

One-Level Cache Memory Design for Scalable SMT Architectures

Muhamed F. Mudawar and John R. Wani

Computer Science Department
The American University in Cairo

mudawwar@aucegypt.edu
rubena@aucegypt.edu

Abstract

The cache hierarchy design in existing SMT and
superscalar processors is optimized for latency, but not
for bandwidth. The size of the L1 data cache did not
scale over the past decade. Instead, larger unified L2
and L3 caches were introduced. This cache hierarchy
has a high overhead due to the principle of
containment, as all the cache blocks in the upper level
caches are contained in the lower level cache. It also
has a complex design to maintain cache coherence
across all levels. Furthermore, this cache hierarchy is
not suitable for future large-scale SMT processors,
which will demand high bandwidth instruction and
data caches with a large number of ports.

This paper suggests the elimination of the cache
hierarchy and replacing it with one-level caches for
instruction and data. Multiple instruction caches can be
used in parallel to scale the instruction fetch bandwidth
and capacity. A one-level data cache can be split into a
number of block-interleaved cache banks to serve
multiple memory requests in parallel. An interconnect
will be required to connect the data cache ports to the
different cache banks. The interconnect will increase
the data cache access time. This paper shows that
large-scale SMTs can tolerate longer data cache hit
times. Increasing the data cache access time from 3
cycles to 5 cycles reduces the IPC by only 2.8%, and
increasing it from 3 cycles to 7 cycles will reduce the
IPC by 8.9%.

1. Introduction

Simultaneous multithreading (SMT) is a latency-
tolerant processor architecture that enables multiple
threads to simultaneously share the processor
resources, effectively converting thread-level
parallelism to instruction-level parallelism [9, 13, 14].
SMT improves the utilization of shared resources, such
as register files, functional units, and caches, as it
extracts ILP from multiple threads. SMT can also
better tolerate pipeline and memory latencies, coping
with the deeper pipelines, branch mispredictions, and
the longer cache miss penalties. Some manufacturers
have introduced their versions of SMT processors.
Examples include the 2-context Intel Pentium 4 [3, 7]
and the proposed 4-context Alpha 21464.

To implement higher-context and super-wide SMT
processors, however, a number of challenges have to

be addressed. These challenges include dynamic
instruction scheduling, the shared register file, the
shared cache hierarchy, and the degree of sharing or
partitioning of hardware resources. This article
addresses the problem of the shared cache hierarchy.

Current SMT processors use small L1 instruction and
data caches. For example, the hyper-threaded Intel
Pentium 4 uses a 16K L1 data cache. A thread that
regularly sweeps through the L1 data cache will evict
data needed by the other thread as shown in [12]. This
negative interference will become more serious as the
number of threads increases. The size of L1 data cache
did not scale over the past decade. It was kept small to
match the increasingly higher clock frequencies and to
optimize the hit access time. Larger unified L2 and
now L3 caches are introduced to increase the overall
cache capacity and to optimize the memory access
time. Figure 1 shows the cache hierarchy of a typical
small scale 4-to-6 issue superscalar or SMT
architecture. Two load/store ports are used for the D-
Cache.

Figure 1: Cache hierarchy for a typical wide-issue
superscalar or a small scale SMT architecture

Another more serious problem is the demand for
higher cache bandwidth. Memory instructions account
for about a third of all instructions executed on
average. For example, an 8-context 32-issue processor
should allow 12 load/store instructions to execute each
cycle. This means that the L1 data cache should be
designed to have 12 ports. The unified L2 and L3
caches should also support multiple ports to handle the
multiple cache misses in parallel. In contrast, the
current hyper-threaded Pentium 4 is a small scale SMT

Processor Core

D-Cache I-Cache

L2 Cache

L3 Cache

Main Memory

processor that supports a dual-ported L1 cache, a
single-ported instruction trace cache, and single-ported
unified L2 and L3 caches. This cache hierarchy,
optimized for latency on a superscalar processor, does
not fit into a large-scale SMT processor. It has to be
redesigned and optimized for bandwidth rather than for
latency. A simple scalable one-level banked cache
design can optimize the bandwidth demand of large-
scale SMT processors, while slightly increasing the
latency of primary data cache access. This design will
be described in Section 3. This design will be shown to
be very effective for large-scale SMT processors, as
increasing the latency of primary data cache access
results in a minor degradation on the IPC.

