 
radix - 1000 decimal floating - point number in binary with an 
exponent field and a skewed representation of the fraction , 
none of which are present in this prior art . Instead , U.S. Pat . 
No. 7,644,115 B2 discloses the use of segmentation instruc 
tions to segment large numbers and requesting the operating 
system to store large - radix numbers and segments in a data 
structure ( arrays , lists , etc. ) . 
[ 0010 ] U.S. Pat . No. 6,546,411 B1 is directed to a high 
speed radix 100 parallel adder that provides an improved 
method and apparatus for performing decimal arithmetic 
using conventional parallel binary adders . In a first aspect , a 
method for implementing decimal arithmetic using a radix 
( base ) 100 and a method for implementing radix 1000 
numbering system are disclosed . The first aspect implements 
decimal arithmetic utilizing radix 100 , where one - hundred 
decimal numbers , 0 through 99 , are represented using seven 
BCD bits . In a second aspect , a specialized high - speed radix 
100 parallel adder is disclosed . In effect , numbers are 
segmented into several large - radix segments . The radix of a 
segment may be 100 , 1000 , 10000 , 100000 , 1000000 , etc. 
Next , the segmentation instructions may request the oper 
ating system to store the large - radix segments in one or more 
data structures in memory , such as arrays , dynamic arrays , 
linked lists , stacks , queues , etc. 
[ 0011 ] In U.S. Pat . No. 6,546,411 B1 , the radix 100 
numbering system is used for inventing a High - Speed Radix 
100 Parallel Adder . This reference is directed to integer 
arithmetic , not floating - point arithmetic . In integer arithme 
tic , there is no exponent field , no fractions , no exponent 
logic , no alignment , no normalization , and no rounding 
logic . 
[ 0012 ] In the publication entitled “ Revisiting the Newton 
Raphson Iterative Method for Decimal Division " by Mario 
P. Vestias and Horacio C. Neto ( Sep. 5-7 , 2011 ) , the focus is 
on faster decimal division , using the Newton - Raphson itera 
tive method . In this publication , the implementation con 
verts 3 BCD digits into a 10 - bit DPD ( Densely Packed 
Decimal used in IEEE 754-2008 ) . In the paper , the imple 
mentation converts a 20 - bit binary number to radix - 1000 
( FIG . 4 ) then uses an inefficient ripple - carry radix - 1000 
adder ( FIG . 5 ) . 
[ 0013 ] In contrast to the publication by Vestias and Neto , 
as will be explained further hereinbelow , the present inven 
tion does not do any division , but only addition and sub 
traction . The invention does not use BCD or DPD , but only 
BCK ( Binary Coded 1000 values ) . The invention does not 
convert binary numbers , and instead uses a much more 
efficient Radix - 1000 adder / subtractor for adding and sub 
tracting fractions . 

[ 0015 ] In one aspect the present invention is directed to a 
system , structure and method using radix - 1000 ( instead of 
radix - 10 ) to represent and operate on decimal floating - point 
numbers . Instead of using a 10 - bit declet to encode a DPD , 
this invention uses a declet to encode a BCK ( Binary Coded 
1000 values ) , where the letter K is the abbreviation of the 
number 1000. This invention also uses a skewed represen 
tation of the fraction field to avoid the loss of decimal digits 
in arithmetic operations when shifting and rounding the 
fraction are required . 
[ 0016 ] A minor drawback of radix - 1000 is the loss of a 
BCK digit , or three BCD digits , when incrementing the 
exponent field by 1 ( right - shifting the significand by 10 bits ) . 
This is the case when adding / subtracting two radix - 1000 
floating - point numbers that have different exponent values . 
This is also the case when a carry is obtained , and shifting 
and rounding are necessary . A difference of 1 in the radix 
1000 exponent is equal to a difference of 3 in the radix - 10 
exponent . To alleviate this drawback , this invention uses a 
skewed representation of the fraction field . 
[ 0017 ] The present invention is further directed to a pro 
cessing circuit comprising logic circuitry that performs radix 
1000 decimal floating - point arithmetic . Among the features 
of the present invention , the logic circuitry operates on 
operands having a sign bit , an exponent field representing an 
exponent on a 1000 base and a fraction field representing a 
number having an absolute value that is less than one . The 
fraction field comprises a plurality of declets representing 
the numbers 0-999 and a format indicator . The logic cir 
cuitry performs the radix 1000 decimal floating - point arith 
metic using one of a plurality of skewed representations of 
operands as indicated by the format indicator . In addition , 
the logic circuitry includes expansion circuitry that expands 
the fraction field F [ 115 : 0 ] into its number representation 
X [ 119 : 0 ] according to : 
fmt [ 1 : 0 ] = F [ 115 : 114 ] 
if fmt [ 1 : 0 ] = 11 then X [ 119 : 117 ] = F [ 5 : 3 ] else X [ 119 : 117 ] 
= 000 ; 
if fmt [ 1 ] = 1 then X [ 116 : 114 ] = F [ 2 : 0 ] else X [ 116 : 114 ] = con 
cat { 0,0 , F [ 114 ] } ; 

X [ 113 : 6 ] = F [ 113 : 6 ] ; 

[ 0018 ] if fmt [ 1 : 0 ] = 11 then X [ 5 : 3 ] = 000 else X [ 5 : 3 ] = F [ 5 : 
3 ] ; 

if fmt [ 1 ] = 1 then X [ 2 : 0 ] = 000 else X [ 2 : 0 ] = F [ 2 : 0 ) , wherein 
fmt [ 1 : 0 ) is the format indicator . 
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DETAILED DESCRIPTION OF THE 
INVENTION 

[ 0019 ] Further features of the present invention include a 
special sub - circuit of the processing sub - circuit that is used 
for the Addition and Subtraction of radix - 1000 expanded 
fractions . 
[ 0020 ] Another feature of the present invention is a Nor 
malize sub - circuit that may include a special sub - circuit that 
does the normalization of the radix - 1000 result fraction . The 
normalization process is conditional and depends on 
whether the input fractions are normalized or not . 
[ 0021 ] As another feature , in a Round sub - circuit , a radix 
1000 normalized fraction is rounded according to the round 
ing mode and the normalized fraction format . 
[ 0022 ] As another feature , in a Pack sub - circuit , a radix 
1000 rounded fraction is packed according to its final 
format . 
[ 0023 ] As an even further feature , in an Exception handler 
sub - circuit , arithmetic on special Overflow or Invalid values 
produces special Overflow or Invalid results . This feature 
also includes the ability to detect and produce an Overflow 
result when the normalized exponent value becomes too 
large . It also includes the ability to produce an Inexact flag 
when the produced radix - 1000 fraction is rounded or trun 
cated . 
[ 0024 ] In contrast to the prior art as discussed above , even 
the revised IEEE 754-2008 standard uses Radix 10 for 
representing decimal floating - point numbers and for decimal 
floating - point arithmetic . IBM has implemented Radix - 10 
Floating - point units inside their recent processors . In con 
trast , as will be explained further hereinbelow , the present 
invention introduces a novel representation of FLOATING 
POINT numbers based on radix - 1000 and a SKEWED 
representation of the fraction . The invention also presents 
detailed implementation of floating - point arithmetic units 
that can be of various sizes ( 32 - bit , 64 - bit , and 128 - bit ) . 
[ 0025 ] These and other features , functionalities and objec 
tives are attained with , for example , a method and system for 
executing a machine instruction in a central processing unit 
comprising circuitry . 

[ 0036 ] The embodiments of the present invention will be 
described hereinbelow in conjunction with the above - de 
scribed drawings . This invention uses radix - 1000 ( instead of 
radix - 10 as done in the prior art ) to represent and operate on 
decimal floating - point numbers . It is a deviation from the 
IEEE 754-2008 standard . Instead of using a 10 - bit declet to 
encode a DPD , this invention uses a declet to encode BCK 
( Binary Coded 1000 ) values , where the letter K is the 
abbreviation of the number 1000. The advantages of using 
radix - 1000 are many as outlined below : 

[ 0037 ] 1 – It is related to radix - 10 . Each BCK digit is 
equivalent to three BCD digits . Decimal fractions that 
can be represented exactly in radix - 10 can also be 
represented exactly in radix - 1000 . 

[ 0038 ] 2 — BCK digits are simpler than DPD . The cod 
ing efficiency is the same ( 97.7 % ) . However , unlike 
DPD , there is no need to unpack and then pack BCK 
digits . 

[ 0039 ] 3 Internally , a radix - 10 floating - point unit uses 
BCD digits , whereas a radix - 1000 floating - point unit 
uses BCK digits . For example , a 128 - bit decimal float 
ing - point unit requires as many as 36 BCD digits ( 144 
bits ) for its internal representation , including BCD 
digits for guard and rounding [ 5 ] . On the other hand , a 
radix - 1000 floating - point unit requires only 12 BCK 
digits ( 120 bits ) for its internal representation , which is 
far more efficient . 

[ 0040 ] 4 - A simpler shifter is required to aligning the 
BCK digits in radix - 1000 because there are at most 12 
BCK digits to shift in the case of addition or subtrac 
tion , while a more complex shifter is needed to align 
the BCD digits in radix - 10 . 

[ 0041 ] 5 — A smaller binary adder is required to add the 
12 BCK digits ( 120 bits ) in radix - 1000 , while a larger 
one is needed to add the 36 BCD digits ( 144 bits ) in 
radix - 10 . 

