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Abstract 

In recent years, we have observed a strong trend towards 
using accelerators, such as GPUs, to speed up scientific 
applications. This results in a complex heterogeneous 
system in which traditional CPUs are used for the 
execution of sequential threads, while GPUs are used for 
accelerating parallel threads. Instead of following this 
trend, this paper introduces a new explicitly parallel 
instruction set architecture which can be used equally for 
sequential and parallel thread execution. It proposes the 
idea of clustering many cores as a new structure for 
parallel thread execution. The PAR cluster is intended to 
execute the portions of the programs that have intensive 
data-level parallelism that can be expressed explicitly as 
parallel blocks at the instruction level. 

In this paper, we focus on describing the proposed PAR 
cluster hardware model and its performance. The PAR 
cluster is based on a newly defined PAR instruction set 
architecture. The PAR cluster executes the same parallel 
block for a specified number of threads. 

The simulation results show that the PAR cluster has high 
throughput and high utilization of the hardware functional 
resources. In addition, they show that this architecture is 
scalable in terms of the number of number of cores and 
shareable data cache banks. The number of cores was 
scaled to 64 and the maximum achieved IPC on a single 
PAR cluster is 174.3 instructions per cycle. 
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1. Introduction and Previous Work 

A multithreaded processor is a processor that can handle 
different threads simultaneously. The first multithreaded 
processors appeared in 1970s and 1980s to solve the 
problem of remote memory access. From those days until 
now, many multithreading architectures have been 
proposed either for general or special purpose computing. 
Two general approaches were used for multithreading: the 
single chip multiprocessor which integrates two or more 
independent processors on a single chip and the 
multithreaded pipeline which is able to pursue two or 
more threads of control in parallel within a single 
processor [1]. 

El-Kharashi et al. [2] predicted that multithreaded 
processors will be the upcoming generation for 
multimedia chips because multimedia applications suffer 
from long latencies as a result of network contention, 
frequent memory references and limited communication 
bandwidth. Having multithreaded processors will tolerate 
these latencies by switching to another thread at each long 
latency operation. El-Kharashi mentioned some 
motivations of having multithreaded processors, such as 
hiding latencies, having dynamic task scheduling, 
increasing concurrency, improving multichip behavior, 
and alleviating the operating system overhead.  They also 
listed the general hardware requirements for a 
multithreaded processor, which include: handling multiple 
contexts, hardware thread scheduler, sharing resources, 
advanced memory management, scalable memory 
protection, efficient communication and built-in 
synchronization.  

Many ideas have been proposed to increase the 
performance of multithreaded processors. Zahran and 
Franklin [3] proposed a speculative multithreaded 
architecture with dynamic thread resizing at runtime. 
Threads are extracted from a sequential program by the 



 

 

compiler or by hardware and they are speculatively 
executed in parallel.   

Ungerer et al. surveyed and classified various 
multithreading techniques in research and commercial 
processors [1]. They classified the multithreading 
techniques as interleaved, blocked, and simultaneous 
multithreading.  

In 2001, IBM introduced Power4-based systems in which 
two processor cores are integrated on a single chip. 
Recently, they introduced the Power7 as a next generation 
server processor [7]. 

In 2005, Sun Microsystems developed the Niagara 
processor [8] which is a multithreaded processor designed 
to provide high performance for commercial server 
applications. This kind of architecture helps in hiding the 
latency of memory access. 

Lindholm et al. [9] describes the Tesla architecture that 
was introduced in 2006 in the GeForce 8800 GPU. Tesla 
architecture is based on a scalable processor array. 
GeForce 8800 GPU consists of 128 streaming-processor 
(SP) cores organized as 16 streaming multiprocessors 
(SMs). The 16 multithreaded processors are also 
organized in eight independent processing units called 
texture/processor clusters (TPCs). Tesla architecture is 
scalable and achieves high throughput for throughput 
applications which extensive data parallelism, intensive 
floating-point arithmetic, modest task parallelism and 
modest inter-thread synchronization. 

The SIMT architecture has been introduced in SM which 
creates, manages and executes threads in groups of 32 
parallel threads called warps. The threads in the same 
warp are of the same type and they start from the same 
address but during the execution they are free to branch 
independently. Tesla introduced the cooperative thread 
array (CTA) which is an array of threads that execute the 
same thread program and cooperates to compute a result. 

