

Clustering Cores for Parallel Thread Execution

 Muhamed F. Mudawar Ayman A. Hroub

 Computer Engineering Department Computer Engineering Department
 King Fahd University of Petroleum and Minerals King Fahd University of Petroleum and Minerals
 Dhahran 31261, Saudi Arabia Dhahran 31261, Saudi Arabia
 mudawar@kfupm.edu.sa aymanh@kfupm.edu.sa

Abstract

In recent years, we have observed a strong trend towards
using accelerators, such as GPUs, to speed up scientific
applications. This results in a complex heterogeneous
system in which traditional CPUs are used for the
execution of sequential threads, while GPUs are used for
accelerating parallel threads. Instead of following this
trend, this paper introduces a new explicitly parallel
instruction set architecture which can be used equally for
sequential and parallel thread execution. It proposes the
idea of clustering many cores as a new structure for
parallel thread execution. The PAR cluster is intended to
execute the portions of the programs that have intensive
data-level parallelism that can be expressed explicitly as
parallel blocks at the instruction level.

In this paper, we focus on describing the proposed PAR
cluster hardware model and its performance. The PAR
cluster is based on a newly defined PAR instruction set
architecture. The PAR cluster executes the same parallel
block for a specified number of threads.

The simulation results show that the PAR cluster has high
throughput and high utilization of the hardware functional
resources. In addition, they show that this architecture is
scalable in terms of the number of number of cores and
shareable data cache banks. The number of cores was
scaled to 64 and the maximum achieved IPC on a single
PAR cluster is 174.3 instructions per cycle.

Keywords: PAR cluster, many-core, multi-threading,
parallel thread execution.

Acknowledgement: The authors acknowledge the
support provided by King Abdulaziz City for Science &
Technology (KACST) through the Science and
Technology Unit at KFUPM for funding project 08-
ELE43-4 as part of the National Science, Technology and
Innovation Plan.

1. Introduction and Previous Work

A multithreaded processor is a processor that can handle
different threads simultaneously. The first multithreaded
processors appeared in 1970s and 1980s to solve the
problem of remote memory access. From those days until
now, many multithreading architectures have been
proposed either for general or special purpose computing.
Two general approaches were used for multithreading: the
single chip multiprocessor which integrates two or more
independent processors on a single chip and the
multithreaded pipeline which is able to pursue two or
more threads of control in parallel within a single
processor [1].

El-Kharashi et al. [2] predicted that multithreaded
processors will be the upcoming generation for
multimedia chips because multimedia applications suffer
from long latencies as a result of network contention,
frequent memory references and limited communication
bandwidth. Having multithreaded processors will tolerate
these latencies by switching to another thread at each long
latency operation. El-Kharashi mentioned some
motivations of having multithreaded processors, such as
hiding latencies, having dynamic task scheduling,
increasing concurrency, improving multichip behavior,
and alleviating the operating system overhead. They also
listed the general hardware requirements for a
multithreaded processor, which include: handling multiple
contexts, hardware thread scheduler, sharing resources,
advanced memory management, scalable memory
protection, efficient communication and built-in
synchronization.

Many ideas have been proposed to increase the
performance of multithreaded processors. Zahran and
Franklin [3] proposed a speculative multithreaded
architecture with dynamic thread resizing at runtime.
Threads are extracted from a sequential program by the

compiler or by hardware and they are speculatively
executed in parallel.

Ungerer et al. surveyed and classified various
multithreading techniques in research and commercial
processors [1]. They classified the multithreading
techniques as interleaved, blocked, and simultaneous
multithreading.

In 2001, IBM introduced Power4-based systems in which
two processor cores are integrated on a single chip.
Recently, they introduced the Power7 as a next generation
server processor [7].

In 2005, Sun Microsystems developed the Niagara
processor [8] which is a multithreaded processor designed
to provide high performance for commercial server
applications. This kind of architecture helps in hiding the
latency of memory access.

