Clustering Coresfor Parallel Thread Execution

Muhamed F. Mudawar

Computer Engineering Department
King Fahd University of Petroleum and Minerals
Dhahran 31261, Saudi Arabia
mudawar@kfupm.edu.sa

Abstract

In recent years, we have observed a strong tremdrtts
using accelerators, such as GPUs, to speed uptificien
applications. This results in a complex heterogeseo
system in which traditional CPUs are used for the
execution of sequential threads, while GPUs arel fise
accelerating parallel threads. Instead of followithgs
trend, this paper introduces a new explicitly patal
instruction set architecture which can be used lpgta
sequential and parallel thread execution. It prepahe
idea of clustering many cores as a new structure fo
parallel thread execution. The PAR cluster is ideghto
execute the portions of the programs that havenaine
data-level parallelism that can be expressed ditplias
parallel blocks at the instruction level.

In this paper, we focus on describing the propd3A&
cluster hardware model and its performance. The PAR
cluster is based on a newly defined PAR instructeh
architecture. The PAR cluster executes the samalglar
block for a specified number of threads.

The simulation results show that the PAR cluster tigh
throughput and high utilization of the hardwarediional
resources. In addition, they show that this archite is
scalable in terms of the number of number of cened
shareable data cache banks. The number of cores was
scaled to 64 and the maximum achieved IPC on desing
PAR cluster is 174.3 instructions per cycle.

Keywords. PAR cluster, many-core, multi-threading,
parallel thread execution.

Acknowledgement: The authors acknowledge the
support provided by King Abdulaziz City for Science &
Technology (KACST) through the Science and
Technology Unit at KFUPM for funding project 08-
ELEA43-4 as part of the National Science, Technology and
Innovation Plan.

Ayman A. Hroub

Computer Engingddiepartment
giRahd University of Petroleum and Minerals
Dhahran 31261, Saudi Arabia
aymanh@kfupm.edu.sa

1. Introduction and Previous Work

A multithreaded processor is a processor that cantle
different threads simultaneously. The first mutéiaded
processors appeared in 1970s and 1980s to solve the
problem of remote memory access. From those dals un
now, many multithreading architectures have been
proposed either for general or special purpose cdimp

Two general approaches were used for multithreadimey
single chip multiprocessor which integrates twonmore
independent processors on a single chip and the
multithreaded pipeline which is able to pursue tamo
more threads of control in parallel within a single
processor [1].

El-Kharashi et al. [2] predicted that multithreaded
processors will be the upcoming generation for
multimedia chips because multimedia applicatiorffesu
from long latencies as a result of network contemti
frequent memory references and limited communioatio
bandwidth. Having multithreaded processors wiletate
these latencies by switching to another threacel éong
latency operation. El-Kharashi mentioned some
motivations of having multithreaded processorshsas
hiding latencies, having dynamic task scheduling,
increasing concurrency, improving multichip behayio
and alleviating the operating system overhead.y Hiso
listed the general hardware requirements for a
multithreaded processor, which include: handlindtiple
contexts, hardware thread scheduler, sharing ressur
advanced memory management, scalable memory

protection, efficient communication and built-in
synchronization.
Many ideas have been proposed to increase the

performance of multithreaded processors. Zahran and
Franklin [3] proposed a speculative multithreaded
architecture with dynamic thread resizing at rumetim
Threads are extracted from a sequential prograrthby

compiler or by hardware and they are speculatively
executed in parallel.

Ungerer et al. surveyed and classified various
multithreading techniques in research and commiercia
processors [1]. They classified the multithreading
techniques as interleaved, blocked, and simultameou
multithreading.

In 2001, IBM introduced Power4-based systems inctvhi
two processor cores are integrated on a single. chip
Recently, they introduced the Power7 as a nextrgéna
server processor [7].

In 2005, Sun Microsystems developed the Niagara
processor [8] which is a multithreaded processesigihed

to provide high performance for commercial server
applications. This kind of architecture helps idihg the
latency of memory access.