More recently, Intel announced the Intel Many Integrated 
Core Architecture (Intel MIC Architecture), a general-
purpose, many-core coprocessor that improves the 
programmability of co-processing devices by supporting a 
well-known shared-memory execution model based on 
the Intel architecture [11]. The Intel coprocessor consists 
of 32 general-purpose cores, based on a new Intel 
Pentium design that can execute 64-bit scalar as well as 

512-bit vector instructions. Each core can execute four 
hardware threads with round-robin scheduling between 
instruction streams. 

2. Motivation 

The motivation of this research work is to define an 
explicitly parallel instruction set architecture, which can 
serve the development of future many-core architectures 
and simplify the parallel programming model. This paper 
defines a special PAR instruction that spawns an array of 
vector threads (called Vthreads) for the parallel execution 
of an instruction block. A stop bit marks the end of an 
instruction block. The stop bit simplifies the control of 
sequential and parallel instruction blocks and serves as a 
barrier for parallel thread execution. This research work 
also advocates the idea of hardware thread scheduling, in 
which threads are spawned, queued, and scheduled by the 
hardware with no support provided by the runtime 
system. This paper also proposes the PAR cluster to 
accelerate the execution of thread arrays and parallel 
instruction blocks. The PAR programming model and 
instruction set is described next. 

3. The PAR Programming Model 

The PAR programming model will be introduced through 
an example. Consider the parallel multiplication of vector 
A of length n by matrix B of size n by n doubles. The 
high-level algorithm uses the par keyword to describe 

the parallel block that includes a nested for loop. Each 
thread i computes one element of the result vector C. 

VMM (int n, double A[n],B[n][n],C[n]){ 
  par (n) { 
    int i = par_index(); 
    double sum = 0.0; 
    for (k=0; k<n; k++) { 
      sum += A[k] * B[k][i]; 
    } 
    C[i] = sum; 
  } 
} 

The par keyword spawns an array of n threads, as 
illustrated in Figure 1. Each thread has a unique index i 
that computes one element C[i]. The number of threads in 
the par block is n. The body of a par block corresponds 
to a scalar thread. Different threads can be scheduled to 
run sequentially on the same core or in parallel on 
multiple cores, according to implementation. 



 

 

 

 

3.1 Scheduling Threads 

Scalar threads are flexible. They can run asynchronously 
at different speed and select different control paths. 
However, scalar threads intensify parallel computation 
and increase the scheduling overhead. To reduce this 
overhead, vector threads are used. 

Instead of scheduling scalar threads, the par scheduler 
groups them into an array of vector threads, called 
Vthreads. Each Vthread has a unique index i and length 
V, as shown in Figure 2. In general, V is equal to a 
hardware defined vector length VL. The only exception is 
the last Vthread that has a length equal to the remainder 
V=(n%VL), if n is not divisible by VL. The constant VL 
is chosen always to be a power of 2 and can vary 
according to implementation. The number of Vthreads in 

a PAR block is equal to  VL/n . 

 

3.2 The PAR instruction 

The PAR instruction spawns an array of Vthreads for the 
parallel execution of an instruction block. The Vthreads 
execute the same parallel block that begins at label L1 

and terminates with a stop bit (# symbol) that marks the 

end of an instruction block. The PAR instruction uses a 
register to specify the number n of parallel threads. It 

computes the number of Vthreads as equal to  VL/n . 

The VMM procedure is coded as shown below. Each 
Vthread computes VL elements of C starting at index i. 
The number of threads n is specified by register r1. 

VMM: // spawn Vthreads 
 par r1, L1 # 
 
L1: // PAR Block: r0 = par index 
 set v1  = 0 // v1  = sum 
 mov r8  = r2 // r8  = &A 
 sll r9  = r0, 3 // r9  = i*8 
 add r10 = r3, r9 // &B[0][i] 
 add r11 = r4, r9 // &C[i] 
 sll r12 = r1, 3 // n*8 bytes 
 loop r1, L2 // loop n 
 st8 [r11] = v1 # // store sum 
 
L2: // LOOP Block 
 ld8 r13 = [r8] // load A[k] 
 ld8 v2  = [r10] // B[k][i] 
 add r8  = r8, 8 // &A[k] 
 add r10 = r10, r12 // &B[k][i] 
 fma v1  = r13, v2 # // sum 
 
The loop instruction expands the loop block n times. 