[ 0042 ] The potential drawback of radix - 1000 is the loss of 
a BCK digit , or three BCD digits , when incrementing the 
exponent field by 1 ( right - shifting the significand by 10 bits ) . 
This is the case when adding / subtracting two radix - 1000 
floating - point numbers that have different exponent values . 
This is also the case when a carry is obtained , and shifting 
and rounding are necessary . A difference of 1 in the radix 
1000 exponent is equal to a difference of 3 in the radix - 10 
exponent . To alleviate this drawback , this invention uses a 
skewed representation of the fraction field . 

BRIEF DESCRIPTION OF THE DRAWINGS 

[ 0026 ] The present invention is illustrated in the accom 
panying drawings , wherein : 
[ 0027 ] FIG . 1 illustrates an example decimal interchange 
floating - point format according to the IEEE 754-2008 stan 
dard ; 
[ 0028 ] FIG . 2 illustrates an example Radix - 1000 decimal 
floating - point interchange format according to the present 
invention ; 
[ 0029 ] FIG . 3 shows a 128 - bit Radix - 1000 DFP Unit 
according to the present invention ; 
[ 0030 ] FIG . 4 shows an exponent difference block dia 
gram according to the present invention ; 
[ 0031 ] FIG . 5 shows a right - shifter block diagram accord 
ing to the present invention ; 
[ 0032 ] FIG . 6 shows a fraction Add / Subtract block dia 
gram according to the present invention ; 
[ 0033 ] FIG . 7 shows a Normalize block diagram accord 
ing to the present invention ; 
[ 0034 ] FIG . 8 shows a Round block diagram according to 
the present invention ; and 
[ 0035 ] FIG.9 shows a Packing the Result Fraction accord 
ing to the present invention ; 

A New Radix - 1000 Floating - Point Interchange Format : 
[ 0043 ] The radix - 1000 floating - point interchange format 
according to the present invention consists of three fields : a 
sign bit s , a biased exponent field E with e bits , and a fraction 
field F with f bits , as shown in FIG . 2. This format is simpler 
than the IEEE format that uses a combination field and a 
trailing coefficient field . The numeric value of the radix 
1000 Decimal Floating - Point ( DFP ) number is ( -1 ) ºx0.Fx 
1000E - Bias 
[ 0044 ] In this invention , DFP32 , DFP64 , and DFP128 are 
the names of the suggested radix - 1000 DFP numbers . Only 
a few bits are needed for the exponent field , leaving the 
remaining bits for the fraction field . The biased exponent 
range is 0 to 2-2 . The Bias is equal to 2-1 . The maximum 
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bits , the actual precision is a variable . It varies between 5 
and 7+ for DFP32 , between 14 and 16+ for DFP64 , and 
between 32 and 34+ decimal digits for DFP128 . 

exponent scale factor is 1000 + Bias = 10 + 3xBias and the mini 
mum is 1000 - Bias = 10-3xBias . Table 1 shows the suggested 
parameters of the DFP32 , DFP64 , and DFP128 numbers . 
The length of the exponent and fraction fields can be chosen 
differently , depending on whether a wider exponent range or 
a higher precision is desired . The special exponent value 
E = 2e –1 is reserved for infinity and NaN . When E = 2 ° -1 , the 
most significant bit of F specifies whether the number is 
infinity or NaN . 

A Skewed Representation of the Fraction Field 
[ 0047 ] To remedy the loss of precision , Table 3 shows a 
two - format skewed representation of the fraction F. The 
maximum decimal values of the two - format representation 
of the fraction are denoted as Max FO and Max F1 . The 
actual precision of the two - format representation of F is now 
improved . It is 6 to 7+ decimal digits for DFP32 , 15 to 16+ 
decimal digits for DFP64 , and 33 to 34+ decimal digits for 
DFP128 . 

TABLE 1 

Suggested Radix - 1000 Decimal 
Floating - Point Parameters 

Radix - 1000 
DFP Number DFP32 DFP64 DFP128 TABLE 3 

32 bits 
1 bit 

6 bits 

64 bits 
1 bit 

8 bits 

128 bits 
1 bit 

11 bits 

Two - Format Skewed Representation of 
the Radix - 1000 Fraction 

DFP32 = 

= 25 bits 55 bits 116 bits 

Format length 
Sign 
Exponent field 
( e bits ) 
Fraction field 
( f bits ) 
Biased 
exponent range 
Bias 2e - 1 - 1 
Max Scale = 

DFP64 

E = 0 to 
62 
31 

E = 0 to 
254 
127 

E = 0 to 
2046 
1023 

Max FO 0.015 , 999 , 999 
Max F1 0.999 , 999 , 9 
Max F0 = 0.015 , 999 , 999 , 999 , 999,999 
Max F1 = 0.999 , 999 , 999 , 999 , 999 , 9 
Max FO = 0.047 , 999 , 999 , 999 , 999,999 , 999 , 
999 , 999 , 999,999 , 999 
Max F1 0.999 , 999 , 999 , 999 , 999 , 999 , 999 , 
999 , 999 , 999 , 999 , 9 

DFP128 
= 

1000 + Bias 
1000 + 31 
10 + 93 

1000-31 
1000 + 127 

10 + 381 
1000-127 Min Scale 

1000 + 1023 
10 + 3069 

1000-1023 
10-3069 1000 - Bias 10-93 10-381 

7+ digits 16+ digits 34+ digits Maximum 
Precision 
Numeric value + 0.F X 10.F x + 0.F x 

1000 € -3 1000 € -127 1000 € -1023 

[ 0048 ] Since there are three decimal digits in each BCK , 
it is better to have a three - format skewed representation of 
the fraction F. Table 4 shows a three - format representation 
of the DFP32 , DFP64 , and DFP128 fractions with maximum 
decimal values : Max FO , Max F1 , and Max F2 . The actual 
precision is 7 , 16 , and 34 decimal digits for DFP32 , DFP64 , 
and DFP128 , respectively . Radix - 1000 Fraction Field 

TABLE 4 

Three - Format Skewed Representation of 
the Radix - 1000 Fraction 

DFP32 = 

[ 0045 ] The simplest representation of the fraction field F 
is to split the field into 10 - bit declets , starting at the 
least - significant fraction bit and moving backwards . Each 
10 - bit declet is a BCK digit that encodes three decimal digits 
in binary ( 000 to 999 ) . Since the fraction field is not multiple 
of 10 bits , the upper bits of the fraction field encode fewer 
than 1000 decimal values . This fixed - format representation 
of the fraction field F is shown in Table 2. The maximum 
precision for DFP32 , DFP64 , and DFP128 are 7+ , 16+ and 
34+ decimal digits , respectively . The + means that the 
precision can exceed 7 , 16 and 34 digits in some limited 

DFP64 

Max FO 0.009 , 999 , 999 
Max F1 0.099 , 999,99 
Max F2 = 0.999 , 999 , 9 
Max FO = 0.009 , 999 , 999 , 999 , 999 , 999 
Max F1 = 0.099 , 999 , 999 , 999 , 999,99 
Max F2 = 0.999 , 999 , 999 , 999 , 999,9 
Max FO 0.031 , 999 , 999 , 999 , 999 , 999 , 999 , 
999 , 999 , 999,999 , 999 
Max F1 0.127 , 999 , 999 , 999 , 999 , 999,999 , 
999 , 999 , 999,999,99 
Max F2 = 0.999 , 999 , 999 , 999 , 999 , 999 , 999 , 
999,999 , 999 , 999 , 9 

DFP128 

cases . 

TABLE 2 

Fixed - Format Representation of the Radix - 1000 Fraction 
DFP32 

DFP64 = 

25 bits = 5b , 10b , 10b 
Max F 0.031 , 999 , 999 
55 bits 5b , 10b , 105 , 106 , 106 , 10b 
Max F = 0.031 , 999 , 999 , 999 , 999,999 
116 bits 6b , 106 , 105 , 106 , 10b , 106 , 10b , 
10b , 105 , 10b , 10b , 10b 
Max F = 0.063 , 999 , 999 , 999 , 999 , 999 , 999 , 
999 , 999 , 999 , 999,999 

DFP128 

Expanding the Fraction Field 
[ 0049 ] The two- and three - format skewed representations 
of the fraction field are simple to implement . The fraction F 
is expanded from 25 to 30 bits for DFP32 , from 55 to 60 bits 
for DFP64 , and from 116 to 120 bits for DFP128 . The format 
is defined according to the upper bits of the fraction field . 
Only the upper and lower BCKs of the fraction field are 
expanded . The middle BCKs are not modified . 
[ 0050 ] Consider the DFP128 three - format fraction , shown 
in Table 4. Let F * [ 115 : 0 ] be the 116 - bit fraction , where bit 115 
is the most significant and bit 0 is the least - significant . The 
format fat is defined according to the two most - significant 
bits of the fraction : fmt / 1 : 0J = F ( 115 : 114 ] . Let X ( 119 : 0 ] be the 

[ 0046 ] Although the fixed - format representation of the 
radix - 000 fraction F is the simplest to implement in hard 
ware , its major drawback is the loss of precision when 
converting a radix - 10 decimal number into radix - 1000 or 
when shifting and rounding the result of an arithmetic 
operation . Because right - shifting is done by multiples of 10 
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F ( 113 : 0 ] 