Lindholm et al. [9] describes the Tesla architecture that
was introduced in 2006 in the GeForce 8800 GPU. Tesla
architecture is based on a scalable processor array.
GeForce 8800 GPU consists of 128 streaming-processor
(SP) cores organized as 16 streaming multiprocessors
(SMs). The 16 multithreaded processors are also
organized in eight independent processing units called
texture/processor clusters (TPCs). Tesla architecture is
scalable and achieves high throughput for throughput
applications which extensive data parallelism, intensive
floating-point arithmetic, modest task parallelism and
modest inter-thread synchronization.

The SIMT architecture has been introduced in SM which
creates, manages and executes threads in groups of 32
parallel threads called warps. The threads in the same
warp are of the same type and they start from the same
address but during the execution they are free to branch
independently. Tesla introduced the cooperative thread
array (CTA) which is an array of threads that execute the
same thread program and cooperates to compute a result.

More recently, Intel announced the Intel Many Integrated
Core Architecture (Intel MIC Architecture), a general-
purpose, many-core coprocessor that improves the
programmability of co-processing devices by supporting a
well-known shared-memory execution model based on
the Intel architecture [11]. The Intel coprocessor consists
of 32 general-purpose cores, based on a new Intel
Pentium design that can execute 64-bit scalar as well as

512-bit vector instructions. Each core can execute four
hardware threads with round-robin scheduling between
instruction streams.

2. Motivation

The motivation of this research work is to define an
explicitly parallel instruction set architecture, which can
serve the development of future many-core architectures
and simplify the parallel programming model. This paper
defines a special PAR instruction that spawns an array of
vector threads (called Vthreads) for the parallel execution
of an instruction block. A stop bit marks the end of an
instruction block. The stop bit simplifies the control of
sequential and parallel instruction blocks and serves as a
barrier for parallel thread execution. This research work
also advocates the idea of hardware thread scheduling, in
which threads are spawned, queued, and scheduled by the
hardware with no support provided by the runtime
system. This paper also proposes the PAR cluster to
accelerate the execution of thread arrays and parallel
instruction blocks. The PAR programming model and
instruction set is described next.

3. The PAR Programming Model

The PAR programming model will be introduced through
an example. Consider the parallel multiplication of vector
A of length n by matrix B of size n by n doubles. The
high-level algorithm uses the par keyword to describe

the parallel block that includes a nested for loop. Each
thread i computes one element of the result vector C.

VMM (int n, double A[n],B[n][n],C[n]){
 par (n) {
 int i = par_index();
 double sum = 0.0;
 for (k=0; k<n; k++) {
 sum += A[k] * B[k][i];
 }
 C[i] = sum;
 }
}

The par keyword spawns an array of n threads, as
illustrated in Figure 1. Each thread has a unique index i
that computes one element C[i]. The number of threads in
the par block is n. The body of a par block corresponds
to a scalar thread. Different threads can be scheduled to
run sequentially on the same core or in parallel on
multiple cores, according to implementation.

3.1 Scheduling Threads

Scalar threads are flexible. They can run asynchronously
at different speed and select different control paths.
However, scalar threads intensify parallel computation
and increase the scheduling overhead. To reduce this
overhead, vector threads are used.

Instead of scheduling scalar threads, the par scheduler
groups them into an array of vector threads, called
Vthreads. Each Vthread has a unique index i and length
V, as shown in Figure 2. In general, V is equal to a
hardware defined vector length VL. The only exception is
the last Vthread that has a length equal to the remainder
V=(n%VL), if n is not divisible by VL. The constant VL
is chosen always to be a power of 2 and can vary
according to implementation. The number of Vthreads in

a PAR block is equal to  VL/n .

3.2 The PAR instruction

The PAR instruction spawns an array of Vthreads for the
parallel execution of an instruction block. The Vthreads
execute the same parallel block that begins at label L1

and terminates with a stop bit (# symbol) that marks the

end of an instruction block. The PAR instruction uses a
register to specify the number n of parallel threads. It

computes the number of Vthreads as equal to  VL/n .

The VMM procedure is coded as shown below. Each
Vthread computes VL elements of C starting at index i.
The number of threads n is specified by register r1.