Lindholm et al. [9] describes the Tesla architeettitat
was introduced in 2006 in the GeForce 8800 GPUlaTes
architecture is based on a scalable processor .array
GeForce 8800 GPU consists of 128 streaming-processo
(SP) cores organized as 16 streaming multiprocgssor
(SMs). The 16 multithreaded processors are also
organized in eight independent processing unitéedal
texture/processor clusters (TPCs). Tesla architects
scalable and achieves high throughput for throughpu
applications which extensive data parallelism, ristee
floating-point arithmetic, modest task parallelisamd
modest inter-thread synchronization.

The SIMT architecture has been introduced in SMcivhi
creates, manages and executes threads in groupg of
parallel threads called warps. The threads in thmes
warp are of the same type and they start from #mes
address but during the execution they are freerandh
independently. Tesla introduced the cooperativeatthr
array (CTA) which is an array of threads that exedbe
same thread program and cooperates to computela res

More recently, Intel announced the Intel Many Imétgd
Core Architecture (Intel MIC Architecture), a gealer
purpose, many-core coprocessor that improves the
programmability of co-processing devices by suppgra
well-known shared-memory execution model based on
the Intel architecture [11]. The Intel coprocessonsists
of 32 general-purpose cores, based on a new Intel
Pentium design that can execute 64-bit scalar dsase

512-bit vector instructions. Each core can exedote
hardware threads with round-robin scheduling betwee
instruction streams.

2. Motivation

The motivation of this research work is to define a
explicitly parallel instruction set architecturehiwh can
serve the development of future many-core architest
and simplify the parallel programming model. Thappr
defines a specidPAR instruction that spawns an array of
vector threads (called Vthreads) for the parali@caition

of an instruction block. Astop bit marks the end of an
instruction block. The stop bit simplifies the canhtof
sequential and parallel instruction blocks and egras a
barrier for parallel thread execution. This reshanork
also advocates the idea of hardware thread scingglui
which threads are spawned, queued, and scheduldte by
hardware with no support provided by the runtime
system. This paper also proposes the PAR cluster to
accelerate the execution of thread arrays and lpkral
instruction blocks. The PAR programming model and
instruction set is described next.

3. The PAR Programming M odel

The PAR programming model will be introduced throug
an example. Consider the parallel multiplicatiorveétor
A of lengthn by matrix B of sizen by n doubles. The
high-level algorithm uses thear keyword to describe
the parallel block that includes a nesfear loop. Each
threadi computes one element of the result vector C.

VMM (int n, double Aln],B[n]l[n],C[n]){
par (n) {
int i = par_index();
doubl e sum = 0. 0;
for (k=0; k<n; k++) {
sum += A[K] * B[K][i];
}
Ci] = sum
}
}
The par keyword spawns ararray of n threads, as

illustrated in Figure 1. Each thread has a uniqudexi
that computes one eleméedfii]. The number of threads in
thepar block isn. The body of par block corresponds
to a scalar thread. Different threads can be sdbddo

run sequentially on the same core or in parallel on
multiple cores, according to implementation.

Thread Array = n threads

i=0 i=1 i=2 =3 i=4 i=5 i=n-1

Figure 1: Spawning an array afthreads

3.1 Scheduling Threads

Scalar threads are flexible. They can run asynausly

at different speed and select different controlhgat
However, scalar threads intensify parallel compoitat
and increase the scheduling overhead. To reduce thi
overheadyector threads are used.

Instead of scheduling scalar threads, pla& scheduler
groups them into an array ofector threads, called
Vthreads. Each Vthread has a unique indexd length

V, as shown in Figure 2. In general, V is equalato
hardware definesector length VL. The only exception is
the last Vthread that has a length equal to theanesher
V=(n%VL), if nis not divisible by VL. The constant VL

is chosen always to be a power of 2 and can vary
according to implementation. The number of Vthreads
aPARblock is equal tdn/VL |.

Vthread Array = (n/VL—| Vthreads

BRI

V-thread V-thread V-thread V-thread
V=VL V=VL V=VL V = (n%VL)
i=0 i=VL i=2xVL i=(n-V)

Figure 2: Grouping Threads into V-threads

3.2 The PAR instruction

The PAR instruction spawns an array of Vthreads for the
parallel execution of an instruction block. The kds
execute the same parallel block that begins atl Iafte
and terminates with gop bit (# symbol) that marks the
end of an instruction block. ThRAR instruction uses a
register to specify the number of parallel threads. It
computes the number of Vthreads as equglntoVL |.