120 - bit expanded fraction for DFP128 . It consists of 12 
BCK digits , equivalent to 36 decimal digits . The expansion 
logic is described in Table 5. There are three formats to 
expand . If fmt 1 ) is 8 then X [ 119 : 0 ; = { 5'60 , F154 : 07 } , where { 
} is the concatenation operator and the upper 5 bits of X are 
zeros . Second , if fmt 1:07 is 2 " b10 then X ( 119 : 07 = { 3 ' b0 , F [ 2 : 0 ] F [ 113 : 10 ] , F19 : 3 ) * 10 } . The 7 - bit F19 : 37 is multiplied by 10. This 
requires an adder to compute the least - significant BCK as a 
shifted addition . Third , if fmt ( 1 : 0 ) is 2 ' b?l then X ( 119 : 0 ) = { F 
[ 5 : 0 ] ; F19 : 6 * 100 } . The 4 - bit F [ 9 : 3 ] is multiplied by 
100 that can be implemented with simple logic . 
[ 0051 ] The expansion logic can be further simplified by 
multiplying the 7 - bit F19 : 3 ] by 8 or the 4 - bit F [ 9 : 6 ] by 64 , as 
shown in Table 5b . The least - significant BCK is computed 
as : X19 : 0 = { F19 : 3 ) , 3'b6 } , or { F19 : 6 ) , 6b9 } , or F 19 : 0 ) . This 
eliminates the need to multiply by 10 or 100. A second 
advantage is simplifying the rounding logic . Rather than 
dividing the least - significant BCK of the result by 10 or 100 
in the rounding step , division by 8 or by 64 becomes trivial . 
Packing the result fraction also becomes trivial . Multiplying 
F19 : 37 by 8 generates 125 valid BCK values ( 000 to 992 ) , 
while multiplication by 10 generates only 100 values ( 000 to 
990 ) . Similarly , multiplying by 64 generates 16 valid 
BCK values ( 000 to 960 ) , while multiplication by 100 
generates only 10 values ( 000 to 900 ) . Therefore , multipli 
cation by 8 and 64 provides a better granularity for the 
least - significant BCK , which is preferably rounded for inex 
act arithmetic results . 

20x10-2 , 200x10-3 , etc. All of these are equivalent repre 
sentations according to IEEE 754-2008 . The drawback of 
cohorts is the additional complexity added to the hardware 
implementation when adding or subtracting decimal floats . 
Given two decimal numbers A and B with exponents EA and 
EB , the preferred exponent of the result is min ( EA , EB ) for 
addition and subtraction according to IEEE 754-2008 . One 
coefficient is left - shifted to decrease its exponent ( according 
to the number of leading zeros ) and the other coefficient is 
right - shifted to increase its exponent to match the exponent 
of the left - shifted coefficient . 
[ 0054 ] To alleviate the problem of multiplicity of repre 
sentation and to simplify the implementation , the radix - 1000 
fraction field should be normalized . This means that the 
largest fraction and the smallest exponent value should be 
used . The most - significant BCK digit in the fraction field F 
should be non - zero . For example , the decimal number 0.2 
should be represented uniquely as : 0.200,000 , ... x1000 ° . 
The only exception is Zero , which cannot be normalized . 
The exact number Zero is represented uniquely with E = F = 0 . 
[ 0055 ] If a fraction is not normalized , it indicates the loss 
of significant digits . For example , the number 0.000,200 , 
000 , ... x10001 is not normalized . It can be approximated , 
but not exactly equal to 0.2 . The precision is counted starting 
at the most - significant nonzero digit . If a number is not 
normalized then its fraction cannot be left - shifted and nor 
malized , because what comes after the least - significant 
fraction digit is unknown ( not necessarily zero ) . Therefore , 
there is no left - shifting of a radix - 1000 fraction field when 
it is not normalized . Only right - shifting is used on the 
fraction of the lesser exponent when adding / subtracting 
radix - 1000 decimal floating - point numbers . 

F19 : 61 

TABLE 5 

Logic for expanding the DFP128 three - format fraction into 12 BCK digits 

: 

F ( 2 : 0 ) or 

== 

* 10 : F19 : 0 ) // F19 : 3 ] * 10 , or F19,0 ] 

a ) Expansion Logic using Multiplication by 10 and 100 for the least 
significant BCK 
fmt [ 1 : 0 ] = F [ 115 : 114 ] // 2 - bit format 
X [ 119 : 117 ] = ( fmt [ 1 : 0 ] = b11 ) ? F [ 5 : 3 ] : 3 ' b0 // Either F [ 5 : 3 ] or zeros 
X ( 116 : 114 ] = ( fmt [ 1 ] 1 ) ? F [ 2 : 0 ] = { 0 , 0 , F [ 114 ] } || Either F 
{ 0,0 , F [ 114 ] } 
X [ 113 : 10 ] = F [ 113 : 10 ] // No change in 104 bits 
X [ 9 : 0 ) = ( fmt ( 1 : 0 ) ' b11 ) ? F [ 9,61 * 100 : // Either F [ 9 : 6 ] * 100 , or 

( fmt [ 1 : 0 ] b10 ) ? F [ 9 : 3 ] b ) Simpler Expansion Logic using Multiplication by 8 and 64 for the 
least 
significant BCK 
fmt ( 1 : 0 ] = F ( 115 : 114 ] 1 / 2 - bit format 
X [ 119 : 117 ] = ( fmt [ 1 : 0 ) ' b11 ) ? F [ 5 : 3 ] : 3 ’ bo // Either F [ 5 : 3 ] or zeros 
X [ 116 : 114 ] ( fmt [ i ] 1 ) ? F [ 2 : 0 ] : { 0,0 , // Either F * [ 2 : 0 ] 
F [ 114 ] } 
{ 0 , 0 , F [ 114 ] } 
X [ 113 : 6 ] = F [ 113 : 6 ] // No change in 108 bits 
X [ 5 : 3 ) = ( fmt ( 1 : 0 ) : ' b11 ) ? 3 ' b0 : F [ 5 : 3 ] // Either zeros or F [ 5,3 ] 
X [ 2 : 0 ) = ( fimt [ 1 ] 1 ) ? 3 ' 60 : F [ 2 : 0 ] // Either zeros or F [ 2 : 0 ) 

== 

== or 

== 

128 - Bit Radix - 1000 Floating - Point Unit 
[ 0056 ] This section describes the implementation of a 
radix - 1000 DFP128 unit 1000 that performs addition , sub 
traction , and comparison of radix - 1000 numbers according 
to the present invention . The top - level design of the structure 
and operation of the radix - 1000 DFP128 unit 1000 is shown 
in FIG . 3. The three - format representation is used for the 
116 - bit fraction F , as shown in Table 4. The precision is 34 
decimal digits in all three formats but can exceed 34 in some 
limited cases . The radix - 1000 DFP128 unit according to the 
invention , as well as all other units , circuits and modules , 
along with the blocks , functions , sub - modules and sub 
circuits within the units , circuits and modules , as disclosed 
hereinafter , may be implemented as physical electronic 
circuits as would be known to those of skill in the art , or their 
equivalents in software or firmware . 
[ 0057 ] Given two DFP128 numbers A and B , SA and SB 
are the input sign bits , EA and EB are the input biased 
exponents , and FA and FB are the input fractions of A and 
B , respectively , as shown in FIG . 3 . 
[ 0058 ] The Expand & Swap block 1002 enlarges the input 
fractions FA and FB from 116 to 120 bits , as described in 
Table 5b . The Expand logic expands only the most signifi 
cant 6 bits and least - significant 6 bits of the fractions FA and 
FB . However , it does not modify 108 bits of FA and FB . The 
120 - bit expanded fractions are called XA and XB . The 
expanded fractions are swapped if EA < EB . The 120 - bit 
swapped outputs are called YA and YB , where YA = swap ? 
XB : XA and YB = swap ? XA : XB . 
[ 0059 ] In addition , the Expand & Swap block 1002 out 
puts an LZ signal that indicates whether there is a leading 

[ 0052 ] The three - format fraction representation of DFP32 
and DFP64 is slightly more complex to expand . The upper 
5 bits of the fraction ( with 32 possible values ) specify three 
different formats multiplied by the ten decimal digits . Mul 
tiplication by 10 and 100 is necessary for the least - signifi 
cant BCK only . 

Normalized Radix - 1000 Fraction Field 

[ 0053 ] Unlike binary floating - point numbers which must 
be normalized , decimal floating - point numbers need not be 
according to the IEEE 754-2008 standard . This means that 
a decimal number can have multiple representations , called 
cohorts . For example , the decimal number 0.2 can be 
represented using different integer coefficients as : 2x10- ?, 
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[ 0067 ] The Sign block 1012 computes the sign of the 
result SR , based on the effective operation EOP , the sign bit 
SA , the sign bit Smax ( sign of YA ) , and the LT signal ( when 
EOP is subtraction ) . 
[ 0068 ] The Round & Pack block 1014 receives a 120 - bit 
normalized result N and two X bits from the Normalize 
block 1006. It also receives the result sign SR and a 2 - bit 
round direction RDir . The 120 - bit result N is normalized 
according to its format , and then packed into a 116 - bit result 
fraction FR . Since rounding might produce an output carry , 
post - normalization is done to the rounded result in the same 
step . An output Inc signal indicates the presence of an output 
carry and is used to increment ER . 
[ 0069 ] Finally , the Exp block 1018 computes and outputs 
the result exponent ER = Emax + EC + Inc . The 5 - bit signed 
exponent correction EC is sign - extended and added to 
Emax . 