The remainder of this paper is organized as follows.
Section 2 discusses some background and related
work. Section 3 introduces a scalable SMT
architecture with a scalable cache design. Section 4
shows the simulation and performance of the
architecture introduced in Section 3. We conclude in
Section 5.

2. Background and Previous Work

Multiple cache ports can be implemented in one of
four ways: ideal multi-porting, time division
multiplexing, replication, and multiple independently
addressable banks [4, 10, 16]. Ideal multi-porting
requires that each cache block be simultaneously
addressable by all the cache ports, allowing all the
cache ports to operate independently in a given cycle.
Ideal multi-porting is considered to be impractical, as
the costs of ideal multi-porting will be enormous in
terms of area, power consumption, and access time, as
the number of ports increases. For example, the 24-
ported register file (16-read and 8-write ports) in the
proposed 4-context 8-issue Alpha 21464 SMT
processor occupies over five times the area of the 64
KB primary cache according to [11]. A banked multi-
ported register file is proposed in [11] to reduce the
area, access time, and energy consumption. For this
reason, ideal multi-porting is never applied to caches
and will not be considered further.

Time division multiplexing is a technique that uses
time to achieve virtual ports. It is used in the DEC
Alpha 21264 [5]. The L1 data cache is referenced
twice each cycle, once for each of the clock phases,
effectively operating at twice the processor clock
speed. Although simple enough, this technique is not
scalable for a large number of ports, as it requires the
cache to operate at significantly higher clock
frequencies than the processor core. Current processors
are already operating at significantly high clock
frequencies and primary cache access time is already
increasing from one to few clock cycles and will
continue to increase in the future. Therefore, time
division multiplexing is not a feasible solution.

Another possibility for multi-porting is through cache
replication. Multiple copies will allow multiple loads
to go in parallel. However, stores have to be broadcast
and replicated to maintain identical copies. An
example is the duplicate primary data cache used in the
Alpha 21164 [2]. This solution improves the
bandwidth of the load instructions. However, it will
not improve the bandwidth of stores. Another
overhead is the die area required for cache replication.

The fourth known technique to multi-porting is multi-
banking. A cache is divided into multiple banks that
can be accessed in parallel. Each cache bank is single-
ported and can handle a single memory instruction per
cycle. A fast interconnect, such as a crossbar, provides
parallel access to the cache banks [8]. High bandwidth
cache access can result, as long as parallel memory
addresses map to different banks.

A simple and effective mapping scheme is to map
contiguous memory blocks onto consecutive cache
banks. This mapping scheme distributes uniformly the
cache blocks. However, cache accesses to the same
cache bank cannot proceed in parallel.

One problem of multi-banking is the probability of
bank conflicts that arises from consecutive memory
references that target the same cache line or the same
cache bank. The same-line conflicts are shown to be
high due to the inherent spatial locality in memory
references, averaging 35% across integer benchmarks
and 22% for floating-point benchmarks, according to
[10]. These conflicts cannot be eliminated by simply
increasing the number of cache banks. However, they
can be exploited, using access combining, to improve
multi-bank cache access. Access combining [1, 15] is a
technique that attempts to combine memory accesses
to the same cache line into a single request. Combining
requires additional logic in the load/store queue to
detect memory addresses targeted to the same cache
line that can be combined. However, this additional
logic is a small extension, because load/store queues in
current architectures already implement a matching
logic to detect and resolve memory dependencies.

Line buffering is another technique to avoid same-line
conflicts. A line buffer holds cache data inside the
processor load/store unit, allowing a same-line load to
be satisfied from the line buffer, instead of from the
cache [16]. A line buffer also reduces the utilization of
the cache ports and the access latency of a multi-cycle
multi-ported cache.