The VMM procedure is coded as shown below. Each
Vthread computes VL elements of C starting at index
The number of threadsis specified by registearl.

VMM // spawn Vt hreads

par rl, L1 #
L1: // PAR Block: r0 = par index
set vi =0 /1 vl = sum
nov rg =r2 Il r8 = &A
sl | ro =r0, 3 Il r9 =1i*8
add rl0 =r3, r9 [l &B[0][i]
add ril =r4, r9 [&(i]
sl | ri2 =rl, 3 /'l n*8 bytes
loop r1, L2 /1 loop n
st8 [r11] = vl # /'l store sum
L2: // LOOP Bl ock
| d8 ri3 = [r8] /1 1oad AlK]
1d8 v2 = [rl0] /1 B[K][i]
add r8 =r8, 8 /1 &A[K]
add rl0 =r10, r12 // &B[Kk][i]
fma vl =r13, v2 # // sum

The | oop instruction expands the loop bloektimes.
The loop block starts at labél and terminates with a
stop bit. The loop iterates are sequential.

3.3 Index Register

Registerr 0 is theindex register. It is initialized by the
hardware scheduler. Each Vthread receives a unique
index inr 0, as shown in Figure 2. The index value is a
multiple of VL.

3.4 Inherited Registers

The PAR architecture defines registar® to r 15 as
inherited. These registers ashared by all Vthreads
executing the same parallel instruction block, ewdren

the V-threads do not need all of them. Inheritegisters
also facilitate the execution of Vthreads on mugtipAR
clusters. These inherited registers are transfeaed
copied to the scalar registers of other PAR clgstwhen
Vthreads are scheduled to run on multiple clusters.
However, no register copying is required when Ve
are scheduled to run on the same PAR cluster.

3.5 Vector Registers

The PAR instruction also allocates vector registefs to
v15. Each vector register consists of VL elements that
correspond to the VL parallel threads of a Vthréésttor

registers are allocated dynamically when a Vthread
scheduled to run on a PAR cluster. They are freleehva
Vthread terminates, when the stop bit of the palrallock
is reached.

3.6 Scalar and Vector Instructions

A scalar instruction operates on inherited scatgisters
only (r 0 tor 15). It is executed once, regardless of VL.
On the other hand, a vector instruction can opevata
mix of vector and scalar registers. It is equivalenVL
scalar instructions. For example, the first8 instruction

in the loop block is a scalar load that transfeeswtalue of
Al K] into register 13, while the secontid8 instruction

is a vector load that transfers a contiguous vefrtam
memory into vector register2. Scalar registerr 8]
and[r 10] specify the memory addresses.

Vector instructions can be used only inside a PARID
invoked by aPAR instruction or a nested block. On the
other hand, sequential threads can execute onliarsca
instructions. The PAR architecture does not alldwe t
execution of a vector instruction or the accesa t@ctor
register outside a PAR block.

3.7 The PAR Instruction Set Architecture

A newly explicitly parallel instruction set has Iloee
defined, called the PAR architecture. This architexis
centered on the concept of tRAR instruction. It features
structured instruction blocks which can be seqaérmi

Dispatch Vector Instructions & Scalar Operands

parallel. Stop bits mark the end of instruction die

They are used to schedule sequential and paradiek$

This architecture also features parallel vectoeals that
can be executed on a cluster of V-cores. It alstufes
predication used for conditional execution of iostions.

This architecture is described in more detailsl] [

4, PAR Cluster Hardwar e Model

A PAR cluster consists of two types of cores, gaaed

in Figure 3. Scalar cores (called S-cores) arenopéd
for the execution of sequential threads, while @ecbres
(called V-cores) are optimized for the execution of
parallel V-threads. An S-core is a traditional caiigh an
instruction cache (l-cache), a data cache (D-cache)
scalar register file, and multiple function units.
Instructions are issued out-of-order and completerder
on an S-core to optimize sequential thread perfomaa
Although two S-cores are shown in Figure 3, thimbar
can vary according to implementation.

A program begins execution as a sequential threadno
S-core. ThePAR instruction spawns parallel V-threads
that are scheduled to run on V-cores. The PAR sdhed
allocates vector registers to enable a V-threadutoin
parallel on all V-cores belonging to a single abusfThe
PAR scheduler can also send PAR packets to other
clusters to schedule V-threads to run on multiplsters.