Exponent Difference 

zero BCK in XA or XB . Only the leading BCK is examined : 
LZ ( XA [ 119 : 110 ] ! = 0 ) ( XB ( 119 : 110 ] ! = 0 ) . The LZ signal is 
used by the Normalize block 1006. If LZ is 1 then fraction 
FA or FB is not normalized , and the result of an arithmetic 
operation cannot be normalized when there are leading zeros 
in the result . 

[ 0060 ] In contrast , the DFP accelerator on the IBM z196 
unpacks the integer coefficient encoded in DPD into BCD . 
The unpacking logic for DPD is more complex and applies 
to all BCD digits . The output of the unpacker on the z196 
consists of 36 BCD digits , or 144 bits , which is much longer . 
[ 0061 ] The Exponent Difference block 1008 computes the 
difference of the 11 - bit biased exponents EA and EB . It 
produces four outputs : swap = sign ( EA - EB ) is used to swap 
the expanded fractions XA and XB when ( EA < EB ) , Emax 
is the maximum exponent value , Smax is the sign of the 
swapped fraction YA with exponent Emax , and RSA is the 
absolute difference of EA and EB that saturates at 15. RSA 
is a 4 - bit right shift amount used by the R - Shift block 1004 . 
Only a 4 - bit shift amount is required by the right - shifter 
because there are only 12 BCKs in an expanded fraction , and 
right - shifting beyond 12 produces a zero output . 
[ 0062 ] The R - Shift block 1004 right - shifts the 120 - bit 
fraction YB according to the 4 - bit right - shift amount RSA . 
It produces three outputs : a 120 - bit shifted fraction YS , a 
10 - bit extra BCK YX that is shifted - out , and a sticky bit S , 
which is the OR - reduction of the shifted - out bits that appear 
after YX . The 10 - bit YX and the sticky bit S are used by the 
120 - bit Fraction Adder / Subtractor block 1010 to compute 
the 120 - bit result Z and its 10 - bit result extension ZX . 

[ 0063 ] It should be emphasized that there is no left - shifter 
to left - shift YA , when YA has leading zeros . As stated in the 
previous section , if an input fraction is not normalized then 
it cannot be normalized . The concept of cohorts used in the 
IEEE 754-2008 standard does not apply here . This simplifies 
the implementation . 
[ 0064 ] The effective operation signal EOP is computed as : 
EOP = SA SB‘Op , where Op is the arithmetic operation 
select signal ( ADD is O and SUB 1 ) and “ is the XOR 
operation ( see XOR block 1011 ) . EOP is equal to Op if Aand 
B have identical signs ( SA is equal to SB ) . Otherwise , 
EOP = Op . Subtraction is also used to compare A with B. 
[ 0065 ] The 120 - bit fraction Add / Subtract block 1010 
receives two 120 - bit input fractions YA and YS , an effective 
operation signal EOP , a 10 - bit YX BCK shifted - out by the 
R - shifter 1004 , and a sticky bit S. It produces a 120 - bit result 
Z , a 10 - bit result extension ZX , an output carry Co , and a 
less than LT signal that indicates whether YA < YB . The Co 
signal is valid only for addition ( when EOP is 0 ) and always 
6 for subtraction . The LT signal is valid only for subtraction 
( when EOP is 1 ) and always 0 for addition . The 10 - bit ZX 
is used as a round BCK for addition and a guard BCK for 
subtraction . 
[ 0066 ] The Normalize block 1006 receives a 120 - bit result 
Z , a 10 - bit result extension ZX , and a carry bit Co from the 
fraction adder / subtractor 1010. It also receives a leading 
zero bit LZ from the expand unit 1002 ( indicating whether 
FA or FB is not normalized ) and a sticky bit S from the 
right - shifter 1004. It produces a 120 - bit normalized result N , 
a 5 - bit exponent correction EC used to compute the expo 
nent of the result ER , and two X bits used for rounding the 
normalized result N. 

[ 0070 ] The structure and operation of the Exponent Dif 
ference block circuit 1008 are shown in FIG . 4. In this 
embodiment , internally , the Exponent Difference block 1008 
incorporates an adder sub - block 1008a to compute the 
difference of the 11 - bit biased exponents EA and EB : 
Ediff = ( EA - EB ) = ( EA + ~ EB + 1 ) . EA and EB are inputted into 
the adder sub - block 1008a , wherein EB is inverted when 
inputted into the adder sub - block 1008a . The adder sub 
block 1008a outputs the 11 - bit difference Ediff which is then 
examined via sub - block 1008b to detect whether its absolute 
value is > 15 . The > 15 sub - block 1008b outputs 1 if abs 
( Ediff ) > 15 , according to swap . The sign of the difference 
between EA and EB is the complement of the output carry : 
swap = sign ( EA - EB ) = - Cout . Cout which is also outputted 
from the adder sub - block 1008a is inverted to generate 
swap , and then inputted into the multiplexers 1008c and 
1008d . EA and EB , along with swap , are further inputted 
into the multiplexer 1008d to output Emax which is the 
maximum exponent value . 
[ 0071 ] The input sign bits SA and SB , along with swap , 
are inputted into the multiplexer 1008c to generate Smax 
which is the sign of the swapped fraction YA with exponent 
Emax . The lower 4 bits of Ediff are further inputted into the 
2’s complement sub - block 1008e wherein the 2’s comple 
ment is computed when the sign of the difference is negative 
( swap is ) . The lower 4 bits output of the 2's complement 
sub - block 1008e is inputted along with the output of the > 15 
sub - block 1008b and the ' b1111 signal into the multiplexer 
1008f to generate RSA . RSA is the absolute difference of EA 
and EB that saturates at 15. RSA is a 4 - bit right shift amount 
used by the R - Shift block 1004. Only a 4 - bit shift amount is 
required by the right - shifter 1004 because there are only 12 
BCKs in an expanded fraction , and right - shifting beyond 12 
produces a zero output . 
[ 0072 ] The swap signal signal selects Emax = max ( EA , 
EB ) = swap ? EB : EA and the sign bit Smax = swap ? SB : SA . 
Finally , the right - shift amount RSA is computed as : 
RSA = max ( abs ( Ediff ) , 15 ) . It saturates at 15 when abs ( Ediff ) 
> 15 . 

Right Shifter 
[ 0073 ] The structure and operation of the Right - Shifter 
block circuit 1004 is shown in FIG . 5. It uses two stages only 
to right - shift a 120 - bit expanded fraction YB by a 4 - bit right 
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GG = Gul ( P11 & G10 ) | ( P11 & P10 
P10 & ... & P1 & G. ) 

G ... | ( P11 & 

GP = P 11 & P10 & & Pi & PO 

RSA ( 1 : 0 ) 

shift amount RSA . Four - way multiplexers 1018a - 1018f are 
used to reduce the number of stages and delay in the circuit 
1004. The first stage using multiplexers 1018a - 1018c right 
shifts the 120 - bit YB by 0 , 10 , 20 , or 30 bits , according to 

( least - significant two bits of the shift amount ) . The 
second stage using multiplexers 1018d - 1018f right - shifts the 
120 - bit output Y1 of the first stage by 0 , 40 , 80 , or 120 bits , 
according to RSA13 : 21 ( most significant two bits of the shift 
amount ) , to then output the 120 - bit shifted fraction YS . 
Zeros are inserted as upper ( most - significant ) bits when 
right - shifting . 
[ 0074 ] In parallel , a 10 - bit extra BCK YX is produced 
using also two stages ( 4 - way multiplexers ) . YX is the last 
BCK that is shifted out according to the 4 - bit shift amount 
RSA . It is produced from YB and Y1 as shown in FIG . 5 . 
[ 0075 ] In parallel , a sticky bit S is produced , which is the 
OR - reduction of all bits that are shifted out after the YX 
BCK . Large fan - in reduction OR - gates ( or trees ) 1020a 
1020e are used to reduce the 10 - bit YB19 : 00 , the 20 - bit 
YB the 30 - bit Y1 [ 29:00 , the 70 - bit Y1 and the P [ 19 : 0 ] [ 69 : 0 ] 
110 - bit Y1 [ 109 : 0 ) into a single output bit . To minimize cost , 
the reduction OR - tree gates are shared . For example , ' YB 
[ 19 : 0 ( ! YB ( 19 : 101 ) ( ' YB19 : 01 ) , where TYB 19 : 07 means the 
reduction - OR of YB ( 19 : 0 ) . Similarly , Y169 : 0 + ( Y169 : 30 ) 
( 1Y129 : 9 ] ) and Y ( 109 : 0 ) = ( Y1 ( 109 : 70 ) | ( 14169 : 30 ) ) ( Y1 | 29 : 0 ) ) . 
The output of the first - stage multiplexer 1018c is also ORed 
via OR - gates 1020C - 1020e in the second stage into the 
second - stage multiplexer 1018f to determine S. 