The loop block starts at label L2 and terminates with a 
stop bit. The loop iterates are sequential. 

3.3 Index Register 

Register r0 is the index register. It is initialized by the 
hardware scheduler. Each Vthread receives a unique 
index in r0, as shown in Figure 2. The index value is a 
multiple of VL. 

3.4 Inherited Registers 

The PAR architecture defines registers r0 to r15 as 
inherited. These registers are shared by all Vthreads 
executing the same parallel instruction block, even when 
the V-threads do not need all of them. Inherited registers 
also facilitate the execution of Vthreads on multiple PAR 
clusters. These inherited registers are transferred and 
copied to the scalar registers of other PAR clusters, when 
Vthreads are scheduled to run on multiple clusters. 
However, no register copying is required when Vthreads 
are scheduled to run on the same PAR cluster. 

3.5 Vector Registers 

The PAR instruction also allocates vector registers v0 to 

v15. Each vector register consists of VL elements that 
correspond to the VL parallel threads of a Vthread. Vector 

Figure 1: Spawning an array of n threads  
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registers are allocated dynamically when a Vthread is 
scheduled to run on a PAR cluster. They are freed when a 
Vthread terminates, when the stop bit of the parallel block 
is reached. 

3.6 Scalar and Vector Instructions 

A scalar instruction operates on inherited scalar registers 
only (r0 to r15). It is executed once, regardless of VL. 
On the other hand, a vector instruction can operate on a 
mix of vector and scalar registers. It is equivalent to VL 
scalar instructions. For example, the first ld8 instruction 
in the loop block is a scalar load that transfers the value of 
A[k] into register r13, while the second ld8 instruction 
is a vector load that transfers a contiguous vector from 
memory into vector register v2. Scalar registers [r8] 

and [r10] specify the memory addresses. 

Vector instructions can be used only inside a PAR block 
invoked by a PAR instruction or a nested block. On the 
other hand, sequential threads can execute only scalar 
instructions. The PAR architecture does not allow the 
execution of a vector instruction or the access to a vector 
register outside a PAR block. 

3.7 The PAR Instruction Set Architecture 

A newly explicitly parallel instruction set has been 
defined, called the PAR architecture. This architecture is 
centered on the concept of the PAR instruction. It features 
structured instruction blocks which can be sequential or 

parallel. Stop bits mark the end of instruction blocks. 
They are used to schedule sequential and parallel blocks. 
This architecture also features parallel vector threads that 
can be executed on a cluster of V-cores. It also features 
predication used for conditional execution of instructions. 
This architecture is described in more details in [12]. 

4. PAR Cluster Hardware Model 

A PAR cluster consists of two types of cores, as depicted 
in Figure 3. Scalar cores (called S-cores) are optimized 
for the execution of sequential threads, while Vector cores 
(called V-cores) are optimized for the execution of 
parallel V-threads. An S-core is a traditional core with an 
instruction cache (I-cache), a data cache (D-cache), a 
scalar register file, and multiple function units. 
Instructions are issued out-of-order and complete in-order 
on an S-core to optimize sequential thread performance. 
Although two S-cores are shown in Figure 3, this number 
can vary according to implementation. 

A program begins execution as a sequential thread on an 
S-core. The PAR instruction spawns parallel V-threads 
that are scheduled to run on V-cores. The PAR scheduler 
allocates vector registers to enable a V-thread to run in 
parallel on all V-cores belonging to a single cluster. The 
PAR scheduler can also send PAR packets to other 
clusters to schedule V-threads to run on multiple clusters. 
The PAR packet carries the ID of the parent thread, the 
number of V-threads with their starting index, the address 

Figure 3: PAR Cluster 
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of the target parallel block, and the values of the inherited 
registers. This enables the execution of V-threads on 
many clusters. However, we only discuss here the 
execution of V-threads on a single cluster. 