The PAR packet carries the ID of the parent threlad,
number of V-threads with their starting index, tHudress

Send/Receive PAR

— Packets to/from

v v v v
I-Queue | I-Queue | I-Queue | I-Queue Other Clusters
V-Core 0 | V-Core 4 | V-Core 8 |V-Core 12 \ 4 Off-chip links
V-Core 1 | V-Core 5 | V-Core 9 |V-Core 13 | PAR Scheduler | to DRAM, I/0
T & other clusters
V-Core 2 | V-Core 6 |V-Core 10 |V-Core 14
I-Cache | I-Cache
V-Core 3 | V-Core 7 |V-Core 11 |V-Core 15
S-Core 0|S-Core 1 ol
uster
D-Cache | D-Cache | D-Cache | D-Cache D-Cache | D-Cache Interface
On-Chip Network
Shared | Shared | Shared | Shared | Shared | Shared | Shared | Shared
L2 L2 L2 L2 L2 L2 L2 L2
Cache Cache Cache Cache Cache Cache Cache Cache

Figure 3: PAR Cluster

of the target parallel block, and the values ofittherited
registers. This enables the execution of V-threads

many clusters. However, we only discuss here the

execution of V-threads on a single cluster.

A V-thread runs in parallel on all the V-cores dflaster.
The parent thread that has issued BA® instruction is
running on an S-core. A V-thread executes a miscafar
and vector instructions. The instruction unit oa 8core
dispatches scalar instructions to execute on tber&-and
vector instructions to execute in parallel on alt&fes.
Vector instructions can operate on vector registatg or
a mix of vector and scalar registers. If a vechstruction
has a scalar operand then the scalar operand rigccar
with the dispatched vector instruction. Vector instions

are queued until they are issued for execution.hEac

vector instruction is executed on all V-cores. Eaebtor
instruction also carries a unique hardware contBxto
identify its vector registers allocated by its pdrthread.

Therefore, the V-cores are workers only. They do no

fetch or control the instruction flow. They onlyaa by
executing the awaiting vector instructions in thogieues.
V-cores are also multithreaded. They can simultaskyo
execute vector instructions that have differenepatDs.

V-cores are grouped, such that each group shares an

instruction queue and a D-Cache, as shown in FiGure

All clustered S-cores and V-cores share a common L2

Cache. The shared L2 cache is split into bankgs It
interconnected to the various data caches throungthip
network that provides parallel data access andreoke.

5. PAR Simulator

We developed a simulator in C++ to evaluate the PAR

architecture. PARsim is a cycle accurate eventetriv
multithreaded simulator. It simulates the structared

functionality of the PAR cluster and evaluates its

performance. PARsIim receives two input files: (b t
configuration file which configures the PAR clustand
(2) the benchmark file. PARsim generates a perfagea
statistics report.

5.1 Benchmarksand Core Configuration

The following benchmarks are coded using the PAR IS

to evaluate the PAR cluster performance:

1. Dense Matrix-Matrix Multiplication (DMMM)
2. Jacobi Iterative Method (JIM)

3. Gauss-Seidel on a 2D grid (GS)

4. RGB to YIQ conversion

5. RGB to CMYK conversion

6. High Pass Grey-Scale Filter (HPF)
7. Scaled Vector Addition (SVA)

In addition, each V-core is configured to have #ldJs,
an FPU, and a Load/Store unit. The instruction @ssu
gueue has 8 entries.

5.2 Simulation Results

Figure 4 shows how the IPC changes with respettédo
number of simultaneous threads supported by a ¥-cor
For all benchmarks, we noticed that the IPC inaeas
with the number of threads. We also noticed that
increasing the number of threads beyond four hile li
effect on the IPC value. Increasing the number of
simultaneous threads will increase the work donegy
vector instruction, which improves the utilizatiof the
functional units. Increasing the number of simuttaus
threads beyond four has little impact on the |IPCabse

of the instruction mix in the benchmarks.

Four simultaneous threads per V-core give the highe
IPC with the lowest hardware cost. For the selected
benchmarks, the minimum IPC is 1.51 and the maximum
is 2.75 for a 4-way V-core.