[ 0079 ] For subtraction , the generate and propagate signals 
( G , to Gu and P , to Pul ) outputted from the 10 - bit Adder 
sub - blocks 1028 are inputted into the CMP / CLA unit 1034 
and used to compare the fraction YA with YS . Given that 
Tki = YAki + 1023 - YSki , the generate bit G is 1 when 
( YAK . > YSki ) . The propagate bit P is 1 when ( YAK = OYSki ) . 
The group generate signal GG indicates whether ( YA > YS ) . 
The group propagate signal GP indicates whether 
( YA == YS ) . The LT signal is defined as : LT = EOP & -GG & 
~ GP . It is valid only for subtraction , and always zero for 
addition . 
[ 0080 ] The carry bit Co is defined as : Co = EOP & -LT & 
-X , where X is the OR - reduction of all the bits that are 
shifted out : X = ( YX ! = 8 ) + S ( see OR gate 1037 ) . Therefore , 
Co is 1 for subtraction ( EOP is 1 ) , when YA > = YS ( LT is 0 ) , 
and all the shifted - out bits are zeros ( X is 0 ) . 
[ 0081 ] The twelve carries ( Co to C11 ) are produced in the 
CMP / CLA unit 1034 , and depend on the value of Co , the 
generate bits ( G , to Gu ) and the propagate bits ( P. to P11 ) . 
The output carry is defined as : Co = C12 & -EOP ( see AND 
gate 1035 ) . It is valid only for addition ( when EOP is 0 ) . In 
summary , the CMP / CLA unit 1034 outputs : 

LT = EOP & GG & GP = EOP & ( GG | GP ) Fraction Add / Subtract 
Co = EOP & ~ LT & ~ X = EOP & ( GG | GP ) & - X 
C1 = Go ( Po & Co ) 

C2 = Gil ( P1 & Go ) | ( P1 & Po & Co ) 

C12 = Gul ( Pul & G10 ) | ... | ( P11 & P10 & ... & P. & Co ) = 
GG | ( GP & Co ) 

Co = C12 & EOP 

[ 0076 ] As shown in FIG . 6 , in the structure and operation 
of the 120 - bit fraction Add / Subtract block 1010 , the 120 - bit 
inputs YA and YS are split into twelve arrays of 10 - bit BCKS 
( YAko to YAku and YSko to YSku ) where YAKO = YA 19:07 
YAx? - YA [ 19:10 ] .. , and YSko = YS19 : 0 ) , YSx? - YS [ 19:10 ) , etc. Each of the 10 - bit BCKs array is inputted into a 
corresponding one of an array of twelve 10 - bit adders 
1010a - 10101 . Fraction addition / subtraction is done in three 
steps . The first step adds the twelve YAki and YSki BCKs in 
parallel using the corresponding twelve 10 - bit Add / Sub 
sub - blocks 1022a - 10221 . Within each 10 - bit Add / Sub sub 
block 1022n , the YAKi BCKs are each inputted into a +24 
sub - block 1024 along with an inverse of the EOP bit . The 
YSki BCKs are inputted into an EOR gate 1026 along with 
the EOP bit . The outputs of the +24 sub - block 1024 and the 
EOR gate 1026 are inputted into the 10 - bit Adder sub - block 
1028 . 
[ 0077 ] For addition ( EOP is 0 ) , each 10 - bit Adder sub 
block 1028 computes a temporary sum Tri = ( YAKi + 24 ) + 
YSki : The +24 sub - block 1024 is used to skip the 24 invalid 
values ( 1000 to 1023 ) , and adjust the sum when ( YAKit 
YSki ) > 999 . For subtraction ( EOP is 1 ) , the 10 - bit Adder 
sub - block 1028 computes Tki = YAKi + ~ YSki = YAvi + 1023– 
YSki = ( YAxi + 24 ) + ( 999 - YSki ) . Each 10 - bit Adder sub - block 
1028 also produces a generate bit G ; and a propagate bit Pi . 
The generate bit Gi indicates that Tki is greater than 1023 . 
The propagate bit P ; indicates that Tki is equal to 1023. The 
G , and P ; signals can be produced using fast logic , indepen 
dently of Toy 
[ 0078 ] The second step compares the magnitudes of YA 
and YS when EOP is subtraction . It also produces all carries 
( Co to C12 ) using a carry lookahead CMP / CLA unit 1034 . 
The Group - Generate ( GG ) and Group - Propagate ( GP ) sig 
nals are defined inside the CMP / CLA unit 1034 as follows : 

[ 0082 ] In parallel , the 1000's complement of YX is com 
puted as : 1000 - YX - S = - ( YX + S + 23 ) , where S is the sticky 
bit . The 10 - bit ZX BCK is generated as either ~ ( YX + S + 23 ) 
or YX , depending on EOP , LT , and X. It is selected as 
- ( YX + S + 23 ) for subtraction ( EOP is 1 ) , when YA > = YS ( LT 
is 0 ) , and at least one of the shifted - out bits is non - zero ( X 
is 1 ) . Otherwise , ZX = YX . Structurally , YX is inputted 
directly into a multiplexer 1036 and inputted into a +23 
adder sub - block 1038 that also receives the sticky bit S. The 
inverse of the output of the +23 adder sub - block 1038 is then 
inputted into the multiplexer 1036. Multiplexer 1036 also 
receives the output of the AND gate 1040 which is derived 
from the logical adding of EOP , the inverse of LT , and X. ZX 
is thus derived as follows : 

ZX = ( EOP & X & -L7 ) ? - ( YX + S + 23 ) : YX 

[ 0083 ] The third step is to post - correct the twelve 10 - bit 
intermediate sums ( Tko to Txi ) in parallel and compute a 
120 - bit result Z. Referring to FIG . 6 , from the 120 - bit 
fraction Add / Subtract block 1010 , the twelve 10 - bit inter 
mediate sums ( Tko to Tku ) are each inputted into Post 
Correct sub - blocks 1030a - 10301 . Within each Post Correct 
sub - block 1030n , the 10 - bit intermediate sums ( Tko to Txu ) 
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are inputted into a + 24 / + 1000 sub - block 1032 along with the 
carry bit Ci , the carry bit Ci + 1 , and the LT bit , wherein the 
carry bit Ci + 1 , and the LT bit are inputted into the + 24 / + 1000 
sub - block 1032 through an AND gate 1036 and through a 
NOR gate 1038. The output Zki is generated from the output 
of the + 24 / + 1000 sub - block 1032 inputted into an EOR gate 
1040 with the LT bit . 
[ 0084 ] Given a 10 - bit T the 10 - bit post - corrected result 
Zki is computed as either : 

Kis 

= 1 
Zki = Tki +1000 + C ; = Tki - 24 + C ; // when LT O and Cit1 
Zki = Tki + C // when LT O and Ci + 1 
Zki = ~ ( Tki + C ; ) = 1023 - ( Tki + C ; ) / l when LT 1 and Ci + 1 0 

Zki = ~ ( Tki + 24 + C ; ) = 1023 - ( Tki + 24 + // when LT = 1 and Cit1 = 1 

C ; ) 

= 

zeros . If Co and LZ inputted into the NOR gate 1046 are 
both zeros , then the 4 - bit left - shift amount LSA - CLZ . The 
outputs of the CLZ sub - block 1044 and the NOR gate 1046 
are inputted into an AND gate 1048 which then outputs the 
LSA signal . However , if Co or LZ is 1 then LSA = 0 . In 
particular , if the carry - out bit Co is 1 then Z should be 
right - shifted ( not left - shifted ) . On the other hand , if the 
leading - zero flag LZ is 1 , then it indicates that fraction FA 
or FB is not normalized , and hence no left - shifting can be 
done to Z. Co and LSA are inputted into the Subtract 
sub - block 1050 to generate the exponent correction EC 
signal . 
[ 0089 ] If LSA is non - zero , the 120 - bit result Z is concat 
enated with ZX and left - shifted via the L - Shifter sub - block 
1042 and the multiplexer sub - block 1052 to produce a 
normalized result N. It should be noted that the left - shift 
amount LSA cannot exceed 1 when the fractions FA and FB 
are both normalized ( LZ is 0 ) and the exponent difference is 
greater than 1. However , LSA can exceed 1 if the exponents 
EA and EB are equal or differ by at most 1 , in which case 
the sticky bit S is always e . Therefore , the L - Shifter sub 
block 1042 always inserts zero BCKs when the left shift 
amount LSA > 1 . 
[ 0090 ] If the carry bit Co is 1 then Z is right - shifted 10 bits 
( one BCK ) and the output of the L - Shifter sub - block 1042 
is ignored . The exponent correction is computed as : 
EC = Co - LSA . It can range from –12 to +1 . In summary : 

LSA = -- ( LZICO ) ? CLZ : 8 

to 
[ 0085 ] Adding +1000 to the 10 - bit sum Tki is equivalent 

adding -24 , because 1000 = 1024 ( carry ) -24 and the carry 
is ignored in the 10 - bit post - correct adder . For addition , LT 
is always 8 and only the first two cases apply . The 120 - bit 
result is computed as : Z = YA + YS + Co , where Co is always 0 
for addition . 

0 Zki = Tki - 24 + C ; = YAKi + YSki + C ; Il when LT 
Zki = Tki + C ; = ( YAKi + 24 ) + YSki + C ; // when LT 

O and Cit1 
O and Cit1 1 

N = ( Co == S ) ? { Z , ZX } << ( LSA * 10 ) : { 10'61,2 ( 119 : 10 ] } 
[ 0086 ] For subtraction , all four cases apply as shown 
below . When LT is 0 ( YA > = YS ) , the 120 - bit result is 
computed as : Z = YA - YS - 1 + Co , where Co = -X . Hence , 
Z = YA - YS when X is 0 , and Z = YA - YS - 1 when X is 1 . 
When LT is 1 ( YAKYS ) , the negative result is converted into 
positive and the 120 - bit result is computed as : Z = YS - YA 
Co , where C , is always 8 . 