VMM: // spawn Vthreads
 par r1, L1 #

L1: // PAR Block: r0 = par index
 set v1 = 0 // v1 = sum
 mov r8 = r2 // r8 = &A
 sll r9 = r0, 3 // r9 = i*8
 add r10 = r3, r9 // &B[0][i]
 add r11 = r4, r9 // &C[i]
 sll r12 = r1, 3 // n*8 bytes
 loop r1, L2 // loop n
 st8 [r11] = v1 # // store sum

L2: // LOOP Block
 ld8 r13 = [r8] // load A[k]
 ld8 v2 = [r10] // B[k][i]
 add r8 = r8, 8 // &A[k]
 add r10 = r10, r12 // &B[k][i]
 fma v1 = r13, v2 # // sum

The loop instruction expands the loop block n times.

The loop block starts at label L2 and terminates with a
stop bit. The loop iterates are sequential.

3.3 Index Register

Register r0 is the index register. It is initialized by the
hardware scheduler. Each Vthread receives a unique
index in r0, as shown in Figure 2. The index value is a
multiple of VL.

3.4 Inherited Registers

The PAR architecture defines registers r0 to r15 as
inherited. These registers are shared by all Vthreads
executing the same parallel instruction block, even when
the V-threads do not need all of them. Inherited registers
also facilitate the execution of Vthreads on multiple PAR
clusters. These inherited registers are transferred and
copied to the scalar registers of other PAR clusters, when
Vthreads are scheduled to run on multiple clusters.
However, no register copying is required when Vthreads
are scheduled to run on the same PAR cluster.

3.5 Vector Registers

The PAR instruction also allocates vector registers v0 to

v15. Each vector register consists of VL elements that
correspond to the VL parallel threads of a Vthread. Vector

Figure 1: Spawning an array of n threads

Thread Array = n threads

. . .

i = n-1 i=0 i=1 i=2 i=3 i=4 i=5

Figure 2: Grouping Threads into V-threads

. . .

V-thread

V = VL

i = 0

V-thread

V = VL

i = VL

V-thread

V = VL

i = 2×VL

V-thread

V = (n%VL)

i = (n – V)

Vthread Array = Vthreads

registers are allocated dynamically when a Vthread is
scheduled to run on a PAR cluster. They are freed when a
Vthread terminates, when the stop bit of the parallel block
is reached.

3.6 Scalar and Vector Instructions

A scalar instruction operates on inherited scalar registers
only (r0 to r15). It is executed once, regardless of VL.
On the other hand, a vector instruction can operate on a
mix of vector and scalar registers. It is equivalent to VL
scalar instructions. For example, the first ld8 instruction
in the loop block is a scalar load that transfers the value of
A[k] into register r13, while the second ld8 instruction
is a vector load that transfers a contiguous vector from
memory into vector register v2. Scalar registers [r8]

and [r10] specify the memory addresses.

Vector instructions can be used only inside a PAR block
invoked by a PAR instruction or a nested block. On the
other hand, sequential threads can execute only scalar
instructions. The PAR architecture does not allow the
execution of a vector instruction or the access to a vector
register outside a PAR block.

3.7 The PAR Instruction Set Architecture

A newly explicitly parallel instruction set has been
defined, called the PAR architecture. This architecture is
centered on the concept of the PAR instruction. It features
structured instruction blocks which can be sequential or

parallel. Stop bits mark the end of instruction blocks.
They are used to schedule sequential and parallel blocks.
This architecture also features parallel vector threads that
can be executed on a cluster of V-cores. It also features
predication used for conditional execution of instructions.
This architecture is described in more details in [12].

4. PAR Cluster Hardware Model

A PAR cluster consists of two types of cores, as depicted
in Figure 3. Scalar cores (called S-cores) are optimized
for the execution of sequential threads, while Vector cores
(called V-cores) are optimized for the execution of
parallel V-threads. An S-core is a traditional core with an
instruction cache (I-cache), a data cache (D-cache), a
scalar register file, and multiple function units.
Instructions are issued out-of-order and complete in-order
on an S-core to optimize sequential thread performance.
Although two S-cores are shown in Figure 3, this number
can vary according to implementation.