A second problem associated with multi-banked
caches is the overhead of the interconnect. This
unavoidable interconnect increases the cost and the
delay of a multi-banked cache. A crossbar can be used
for a small number of ports, but a multi-stage
interconnect should be used for a larger number of
ports. Depending on the interconnect, non-uniform

cache bank access [6] may also result, where near
cache banks are accessed faster than distant banks.

3. Scalable SMT Architecture

In this section, we propose a scalable SMT architecture
that can scale to a large number of contexts. An 8-
context SMT architecture is depicted in Figure 2. The
most prominent feature of this architecture is the
elimination of the cache hierarchy. We only preserve
primary instruction and data caches and scale them
according to requirements. The cache hierarchy is only
an added overhead and a waste of space due to the
principle of containment, as everything in the primary
caches is contained in L2, and everything in the L2
cache is contained in L3. The cache hierarchy is also
an added complexity. This complexity is required to
maintain cache coherence across the different levels.
Every store to the primary data cache has to be written
through to reach the L2 and L3 caches. Every cache
block invalidate in the L3 cache caused, for instance,
by a different processor in a multiprocessor, has to be
propagated upwards to reach the L2 and L1 data cache.
Therefore, eliminating the cache hierarchy is desirable.
Observe that what is being proposed here is against the
current industry trend of increasing the cache hierarchy
from 2 to 3 levels. The idea is to turn the second (or
third) level cache into a primary data cache, effectively
increasing the primary data cache capacity and
bandwidth, as long as the processor is capable of
tolerating the increased data cache hit time without
much affecting the IPC.

3.1 Scalable Front End

To allow the front end to scale, multiple independent
instruction caches must be used. Each instruction
cache can be shared by a small number of threads
(typically 2 to 4). The result is a simplified instruction
cache design. Rather than using a single multi-ported
instruction cache to fetch multiple instruction blocks
from different threads per cycle, multiple single-ported
instruction caches are used instead. One advantage is a
simplified instruction cache design: single-ported
rather than multi-ported. A second advantage is the
increased instruction cache capacity, which can scale
with the number of threads, and which can eliminate
negative thread interference and some of the capacity
misses. For example, if four 64KB instruction caches
are used in an 8-context processor then the overall
instruction cache capacity is 256KB, eliminating the
need for a second level cache. Each i-cache can
designed to have a large number of ways and to use
way prediction to reduce cache energy and access
time. A third advantage is the increased instruction
cache bandwidth, which is also scalable with the
number of threads. For example, four instruction cache
blocks can be fetched per cycle in Figure 3, instead of
a single one. This is essential to enable the overall IPC
to scale. A fourth advantage is the absence of
interconnect in front of the instruction caches. An
added interconnect will add more cycles to instruction
fetching, which will also increase the branch
misprediction penalty. The absence of the

Interconnect

Decode&
Rename

PC Icache PC

F
P

Q

In
tQ

Registers
&Bypass

ALU ALU LS FPU FPU LS

Dcache
Bank

Dcache
Bank

Memory
Module

Decode&
Rename

Icache

F
P

Q

In
tQ

Registers
&Bypass

ALU ALU LS FPU FPU LS

Dcache
Bank

Dcache
Bank

Memory
Module

Decode&
Rename

Icache

F
P

Q

In
tQ

Registers
&Bypass

ALU ALU LS FPU FPU LS

Dcache
Bank

Dcache
Bank

Memory
Module

Decode&
Rename

Icache

F
P

Q

In
tQ

Registers
&Bypass

ALU ALU LS FPU FPU LS

Dcache
Bank

Dcache
Bank

Memory
Module

Figure 2: An 8-Context SMT Processor

PC PC PC PC PC PC

interconnect, therefore, reduces the instruction cache
access latency. However, it implies that instruction
blocks might be replicated in different instruction
caches, especially when different threads execute the
same instruction stream on different data streams. A
snooping protocol detects and forwards replicated
cache blocks from one instruction cache to another, to
avoid the long memory access latency.