EC = CO - LSA = CO + LSA + 1 

1 

[ 0091 ] In parallel , the Extra sub - block 1054 receives input 
from to Co , S and LSA , along with Z12 : 07 and ZX , where 
LSA is inputted into Extra sub - block 1054 through the NOR 
gate 1056 , to generate two extra bits X , and X , used for 
rounding N. The X bit is 1 when the shifted - out BCK that 
appears immediately after N is greater or equal to 500 . 
Otherwise , X , is 0. The shifted - out BCK can be Z [ 9 : 0 ) , ZX , 
or simply zero , cording to Co and LSA . The X , bit is the 
OR reduction of all bits that are shifted - out after N. The two 
X bits are defined by the following equations : 

X1 = ( Co ) ? ( Z 9:07 > = 500 ) :( LSA == 0 ) & ( ZX > = 500 ) 

= 

Zki = Tki - 24 + C ; = YAKi + // when LT = 0 and Ci + 1 = 0 
( 999 - YSki ) + Ci 
Zki = Tki + C ; = ( YAKi + 24 ) + // when LT = 0 and Ci + 1 
( 999 - YSki ) + C ; 
Zki = 1023 ( Tki + C ; ) = YSki - YAKi - C ; // when LT = 1 and Cit1 = 0 
Zki = 1023 - ( Tki + 24 + C ; ) = YSK - // when LT = 1 and Cit1 
( YAKI + 24 ) - Ci 

1 

= 1 

Sign of the Result Xo = ( Co ) ? ( Z19 : 01 ! = ) = ( ZX ! = 0 ) | S : ( LSA == 0 ) & ( ZX ! = 0 ) ) 
S 

[ 0087 ] For addition ( EOP is 0 ) , with reference to FIG . 3 , 
the sign of the result is the sign of the first operand : SR = SA . 
For subtraction , the sign of the result SR = Smax LT , where 
Smax is the sign of the swapped fraction YA and LT is the 
output of the 120 - bit fraction Add / Subtract block 1010 
indicating that ( YA VS ) . Therefore , 

SR = ( EOP == 0 ) ? SA : ( S max LT ) . 

Normalization 
( 0088 ] The components of the Normalize block 1006 are 
shown in FIG . 7. It can left - shift or right - shift its 120 - bit 
input Z to produce a 120 - bit normalized output N , wherein 
the 120 - bit input Z , the LSA signal input and the 10 - bit ZX 
input are entered into the L - Shifter sub - block 1042. The 
CLZ sub - block 1044 counts the number of leading zero 
BCKs in Z and produces a 4 - bit CLZ count that ranges from 
0 to 12 , where 12 indicates that all the 120 bits of Z are 

Rounding 
[ 0092 ] This invention implements four rounding direc 
tions ( RDir ) defined by the IEEE 754-2008 standard : 
[ 0093 ] RDir 0 : Round to nearest , with ties away from zero 
[ 0094 ] RDir 1 : Round toward zero ( truncate ) 
[ 0095 ] RDir 2 : Round toward positive ( round up ) 
[ 0096 ] RDir 3 : Round toward negative ( round down ) 
The structure and operation of Round operation of the 
Round & Pack block 1014 ( see FIG . 3 ) are shown in FIG . 
8. The fmt sub - block 1058 produces a 3 - bit format f accord 
ing to the upper 5 bits of N ( N ( 119 : 115 ] ) . Format f , is 1 if the 
upper BCK of N is less than or equal to 31. Therefore , 
fo = ~ [ N [ 119 : 115 ] , where ~ IN ( 119 : 115 ) means the NOR - reduc 
tion of the upper five bits of N. Format f is 1 if the upper 
BCK of N ranges from 32 to 127. Format f , is 1 if the upper 
BCK of N is greater than 127. Therefore , f2 = IN ( 119 : 117 ] , 
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which is the OR - reduction of the upper 3 bits of N. In 
summary , the fmt sub - block 1058 outputs the following 
three format bits : 

[ 0101 ] If the propagate bit Pi is 1 then the corresponding 
10 - bit incremented BCK is 0. The only exception is the 
most significant temporary BCK T , 119 : 110 ) , which is 1 ( not 
zero ) if P11 is asserted . This speculation means that if an 
output carry C12 is generated and the rounded fraction is 
renormalized then the most significant BCK of the result 
will be 1. The CLA sub - block 1066 generates output carries 
C2 to C12 , based on the values of P , to Pu and the carry bit 
C1 

fo = ~ N ( 119 : 115 ] 
fi - | N ( 119 : 117 ] & ?N ( 116 : 115 ] 

// N 119 : 110 ] < = 31 
// N ( 119 : 110 ] > = 32 && N ( 119 : 110 ] < = 
127 

// N ( 119 : 115 ] > 127 f2 = N ( 119 : 117 ] 

C2 = C1 & P1 

C3 = C1 & Pi & P2 

[ 0097 ] The R - decision sub - block 1060 generates the 7 - bit 
round value RVal , according to the lower 6 bits of N , the two 
X bits , the rounding direction RDir , the sign bit of the result 
SR , and the 3 - bit format f . The rounding values can be 0 , 1 , 
8 , or 64. The use of 8 and 64 are for formats f ; and f2 . When 
rounding to nearest , the round bit can be X1 , N2 , or N5 , 
depending on the format f . When rounding towards positive 
or negative , the sticky bit can be X , ( IN ( 2 : 0 ) IX . ) , or 
( IN ( 5:07 X. ) , depending on f . The notation ( IN 5 : 0 | X , ) means 
the OR - reduction of the 6 - bit N , with Xo . The equations 
of RVal are presented in Table 6 hereinbelow . 

C12 = C1 & Pi & P2 & ... & Pul 
Inc = C12 

[ 5:07 

Round Direction ( RDir ) Equation for RVal 
0 : Round to nearest , with 
ties away 

[ 0102 ] Rounding and renormalization are done in one step 
in the Round operation . If the carry C12 is 1 , then the result 
fraction must be renormalized and the result exponent must 
be incremented . Therefore , Inc = C12 is an output signal used 
to increment the result exponent . RN is defined as the 
120 - bit rounded and renormalized fraction . It is described 
with the following equations . If the carry C12 is 1 then the 
rounded result RN is also renormalized by having RN ( 119 : 
110 = 1 and all other BCKS ( R [ 109 : 100 ) down to R9 : 0 ) ) equal 
to 0. In this operation , the outputs of the 10 - bit incrementer 
sub - blocks 1064a - 1064k are inputted into multiplexers 
1068a - 1068k , along with the carries C , to C11 to generate the 
120 - bit rounded fraction RN as follows : 

RVal = ( fo & X? ) ? 1 : 
( fi & N2 ) ? 8 : 
( f2 & N5 ) ? 64 : 0 
RVal = 0 
RVal = ( fo & Xo & -SR ) ? 1 : 
( fi & ( IN ( 2 : 0 ] | Xo ) & -SR ) ? 8 : 
( f2 & ( N [ 5 : 0j X , ) & -SR ) ? 64 : 0 
RVal = ( fo & Xo & SR ) ? 1 : 
( f ; & ( IN ( 2 : 0 ) | X , ) & SR ) ? 8 : 
( f2 & ( [ N [ 5:01 | X ) & SR ) ? 64 : 0 

1 : Round towards zero 
2 : Round towards positive 

3 : Round towards negative 

RN ( 119 : 1101 = ( C11 ) ? T ( 119 : 1107 : N ( 119 : 110 ] 
RN ( 109 : 100 ] = ( C10 ) ? T [ 109 : 100 : N ( 109 : 100 ] 

[ 0098 ] Table 6 : Round Value according to the round 
direction , format , result sign , and extra bits 
[ 0099 ] The round value RVal is then inputted into the BCK 
adder sub - block 1062 and added to the least - significant BCK 
N19 : 0 ] to generate a 10 - bit temporary sum T19 : 0 ) , which is 
computed as either ( N 19 : 0+ + RVal + 24 ) or ( N 19 : 0 + RVal ) 
depending on whether a carry C , is generated or not . 

C1 = ( N19 : 0j + RVal + 24 ) > 1023 
RN 19.101 = ( C ) ? T19 : 10 : N ( 19:10 

19 : 0 ) = ( C12 ) ? 0 : T19 : 01 RN . 

T19 : 0 = ( C ) ? ( N9 : 0 + RVal + 24 ) :( N19 : 0 + RVal ) 
[ 0100 ] In parallel , the upper eleven BCKs of N ( N ( 19:10 to 
N , 119 : 110 ) are incremented independently to produce eleven 
output BCKS T [ 19:10 ] to T ( 119 : 110 ] and eleven propagate bits 
P , to P11 . Each of the 10 - bit incrementer sub - blocks 1064a 
1064k produces a 10 - bit temporary BCK and a propagate bit 
P , as follows : 

Packing 
[ 0103 ] The structure and operation of the Packing opera 
tion of the Round & Pack block 1014 are shown in FIG.9 . 
The Packing operation reduces the 120 - bit rounded fraction 
RN into a 116 - bit result fraction FR . The fmt sub - block 1070 
extracts the 3 - bit format g of RN according to the upper 5 - bit 
RN ( 119 : 115 ] . Format go indicates that RN , [ 119 : 110 ] is less than 
or equal to 31 , format gi indicates that RN 
from 32 to 127 , and format g2 indicates that RN , [ 119 : 110 ] is 
greater than 127 . 