A program begins execution as a sequential thread on an
S-core. The PAR instruction spawns parallel V-threads
that are scheduled to run on V-cores. The PAR scheduler
allocates vector registers to enable a V-thread to run in
parallel on all V-cores belonging to a single cluster. The
PAR scheduler can also send PAR packets to other
clusters to schedule V-threads to run on multiple clusters.
The PAR packet carries the ID of the parent thread, the
number of V-threads with their starting index, the address

Figure 3: PAR Cluster

S-Core 0

D-Cache

Dispatch Vector Instructions & Scalar Operands

PAR Scheduler

Cluster

Interface

I-Cache

S-Core 1

D-Cache

I-Cache

V-Core 0

D-Cache

V-Core 4

D-Cache

V-Core 8

D-Cache

V-Core 12

D-Cache

V-Core 1 V-Core 5 V-Core 9 V-Core 13

V-Core 2 V-Core 6 V-Core 10 V-Core 14

V-Core 3 V-Core 7 V-Core 11 V-Core 15

I-Queue I-Queue I-Queue I-Queue

On-Chip Network

Shared

L2

Cache

Shared

L2

Cache

Shared

L2

Cache

Shared

L2

Cache

Shared

L2

Cache

Shared

L2

Cache

Shared

L2

Cache

Shared

L2

Cache

Off-chip links

to DRAM, I/O

& other clusters

Send/Receive PAR

Packets to/from

Other Clusters

of the target parallel block, and the values of the inherited
registers. This enables the execution of V-threads on
many clusters. However, we only discuss here the
execution of V-threads on a single cluster.

A V-thread runs in parallel on all the V-cores of a cluster.
The parent thread that has issued the PAR instruction is
running on an S-core. A V-thread executes a mix of scalar
and vector instructions. The instruction unit on the S-core
dispatches scalar instructions to execute on the S-core and
vector instructions to execute in parallel on all V-cores.
Vector instructions can operate on vector registers only or
a mix of vector and scalar registers. If a vector instruction
has a scalar operand then the scalar operand is carried
with the dispatched vector instruction. Vector instructions
are queued until they are issued for execution. Each
vector instruction is executed on all V-cores. Each vector
instruction also carries a unique hardware context ID to
identify its vector registers allocated by its parent thread.
Therefore, the V-cores are workers only. They do not
fetch or control the instruction flow. They only react by
executing the awaiting vector instructions in their queues.
V-cores are also multithreaded. They can simultaneously
execute vector instructions that have different parent IDs.

V-cores are grouped, such that each group shares an
instruction queue and a D-Cache, as shown in Figure 3.
All clustered S-cores and V-cores share a common L2
Cache. The shared L2 cache is split into banks. It is
interconnected to the various data caches through on-chip
network that provides parallel data access and coherence.

5. PAR Simulator

We developed a simulator in C++ to evaluate the PAR
architecture. PARsim is a cycle accurate event-driven
multithreaded simulator. It simulates the structure and
functionality of the PAR cluster and evaluates its
performance. PARsim receives two input files: (1) the
configuration file which configures the PAR cluster, and
(2) the benchmark file. PARsim generates a performance
statistics report.

5.1 Benchmarks and Core Configuration

The following benchmarks are coded using the PAR ISA
to evaluate the PAR cluster performance:

1. Dense Matrix-Matrix Multiplication (DMMM)
2. Jacobi Iterative Method (JIM)

3. Gauss-Seidel on a 2D grid (GS)
4. RGB to YIQ conversion
5. RGB to CMYK conversion
6. High Pass Grey-Scale Filter (HPF)
7. Scaled Vector Addition (SVA)

In addition, each V-core is configured to have two ALUs,
an FPU, and a Load/Store unit. The instruction issue
queue has 8 entries.

5.2 Simulation Results

Figure 4 shows how the IPC changes with respect to the
number of simultaneous threads supported by a V-core.
For all benchmarks, we noticed that the IPC increases
with the number of threads. We also noticed that
increasing the number of threads beyond four had little
effect on the IPC value. Increasing the number of
simultaneous threads will increase the work done by one
vector instruction, which improves the utilization of the
functional units. Increasing the number of simultaneous
threads beyond four has little impact on the IPC because
of the instruction mix in the benchmarks.

Four simultaneous threads per V-core give the highest
IPC with the lowest hardware cost. For the selected
benchmarks, the minimum IPC is 1.51 and the maximum
is 2.75 for a 4-way V-core.