A V-thread runs in parallel on all the V-cores of a cluster. 
The parent thread that has issued the PAR instruction is 
running on an S-core. A V-thread executes a mix of scalar 
and vector instructions. The instruction unit on the S-core 
dispatches scalar instructions to execute on the S-core and 
vector instructions to execute in parallel on all V-cores. 
Vector instructions can operate on vector registers only or 
a mix of vector and scalar registers. If a vector instruction 
has a scalar operand then the scalar operand is carried 
with the dispatched vector instruction. Vector instructions 
are queued until they are issued for execution. Each 
vector instruction is executed on all V-cores. Each vector 
instruction also carries a unique hardware context ID to 
identify its vector registers allocated by its parent thread. 
Therefore, the V-cores are workers only. They do not 
fetch or control the instruction flow. They only react by 
executing the awaiting vector instructions in their queues. 
V-cores are also multithreaded. They can simultaneously 
execute vector instructions that have different parent IDs.  

V-cores are grouped, such that each group shares an 
instruction queue and a D-Cache, as shown in Figure 3. 
All clustered S-cores and V-cores share a common L2 
Cache. The shared L2 cache is split into banks. It is 
interconnected to the various data caches through on-chip 
network that provides parallel data access and coherence.  

5. PAR Simulator 

We developed a simulator in C++ to evaluate the PAR 
architecture. PARsim is a cycle accurate event-driven 
multithreaded simulator. It simulates the structure and 
functionality of the PAR cluster and evaluates its 
performance. PARsim receives two input files: (1) the 
configuration file which configures the PAR cluster, and 
(2) the benchmark file. PARsim generates a performance 
statistics report. 

5.1 Benchmarks and Core Configuration 

The following benchmarks are coded using the PAR ISA 
to evaluate the PAR cluster performance: 

1. Dense Matrix-Matrix Multiplication (DMMM) 
2. Jacobi Iterative Method (JIM) 

3. Gauss-Seidel on a 2D grid (GS) 
4. RGB to YIQ conversion 
5. RGB to CMYK conversion 
6. High Pass Grey-Scale Filter (HPF) 
7. Scaled Vector Addition (SVA) 

In addition, each V-core is configured to have two ALUs, 
an FPU, and a Load/Store unit. The instruction issue 
queue has 8 entries. 

5.2 Simulation Results 

Figure 4 shows how the IPC changes with respect to the 
number of simultaneous threads supported by a V-core. 
For all benchmarks, we noticed that the IPC increases 
with the number of threads. We also noticed that 
increasing the number of threads beyond four had little 
effect on the IPC value. Increasing the number of 
simultaneous threads will increase the work done by one 
vector instruction, which improves the utilization of the 
functional units. Increasing the number of simultaneous 
threads beyond four has little impact on the IPC because 
of the instruction mix in the benchmarks. 

Four simultaneous threads per V-core give the highest 
IPC with the lowest hardware cost. For the selected 
benchmarks, the minimum IPC is 1.51 and the maximum 
is 2.75 for a 4-way V-core. 

Adding more V-cores to a PAR cluster will replicate the 
work and reduce the execution time. Figure 5 shows the 
IPC for a PAR cluster. For 64 V-cores, the minimum IPC 
is 96.28 instructions/cycle while the maximum is 174.26 
instructions/cycle. Adding more V-cores will not affect 
the complexity of the frontend I-Queues, but will increase 
the cost and complexity of the backend D-caches.  

 

Figure 4: IPC for a Single V-Core 
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Figure 5: IPC on a PAR Cluster 

6. Conclusion and Future Work 

The technology trends and the application demand 
motivate the architects to design more productive chips 
that handle thread-parallelism at the instruction set level. 
In this research work, we proposed a scalable PAR cluster 
which supports S-cores for sequential thread execution 
and V-cores for parallel thread execution. V-cores are 
driven and shared by S-cores. We developed PARsim, 
which is a cycle-accurate simulator that implements the 
PAR cluster features and evaluates its performance. The 
simulation results show that the PAR cluster provides 
high throughput and high utilization of the functional 
resources.        

In addition, the simulation results showed the scalability 
of the PAR cluster and its programming model. The same 
binary code can run without modification on different 
PAR clusters. Communication and synchronization goes 
through a shared L2 cache that provides data parallel 
access to the V-cores. 

We are currently implementing a PAR cluster on a high-
density Xilinx Virtex-6 FPGA. Future work will report 
the low-level implementation issues and the performance 
resulting from direct execution on a hardware prototype. 
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