1 

[ 119 : 110 ) ranges P1 = ( N119 : 10 == 999 ) 
T119 : 10 ] = ( Pi ) ? 0 : N ( 19:10 ] 

= 999 ) 
+1 

P2 = ( N129 : 20 ] 
T129 : 20 ] = ( P2 ) ? 0 : N [ 29:20 ] +1 go - | RN ( 119 : 115 ] // RN ( 119 : 110 ] < = 31 

81 = ~ | RN ( 119 : 117 ] & [ RN ( 116 : 115 ] // RN ( 119 : 110 ] > = 32 && 
RN [ 119 : 110 ) < = 127 
// RN ( 119 : 110 ] > 127 82 = | RN ( 119 : 117 ) Pui = ( N119 : 119 == 999 ) 

T ( 119 : 1101 = ( P11 ) ? 1 : N ( 119 : 110 ) +1 The 3 - bit format g of RN is then inputted into Pack sub 
block 1072 along with the 120 - bit rounded fraction RN to 
then output the 116 - bit result fraction FR . 
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[ 0104 ] The Pack logic is described in Table 7. There are 
three formats and three ways to pack the result . If the format 
is go then FR = { 0 , RN 114 : 0 } ) . If the format is g , then 
FR = { 2'b10 , RN 113 : 3 ] , RN ( 116 : 114 ] } and the least - significant 
3 - bit FR2 : 0 ) = RN ( 116 : 114 ) . Finally , if the format is g , then 
FR = { 2 " bi1 , RN , 113 : 6 ) , RN ( 119 : 114 ] } and the least - significant 
6 - bit FR [ 5 : 0 ] = RN , [ 119 : 114 ] . 

least partially on arithmetic representation and / or calcula 
tions that rely or include the floating decimal point arith 
metic units of the present disclosure . 
[ 0111 ] In another embodiment , the instruction and / or the 
logic of an instruction can be executed in a processing 
environment that is based on one architecture ( which may be 
referred to as a “ native ” architecture ) , but emulates another 
architecture ( which may be referred to as a “ guest archi 
tecture ) . In such an environment , for example , a Perform 
Floating Point Operation instruction and / or logic thereof , 
which is specified in the z / Architecture and designed to 
execute on a z / Architecture machine , is emulated to 
execute on an architecture other than the z / Architecture® 
These instructions may rely or reference , at least partially , an 
arithmetic representation and / or calculation that includes the 
floating decimal point arithmetic units of the present disclo 

TABLE 7 

Equations for acking the 116 - bit result fraction 

// O if go and 1 FR [ 115 ] = ~ go 
otherwise 
FR [ 114 ] = ( go ) ? RN [ 114 ] : 82 
FR ( 113 : 6 ] = RN 113 : 6 ] 
bits 
FR [ 5 : 3 ] = ( 82 ) ? RN 119 : 117 ] : RN [ 5 : 3 ] 

// Either RN [ 114 ] or 92 
11 No change in 108 

// Either RN , ' [ 119 : 117 ] or 
RN15 : 3 ] sure . 
FR [ 2 : 0 ] = ( 81 | 82 ) ? RN ( 116 : 114 ] : RN [ 2:01 // Either RN ( 119 : 114 ] or : 

RN 12 : 0 ) 

Result Exponent 
[ 0105 ] The Exp block 1018 , shown in FIG . 3 , computes 
and outputs the result exponent ER = Emax + EC + Inc , where 
EC is a 5 - bit signed exponent correction produced by the 
Normalize block 1006 and Inc is an increment signal pro 
duced by the Round function of the Round & Pack block 
1014 indicating that the rounded result RN is also post 
normalized . 
[ 0106 ] There are three observations about EC and ER . The 
first observation is when EC is -12 then N , RN , and FR must 
all be zeros . This can happen in the case of subtraction , when 
the input fractions FA and FB are equal and normalized . 
However , it cannot happen if one of the input fractions FA 
or FB is not normalized , because left - shifting the result 
fraction is not allowed in that case . Therefore , if EC is -12 
then ER = 0 . 
[ 0107 ] The second observation is that if ER is incremented 
to 2047 then overflow occurs . In this case , the result is 
infinity , ER saturates at 2047 , and the most - significant bit of 
FR must be zero . 
[ 0108 ] The third observation is that if ER is decremented 
below 8 then underflow occurs . In this case , ER saturates at 
0 , and the result fraction FR is also reduced to zero . 
[ 0109 ] In one embodiment , a processor of a processing 
environment executes instructions or code that includes one 
or more Floating Point Operations or calculations at least 
partially dependent on decimal floating - point arithmetic 
units . One embodiment of a processing environment to 
incorporate and use one or more aspects of the present 
invention includes , for instance , a z / Architecture® processor 
( e.g. , a central processing unit ( CPU ) ) , a memory ( e.g. , main 
memory ) , and one or more input / output ( 1/0 ) devices 
coupled to one another via , for example , one or more buses 
and / or other connections ( e.g. , wireless ) . 
[ 0110 ] A z / Architecture® processor is a part of a System 
zTM server , offered by International Business Machines 
Corporation ( IBM® ) . System zTM servers implement IBM's 
z / Architecture , which specifies the logical structure and 
functional operation of the computer . The System zTM server 
executes an operating system , such as z / OS® , also offered 
by International Business Machines Corporation . IBM® and 
z / OS® are registered trademarks of International Business 
Machines Corporation , Armonk , N.Y. , USA and may rely at 

[ 0112 ] As examples , processing environment 1000 may 
include a Power PC® processor , a pSeries® server , or an 
xSeries® server offered by International Business Machines 
Corporation , Armonk , N.Y .; an HP Superdome with Intel® 
Itanium® 2 processors offered by Hewlett - Packard Com 
pany , Palo Alto , Calif .; and / or other machines based on 
architectures offered by IBM® , Hewlett - Packard , Intel® , 
Sun Microsystems or others . Power PC® , pSeries® and 
xSeries® are registered trademarks of International Business 
Machines Corporation , Armonk , N.Y. , U.S.A. Intel® and 
Itanium® 2 are registered trademarks of Intel Corporation , 
Santa Clara , Calif . 
[ 0113 ] A native central processing unit may includes one 
or more native registers , such as one or more general 
purpose registers and / or one or more special purpose regis 
ters , used during processing within the environment . These 
registers include information that represents the state of the 
environment at any particular point in time and may rely or 
reference , at least partially , an arithmetic representation 
and / or calculation that includes the floating decimal point 
arithmetic units of the present disclosure . While specific 
embodiments have been described in detail in the foregoing 
detailed description and illustrated in the accompanying 
drawings , those with ordinary skill in the art will appreciate 
that various modifications and alternatives to those details 
could be developed in light of the overall teachings of the 
disclosure . Accordingly , the particular arrangements dis 
closed are meant to be illustrative only and not limiting as 
to the scope of the invention , which is to be given the full 
breadth of the appended claims and any and all equivalents 
thereof . 

1. A processing circuit comprising logic circuitry for 
performing radix 1000 decimal floating point arithmetic ; 
comprising : 

an input fraction expanding circuit for expanding most 
significant bits and least significant bits of at least two 
input digital floating point radix - 1000 inputs , the input 
fraction expanding circuit being configured to swap 
expanded fractions of the at least two digital floating 
point radix - 1000 inputs in response to a swap signal 
based on the at least two input digital floating point 
radix - 1000 inputs , thereby generating expanded frac 
tion outputs corresponding to the at least two input 
digital floating point radix - 1000 inputs ; 

an exponent difference circuit for determining a difference 
between biased exponents of the at least two digital 
floating point radix - 1000 inputs in response to input 
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ting the biased exponents and the input sign bits of the 
at least two input digital floating point radix - 1000 
inputs , 

the exponent difference circuit being configured to gen 
erate at least one of a swap signal , a result exponent 
signal , a result sign data signal corresponding to a 
swapped expanded fraction data signal and a maximum 
exponent data signal , and right shift data signal , the 
swap signal being outputted to the input fraction 
expanding circuit to control swapping of the expanded 
fractions ; 

a right - shift circuit for right - shifting one of the expanded 
fraction outputs corresponding to the at least two digital 
floating point radix - 1000 inputs in response to the right 
shift data signal , and for generating a sticky bit data 
signal and a shifted - out BCK data signal ; 

an add / subtract circuit for performing at least one of an 
adding and a subtracting computation with respect to 
the expanded fraction outputs to thereby generate an 
add / subtract result data signal ; 

a normalizing circuit for normalizing the add / subtract 
result data signal in response to the sticky bit data 
signal and the shifted - out BCK data signal , and gen 
erating a normalized add / subtract result data signal ; and 

a round and pack circuit for generating a normalized 
fraction output signal in response to the normalized 
add / subtract result data signal , the sign data signal and 
a round direction data signal . 

2. A processing circuit according to claim 1 , further 
comprising : 

an effective operation circuit for generating an effective 
operation data signal in response to the input sign bits 
of the at least two digital floating point radix - 1000 
inputs and an arithmetic operation select signal , the 
effective operation data signal being inputted into the 
add / subtract circuit , wherein the add / subtract circuit 
performs at least one of an adding and a subtracting 
computation with respect to the expanded fraction 
outputs to thereby generate an add / subtract result data 
signal in response to the effective operation data signal . 

3. A processing circuit according to claim 2 , further 
comprising : 

a sign circuit for determining the result sign data signal in 
response to at least a sign of a swapped expanded 
fraction data signal , a sign data signal corresponding to 
one of the at least two input digital floating point 
radix - 1000 inputs , and the effective operation data 
signal . 