3.2 Partitioned Hardware Resources

In addition to instruction caches, many hardware
resources are partitioned and replicated as shown in
Figure 2. This includes the rename tables, the
scheduling queues, the register files, and the functional
units. Limited sharing allows few threads (typically
two) to share some hardware resources, but hardware
partitioning is essential to reduce complexity and to
enable scalability.

3.3 Scalable and Sharable Data Cache

For data caches, we split them into multiple banks
shareable by all threads. The cache banks are block-
interleaved to obtain a uniform distribution. The use of
multiple cache banks increases data cache capacity,
which eliminates the need for a second or third level
cache. For example, a 1MB data cache can be obtained
by splitting it into sixteen 64KB banks. Each cache
bank can be designed to have a large number of ways
and to use way prediction or selective direct mapping.
This will increase the capacity of the cache banks and
will reduce their access time and energy consumption.
Each cache bank is designed to be single ported, which
simplifies its implementation. A third advantage is that
no cache block replication can occur among the
different banks, since cache block interleaving will
map a cache block to a unique bank. This eliminates
the need to maintain cache coherence among the
different banks. A fourth advantage is that the cache
banks can use multiple busses to multiple memory
modules. In other words, the memory modules will
also be cache block interleaved. This will increase
main memory bandwidth and will decrease the bus
conflicts due to the increased number of cache misses
generated by the increased number of cache banks.

An unavoidable price is the overhead of the
interconnect, which increases in complexity with the
number of ports and the number of cache banks. This
interconnect can be a crossbar, a multi-stage network
with uniform data cache bank access, or a distributed
non-uniform data cache access network. Whatever it
might be, the interconnect increases the access delay to

the data cache from one to several clock cycles.
However, our simulation results indicate that
increasing the access delay to the data cache can be
tolerated in a large scale SMT processor. In other
words, we can trade the increase in threads and the
cumulative ILP with the increase in data cache access
time. Therefore, this data cache organization is
scalable in terms of capacity, bandwidth, and access
delay.

3.4 Pipeline Stages for a Load Instruction

The pipeline stages for a typical load instruction are
shown in Figure 3. At least ten pipeline stages are
required, starting with instruction fetch, going through
decode, rename, and queue, and ending with register
write and instruction retirement. The data cache access
delay has increased from one cycle to at least three
cycles, after computing the effective memory address.
One or more cycles are used to forward the address
from the input ports to the corresponding data cache
banks through the interconnection network. One cycle
is used for cache bank access, and one or more cycles
to forward the data to the corresponding physical
destination register.

3.5 Data Translation Lookaside Buffers

The data translation lookaside buffers (DTLBs) are
searched in parallel while establishing paths through
the interconnection network to the corresponding data
cache banks. Observe that the cache bank address is
NOT part of the virtual page number as shown in
Figure 4, and hence virtual address translation and
interconnection path establishment can proceed in
parallel. The DTLBs are integrated as part of
Load/Store units, such that each DTLB is associated
with one or at most few threads. This is much better
than integrating the DTLBs with the data cache banks,
as each bank is shared by all the threads. Way
prediction can be also accomplished during the same
cycle in parallel with DLTB lookup.

Data cache banks are physically indexed and
physically tagged, since address translation is done in a
previous cycle, before reaching the data cache bank.
This simplifies cache implementation since there is no
need to worry about virtual memory aliases. Physical
tag checking is also done in a separate cycle after data
cache access. It is done in parallel while establishing a
network path from the cache bank data output to the
physical destination register.

Fetch Decode Rename Queue RegRead Exec
DTLB

Dcache
Tag chk RegWrite

Retire Network

Figure 3: Pipeline Stages for a Typical Load Instruction

Network

Figure 4: Network path establishment can be done in parallel with
DTLB virtual address translation

4. Simulation and Performance

The simulation program was built on top of the
Simplescalar simulator using the PISA instruction set.
We simulated an 8-context 32-issue SMT processor
with 4 � 64KB instruction caches, each shared by 2
threads, and a 12-ported 16-banked data cache shared
by all threads. A total of 32 functional units were used:
24 integer ALUs (half of them shared by load-store
instructions) and 8 FPUs (used for all FP instructions).
The scheduling and load-store queues were partitioned.
Each thread had a 64-entry scheduling queue and a 32-
entry load-store queue. The front end can fetch four
instruction blocks (up to 64 instructions) per cycle
from four different threads. The simulation parameters
are summarized in the following table.