Adding more V-cores to a PAR cluster will replicate the
work and reduce the execution time. Figure 5 shows the
IPC for a PAR cluster. For 64 V-cores, the minimum IPC
is 96.28 instructions/cycle while the maximum is 174.26
instructions/cycle. Adding more V-cores will not affect
the complexity of the frontend I-Queues, but will increase
the cost and complexity of the backend D-caches.

Figure 4: IPC for a Single V-Core

0

0.5

1

1.5

2

2.5

3

1 Thread

2 Threads

4 Threads

8 Threads

Figure 5: IPC on a PAR Cluster

6. Conclusion and Future Work

The technology trends and the application demand
motivate the architects to design more productive chips
that handle thread-parallelism at the instruction set level.
In this research work, we proposed a scalable PAR cluster
which supports S-cores for sequential thread execution
and V-cores for parallel thread execution. V-cores are
driven and shared by S-cores. We developed PARsim,
which is a cycle-accurate simulator that implements the
PAR cluster features and evaluates its performance. The
simulation results show that the PAR cluster provides
high throughput and high utilization of the functional
resources.

In addition, the simulation results showed the scalability
of the PAR cluster and its programming model. The same
binary code can run without modification on different
PAR clusters. Communication and synchronization goes
through a shared L2 cache that provides data parallel
access to the V-cores.

We are currently implementing a PAR cluster on a high-
density Xilinx Virtex-6 FPGA. Future work will report
the low-level implementation issues and the performance
resulting from direct execution on a hardware prototype.

7. References

[1] T. Ungerer, B. Robič, and J. Šilc, "Multithreaded
Processors," The Computer Journal, pp. 320-348,
2002.

[2] M. Watheq El-Kharashi, F. ElGuibaly, and K.F. Li,
"Multithreaded Processors: the upcoming generation
for multimedia chips," in IEEE Symposium on
Advances in Digital Filtering and Signal
Processing, 1988, pp. 111-115.

[3] M. Zahran and M. Franklin, "Dynamic thread
resizing for speculative multithreaded processors,"
in 21st International Conference on Computer
Design, 2003, pp. 313- 318.

[4] Il Park, B. Falsafi, and T. Vijaykumar, "Implicitly-
multithreaded processors," in 30th International
Symposium on Computer Architecture, 2003, pp. 39-
50.

[5] S. Wallace, B. Calder, and D.M. Tullsen, "Threaded
multiple path execution," in The 25th Annual
International Symposium on Computer Architecture,
1998, pp. 238-249.

[6] H. Akkary and M.A. Driscoll, "A dynamic
multithreading processor," in 31st Annual
ACM/IEEE International Symposium on
Microarchitecture, 1998, pp. 226-236.

[7] R. Kalla, B. Sinharoy, W. Starke, M. Floyd,
"Power7: IBM's Next-Generation Server Processor",
IEEE Micro, pages 7-15, March/April 2010.

[8] P. Kongetira, K. Aingaran, and K. Olukotun,
"Niagara: a 32-way multithreaded Sparc processor,"
IEEE computer Society, pp. 21- 29, 2005.

[9] E. Lindholm, J. Nickolls, S. Oberman, and J.
Montrym, "NVIDIA Tesla: A Unified Graphics and
Computing Architecture," IEEE Computer Society,
pp. 39-55, 2008.

[10] F. Latorre, J. González, and A. González, "Efficient
resources assignment schemes for clustered
multithreaded processors," in IEEE International
Symposium on Parallel and Distributed Processing,
2008, pp. 1-12.

[11] Intel, "Introducing Intel Many Integrated Core
Architecture', press release, 2011, www.intel.com/
technology/architecture-silicon/mic/index.htm.

[12] M. Mudawar, "The PAR Architecture", Technical
Report, NSTIP Project 08-ELE43-4, March 2012,
Computer Engineering department, KFUPM.

1

2

4

8

16

32

64

128

256

1 2 4 8 16 32 64

Number of V-Cores per Cluster

DMMM

JIM

GS

RGB-YIQ

RGB-CMYK

HPF

SVA