4. A processing circuit according to claim 1 , wherein the 
exponent difference circuit includes : 

an adder circuit for generating the difference between 
biased exponents of the at least two digital floating 
point radix - 1000 inputs and an output carry signal , 

a first multiplexer circuit for generating the maximum 
exponent data signal , 

a second multiplexer circuit for generating the sign of a 
swapped expanded fraction data signal in response to 
the input sign bits of the at least two digital floating 
point radix - 1000 inputs and the swap signal , 

a third multiplexer circuit for generating the right shift 
signal in response to the difference between biased 
exponents from the adder circuit and an absolute value 
determination circuit , wherein 

the swap signal is outputted from the adder circuit in 
response to the biased exponent difference from the 
adder circuit . 

5. A processing circuit according to claim 2 , wherein the 
right - shift circuit includes first and second stages of multi 
plexers , wherein 

the first stage of multiplexers are configured to generate a 
first stage right - shift output and a first stage right - shift 
last BCK output based on a second one of the expanded 
fraction outputs that is right - shifted in response to least 
significant bit data of the right shift signal , 

the second stage of multiplexers are configured to gener 
ate a second stage right - shift output and a second stage 
right - shift BCK output based on the first stage right 
shift output that is right - shifted in response to most 
significant bit date of the right shift signal to then 
generate a shifted fraction portion of the shifted - out 
BCK data signal , 

the first stage of multiplexers are further configured to 
generate a first stage sticky bit data signal that is 
right - shifted in response to least significant bit data of 
the right shift signal , 

the second stage of multiplexers are further configured to 
generate the sticky bit data signal that is right - shifted in 
response to most significant bit date of the right shift 
signal . 

6. A processing circuit according to claim 5 , wherein the 
add / subtract circuit includes 

a plurality of 10 - bit BCK add / subtract sub - circuits and a 
plurality of post - correct sub - circuits each connected to 
a corresponding one of the plurality of 10 - bit BCK 
add / subtract sub - circuits , and 

a carry look ahead circuit that compares magnitudes of the 
swapped fraction expanded fraction with the shifted 
out BCK data signal to then generate a plurality of carry 
output data signals corresponding to each of the plu 
rality of 10 - bit BCK add / subtract sub - circuits and post 
correct sub - circuits . 

7. A processing circuit according to claim 1 , wherein the 
normalizing circuit includes 

an exponent correction circuit configured to generate an 
exponent correction signal in response to the add / 
subtract result data signal , a leading zero count signal , 
a carry - out bit signal and a leading - zero flag bit , and 

a multiplexer circuit that generates the normalized add / 
subtract result data signal in response to the add / 
subtract result data signal concatenated with a result 
extension of the add / subtract result data signal that is 
left - shifted . 

8. A processing circuit according to claim 1 , wherein the 
round and pack circuit includes 

a rounding decision circuit for generating a rounding 
value data signal in response to the normalized add / 
subtract result data signal and a rounding direction 
signal , and 

a plurality of BCK incrementer circuits for generating a 
corresponding plurality of temporary BCK data signals 
and propagate bits in response to the normalized add / 
subtract result data signal , the plurality of BCK incre 
menter circuits each being configured to output 10 - bit 
segments of a rounded normalized add / subtract result 
data signal . 

9. A processing circuit according to claim 1 , wherein each 
of the digital floating point radix - 1000 inputs includes a 
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fraction field comprising a plurality of declets representing 
numbers 0-999 and a format indicator . 

10. A processing circuit according to claim 1 , wherein the 
input fraction expanding circuit is configured to expand a 
skewed fraction field into an expanded representation of a 
fraction field F [ ! 15 : 0 ] into a number representation X [ 119 : 
0 ] according to : 

fmt [ 1 : 0 ] = F [ 115 : 114 ] 
if fmt [ 1 : 0 ] = 11 then X [ 119 : 117 ] = F [ 5 : 3 ] else X [ 119 : 117 ] 

= 000 ; 
if fmt [ 1 ] = 1 then X [ 116 : 114 ] = F [ 2 : 0 ] else X [ 116 : 114 ] 

= concat { 0,0 , F [ 114 ] } ; 
X [ 113 : 6 ] = F [ 113 : 6 ] ; 
if fmt [ 1 : 0 ] = 11 then X [ 5 : 3 ] = 000 else X [ 5 : 3 ] = F [ 5 : 3 ] ; 
if fmt [ 1 ] = 1 then X [ 2 : 0 ] = 000 else X [ 2 : 0 ] = F [ 2 : 0 ] , 
wherein fmt [ 1 : 0 ] is the format indicator . 
11. A method implemented in a computer or data pro 

cessing system for performing radix 1000 decimal floating 
point arithmetic ; comprising the steps of : 

inputting at least two input digital floating point radix 
1000 inputs ; 

expanding most significant bits and least significant bits 
of the at least two input digital floating point radix 
1000 inputs , the step of expanding including swapping 
expanded fractions of the at least two digital floating 
point radix - 1000 inputs in response to a swap signal 
based on the at least two input digital floating point 
radix - 1000 inputs , thereby generating expanded frac 
tion outputs corresponding to the at least two input 
digital floating point radix - 1000 inputs ; 

determining a difference between biased exponents of the 
at least two digital floating point radix - 1000 inputs in 
response to inputting the biased exponents and the 
input sign bits of the at least two input digital floating 
point radix - 1000 inputs ; 

generating at least one of a swap signal , a result exponent 
signal , a result sign data signal corresponding to a 
swapped expanded fraction data signal and a maximum 
exponent data signal , and right shift data signal ; 

inputting the swap signal to control swapping of the 
expanded fractions ; 

right - shifting one of the expanded fraction outputs corre 
sponding to the at least two digital floating point 
radix - 1000 inputs in response to the right shift data 
signal ; 

generating a cky bit data signal and a shifted - out BCK 
data signal ; 

performing at least one of an adding and a subtracting 
computation with respect to the expanded fraction 
outputs to thereby generate an add / subtract result data 
signal ; 

normalizing the add / subtract result data signal in response 
to the sticky bit data signal and the shifted - out BCK 
data signal ; 

generating a normalized add / subtract result data signal ; 
and 

generating a normalized fraction output signal in response 
to the normalized add / subtract result data signal , the 
sign data signal and a round direction data signal . 

12. A method according to claim 11 , further comprising 
the steps of : 

selecting an arithmetic operation ; 
generating an effective operation data signal in response 

to the input sign bits of the at least two digital floating 
point radix - 1000 inputs and an arithmetic operation 
selection ; 

performing at least one of an adding and a subtracting 
computation with respect to the expanded fraction 
outputs to thereby generate an add / subtract result data 
signal in response to the effective operation data signal 
and the arithmetic operation selection . 

13. A method according to claim 12 , further comprising 
the steps of : 

determining the result sign data signal in response to at 
least a sign of a swapped expanded fraction data signal , 
a sign data signal corresponding to one of the at least 
two input digital floating point radix - 1000 inputs , and 
the effective operation data signal . 

14. A method according to claim 11 , wherein the step of 
determining a difference between biased exponents 
includes : 

generating the difference between biased exponents of the 
at least two digital floating point radix - 1000 inputs and 
an output carry signal , 

generating the maximum exponent data signal , 
generating the sign of a swapped expanded fraction data 

signal in response to the input sign bits of the at least 
two digital floating point radix - 1000 inputs and the 
swap signal , 

generating the right shift signal in response to the differ 
ence between biased exponents , wherein 

the swap signal is outputted in response to the biased 
exponent difference . 

15. A method according to claim 12 , wherein the step of 
right - shifting circuit includes 

generating via a first stage of multiplexers a first stage 
right - shift output and a first stage right - shift last BCK 
output based on a second one of the expanded fraction 
outputs that is right - shifted in response to least signifi 
cant bit data of the right shift signal , 

generating via a second stage of multiplexers a second 
stage right - shift output and a second stage right - shift 
BCK output based on the first stage right - shift output 
that is right - shifted in response to most significant bit 
date of the right shift signal ; 

generating a shifted fraction portion of the shifted - out 
BCK data signal ; 

generating a first stage sticky bit data signal that is 
right - shifted in response to least significant bit data of 
the right shift signal ; and 

generating the sticky bit data signal that is right - shifted in 
response to most significant bit date of the right shift 
signal . 

16. A method according to claim 15 , wherein the step of 
performing at least one of an adding and a subtracting 
computation includes 

comparing magnitudes of the swapped fraction expanded 
fraction with the shifted - out BCK data signal to then 
generate a plurality of carry output data signals . 

17. A method according to claim 11 , wherein the step of 
normalizing includes 

generating an exponent correction signal in response to 
the add / subtract result data signal , a leading zero count 
signal , a carry - out bit signal and a leading - zero flag bit , 
and 
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generating the normalized add / subtract result data signal 
in response to the add / subtract result data signal con 
catenated with a result extension of the add / subtract 
result data signal that is left - shifted . 

18. A method according to claim 11 , wherein the step of 
rounding circuit includes 

generating a rounding value data signal in response to the 
normalized add / subtract result data signal and a round 
ing direction signal , 

generating a corresponding plurality of temporary BCK 
data signals and propagate bits in response to the 
normalized add / subtract result data signal , and 

outputting 10 - bit segments of a rounded normalized add / 
subtract result data signal . 

19. A method according to claim 11 , wherein each of the 
digital floating point radix - 1000 inputs includes a fraction 
field comprising a plurality of declets representing numbers 
0-999 and a format indicator . 

20. A method according to claim 19 , wherein performing 
of the radix 1000 decimal floating point arithmetic uses 
skewed representations of operands as indicated by the 
format indicator . 