I-Cache 4 independent i-caches are used
Each is 64KB, 4-way associative,
64-byte lines, 1 cycle

D-Cache 12 ports
16 d-cache banks
Each is 64 KB, 8-way associative,
64-byte lines, total capacity: 1MB
Access time: 3, 5, and 7 cycles

L2 Unified None

Memory 100 cycles latency

Issue width 32 instruction per cycle

ALUs 24, where 12 are used also to compute
effective address of load-store
instructions

FPUs 8

Queue 64 entries per thread

Load-Store 32 entries per thread

4.1 Benchmarks

We chose a subset of eight programs to run as
independent threads. These benchmarks were
compiled with optimization for the PISA instruction
set. The first four belong to the SPECfp95
benchmarks. The last four belong to SPECint95.

applu: Partial differential equations.

hydro2d: Navier Stokes equations.

turb3d: Turbulence modeling.

wave5: 2D electromagnetic particle-in-cell simulation

gcc: GNU C compiler generating optimized code.

li: Lisp interpreter.

m88ksim: Chip simulator for the Motorola 88100
microprocessor.

perl: Interpreter for the Perl language.

4.2 Simulation Results

The performance of an 8-context 32-issue SMT under
different data cache latencies is shown in Figure 5. The
first column shows the performance under an ideal
main memory with a 1-cycle latency. The second,
third, and fourth columns assume a 100-cycle main
memory access, with 3, 5, and 7-cycle access time to
the data cache. The overall IPC goes down from 22.18
(ideal memory case) to 19.79 (3-cycle data cache and
100-cycle main memory), 19.24 (5-cycle data cache
and 100-cycle main memory), and 18.02 (7-cycle data
cache and 100-cycle main memory).

Effect of Cache Latency on IPC

0

2

4

6

8

10

12

14

16

18

20

22

24

Ideal Mem Latency3 Latency5 Latency7

Data Cache Latency

In
st

ru
ct

io
n
s

P
er

 C
yc

le
 (

IP
C

)

perl

m88ksim

li

gcc

w ave5

turb3d

hydro2d

applu

Figure 5: Performance of an 8-context 32-issue SMT

4.3 Discussion

The minimum latency that can be achieved for a multi-
ported multi-banked data cache is 3 cycles: one cycle
through the interconnect from the load/store unit to the
data cache bank, a second cycle through a cache bank,
and a third cycle thru the interconnect from the cache
bank output to the physical register file. Increasing the
data cache latency from 3 to 5 cycles reduces the IPC
by only 2.8%, while increasing the data cache latency
from 3 to 7 cycles reduces the IPC by 8.9%, where
each data cache access has a latency of 7 cycles. These
results indicate that SMT architectures can tolerate
longer cache access times, and that a new approach for

DTLB

Physical Tag Block
offset

Cache
Bank

Set
Index

Virtual Page # Page Offset

Physical Page #
Network

Path

cache design is required for such processors. These
results were achieved in the absence of line buffers in
the load-store units. The addition of line buffers to
load-store units should further improve the IPC and
tolerate longer data cache latencies.

5. Conclusion and Future Work

We have demonstrated that large primary data caches,
with a large number of ports and banks, are well suited
for large-scale SMT processors, which can tolerate
longer hit times in the data cache. Increasing the
number of data cache banks increases the overall
capacity, which in turn eliminates the need for unified
L2 and L3 caches. Increasing the number of ports
increases the bandwidth, but also increases the latency
of data cache access and the cost of the interconnect.
We are still studying the effect of having line buffers
(called also level zero caches) with few entries per
thread (typically 4 to 16) on the overall IPC and its
effect on reducing the number of ports. We expect the
number of ports to the data cache to decrease with
more memory references served through the line
buffers.