Adding more V-cores to a PAR cluster will replicdle

work and reduce the execution time. Figure 5 shihes
IPC for a PAR cluster. For 64 V-cores, the minimiRe

is 96.28 instructions/cycle while the maximum 426

instructions/cycle. Adding more V-cores will notfexdt

the complexity of the frontend I-Queues, but wiltiease
the cost and complexity of the backend D-caches.

3
2.5 +—

2 | 1 Thread
15 - M 2 Threads

1 - 4 Threads
0.5 + m 8 Threads

0 .

N & T

N &

Figure 4: IPC for a Single V-Core

256
128
64 —¢=—DMMM
2 ——JIM
Gs
16
. —>=RGB-YIQ
—¥=RGB-CMYK
4 HPF
2 SVA
1

1 2 4 8 16 32 64

Number of V-Cores per Cluster

Figure5: IPC on a PAR Cluster
6. Conclusion and Future Work

The technology trends and the application demand
motivate the architects to design more productiigps
that handle thread-parallelism at the instructietlevel.

In this research work, we proposed a scalable PARar
which supports S-cores for sequential thread eiatut
and V-cores for parallel thread execution. V-coege
driven and shared by S-cores. We developed PARsim,
which is a cycle-accurate simulator that implemehis
PAR cluster features and evaluates its performanie.
simulation results show that the PAR cluster presid
high throughput and high utilization of the functad
resources.

In addition, the simulation results showed the auitity

of the PAR cluster and its programming model. Tame
binary code can run without modification on diffiere
PAR clusters. Communication and synchronizationsgoe
through a shared L2 cache that provides data péhrall
access to the V-cores.

We are currently implementing a PAR cluster on ghhi
density Xilinx Virtex-6 FPGA. Future work will repb
the low-level implementation issues and the pertoroe
resulting from direct execution on a hardware frgte.

7. References

[1] T. Ungerer, B. Rols, and J. Silc, "Multithreaded
Processors,"The Computer Journal, pp. 320-348,

2002.

(2]

[6]

[7]

(8]

[9]

[10]

[11]

[12]

M. Watheq El-Kharashi, F. ElGuibaly, and K.H, L
"Multithreaded Processors: the upcoming generation
for multimedia chips," inlEEE Symposium on
Advances in Digital Filtering and Sgnal
Processing, 1988, pp. 111-115.

M. Zahran and M. Franklin, "Dynamic thread
resizing for speculative multithreaded processors,"
in 21st International Conference on Computer
Design, 2003, pp. 313- 318.

Il Park, B. Falsafi, and T. Vijaykumar, "Implity-
multithreaded processors," i80th International
Symposium on Computer Architecture, 2003, pp. 39-
50.

S. Wallace, B. Calder, and D.M. Tullsen, "Ttaed
multiple path execution,” inThe 25th Annual
International Symposium on Computer Architecture,
1998, pp. 238-249.

H. Akkary and M.A. Driscoll, "A dynamic
multithreading processor,” in 31st Annual
ACM/IEEE Inter national Symposium on

Microarchitecture, 1998, pp. 226-236.

R. Kalla, B. Sinharoy, W. Starke, M. Floyd,
"Power7: IBM's Next-Generation Server Processor",
IEEE Micro, pages 7-15, March/April 2010.

P. Kongetira, K. Aingaran, and K. Olukotun,
"Niagara: a 32-way multithreaded Sparc processor,"
|EEE computer Society, pp. 21- 29, 2005.

E. Lindholm, J. Nickolls, S. Oberman, and J.
Montrym, "NVIDIA Tesla: A Unified Graphics and
Computing Architecture,'EEE Computer Society,
pp. 39-55, 2008.

F. Latorre, J. Gonzalez, and A. Gonzélez, ith#ht
resources assignment schemes for clustered
multithreaded processors," iFEEE International
Symposium on Parallel and Distributed Processing,
2008, pp. 1-12.

Intel, "Introducing Intel Many Integrated Core
Architecture', press release, 2011, www.intel.com/
technology/architecture-silicon/mic/index.htm.

M. Mudawar, "The PAR Architecture"”, Technical
Report, NSTIP Project 08-ELE43-4, March 2012,
Computer Engineering department, KFUPM.