References

[1] T. Austin and G. Sohi, “High-Bandwidth Address
Translation for Multiple-Issue Processors”,
Proceedings of the 23rd Annual International
Symposium on Computer Architecture, May 1996,
pages 147-157.

[2] J. Edmondson et al, “Internal Organization of the
Alpha 21164 a 300-MHz 64-bit Quad-issue CMOS
RISC Microprocessor”, Digital Technical Journal,
Special 10th Anniversary Issue, Vol. 7, No. 1, 1995,
pages 119-135.

[3] “Hyper-Threading Technology”, Intel Technical
Journal, vol.6, no.1, February 2002.

[4] T. Juan, J. Navarro, and O. Temam, “Data Caches for
Superscalar Processors”, Proceedings of the 11th
International Conference on Supercomputing, July
1997, pages 60-67.

[5] R. Kessler, “The Alpha 21264 Microprocessor”, IEEE
Micro, March-April 1999, pages 24-36.

[6] C. Kim, D. Burger, and S. Keckler, “An Adaptive,
Non-Uniform Cache Structure for Wire-Dominated
On-Chip Caches”, Proceedings of the 10th
International Conference on Architectural Support for
Programming Languages and Operating Systems,
October 2002, pages 211-222.

[7] D. Koufaty and D. Marr, “Hyperthreading Technology
in the Netburst Microarchitecture”, IEEE Micro,
March-April 2003, pages 56-65.

[8] L. Li, N. Vijaykrishnan, M. Kandemir, M. J. Irwin and
I. Kadayif, “CCC: Crossbar Connected Caches for

Reducing Energy Consumption of On-Chip
Multiprocessors”, Proceedings of the Euromicro
Symposium on Digital System Design, September
2003, pages 41-48.

[9] J. Lo, S. Eggers, J. Emer, H. Levy, R. Stamm, and D.
Tullsen, “Converting Thread-Level Parallelism to
Instruction-Level Parallelism via Simultaneous
Multithreading”, ACM Transactions on Computer
Systems, vol.15, no.3, August 1997, pages 322-354.

[10] J. A. Rivers, G. S. Tyson, E. S. Davidson, and T. M.
Austin “On High-Bandwidth Data Cache Design for
Multi-Issue Processors”, Proceedings of the 30th
Annual International Symposium on Microarchitec-
ture, December 1997, pages 46-56.

[11] J. Tseng and K. Asanovic, “Banked Multiported
Register Files for High-Frequency Superscalar
Microprocessors”, Proceedings of the 30th Annual
International Symposium on Computer Architecture,
June 2003, pages 62-71.

[12] D. Tullsen and J. Brown, “Handling Long-Latency
Loads in a Simultaneous Multithreading Processor”,
Proceedings of the 34th Annual International
Symposium on Microarchitecture, December 2001,
pages 318-327.

[13] D. Tullsen, S. Eggers, J. Emer, H. Levy, J. Lo, and R.
Stamm, “Exploiting Choice: Instruction Fetch and
Issue on an Implementable Simultaneous
Multithreading Processor”, Proceedings of the 23rd
Annual International Symposium on Computer
Architecture, May 1996, pages 191-202.

[14] D. Tullsen, S. Eggers, H. Levy, “Simultaneous
Multithreading: Maximizing On-Chip Parallelism”,
Proceedings of the 22nd Annual International
Symposium on Computer Architecture, June 1995,
pages 392-403.

[15] K. Wilson, K. Olukotun, and M. Rosenblum,
“Increasing Cache Port Efficiency for Dynamic
Superscalar Processors”, Proceedings of the 23rd
Annual International Symposium on Computer
Architecture, May 1996, pages 147-157.

[16] K. Wilson and K. Olukotun, “Designing High
Bandwidth On-Chip Caches”, Proceedings of the 24th
Annual International Symposium on Computer
Architecture, June 1997, pages 121-132.

