
In Proceedings of the 2000 International Conference on Parallel and Distributed Processing Techniques and Applications

A Switch-Free Router for k-ary m-way Networks

Muhammed F. Mudawwar

Computer Science Department
The American University in Cairo

113 Kasr el Aini street, Cairo, Egypt
mudawwar@aucegypt.edu

Tel: +20-2 3575305
Fax: +20-2 3557565

Abstract

k-ary m-way networks are multi-dimensional mesh and tori
networks based on m-way channels. An m-way channel is
the physical wiring of m links. An m-way router interfaces
two m-way channels only, irrespective of the network
topology or dimension. This has important advantages: the
same router can be used to build networks of various
dimensionalities and topologies; physical channels can
have very wide data links; and broadcasting and
multicasting are facilitated. The design of a switch-free m-
way channel wormhole router is detailed in this paper.
Channel arbitration, buffer management, and routing are
presented. The performance of k-ary m-way networks is
evaluated.

Keywords: m-way channel, k-ary m-way network, m-way
router architecture, performance evaluation.

1 Introduction

Direct interconnection networks use direct links between
routers. A physical bi-directional link connecting two
routers in a k-ary n-cube network can be implemented
either as one set of bi-directional wires called half-duplex
organization, or as two sets of unidirectional wires called
full-duplex organization. With a full-duplex organization, a
router element has 4n input and output channels to adjacent
routers. As the dimensionality, n, of a network increases,
the number of input and output channels also increases.
Since the number of I/O pins in a router chip is limited by
the packaging technology, the increase in the
dimensionality of a network will decrease the number of
wires and thus the bandwidth of a single physical channel.
Routers designed for low dimensional k-ary n-cube
networks have physical channels that typically are 8-bit-
data to 16-bit-data wide [2] [3] [8] [9] [10].

In this study, I am proposing a new network topology,
called k-ary m-way network, which is based on the concept
of m-way channels. The idea of an m-way channel is that a
maximum number, m, of routers and processors can link
directly to it, and hence share the same physical channel. k-
ary m-way networks can be viewed as the dual of k-ary n-
cube networks. Routers, called m-way routers, are designed

to interface two m-way channels only, irrespective of the
network topology or dimension. This is not possible with
traditional wormhole routers. k-ary m-way networks are
detailed next.

2 k-ary m-way Networks

An m-way channel (called also multiway channel) is a
physical channel shared by a fixed number, m, of routers
and nodes. It is the physical wiring of m router/processor
links. An m-way router interfaces two m-way channels
only. It defines the operation of an m-way channel. At any
clock cycle, only one of the m routers or processors can
drive the channel. However, all m routers and nodes
concurrently read the channel. m-way channels and routers
can be used to build a variety of network topologies [7].

A k-ary m-way network is a multi-dimensional mesh or
torus constructed using m-way channels. The factor k is the
number of m-way channels along each dimension. To
simplify equations, one factor k is used for all dimensions,
but in practice different values of k can be assigned to
different dimensions. The maximum number of ways, m, of
an m-way channel is called the sharing factor of a channel.

C3

C6

C1

C4

C2

C5

C7 C8

C0
R0x

P0 R0y

R1x

P1 R1y P2 R2y

C3
R3x

P3 R3y

R4x

P4 R4y P5 R5y

C6
R6x

P6

R7x

P7 P8

R5x

R8x

C0
R2x

C1 C2 C0

R6y R7y R8y

Figure 1: 3-ary 5-way Torus

An example of a 3-ary 5-way torus is shown in Figure 1.
This is a 2-dimensional torus with 9 processors and 18
routers. Each 5-way channel wires 4 routers directly to a
processor. A channel is identified as Ci, a processor node
linked to channel Ci is identified as Pi, and a router linked
to channels Ci is identified as Rix if it along the positive X
dimension, or Riy if it is along the positive Y dimension.

In Proceedings of the 2000 International Conference on Parallel and Distributed Processing Techniques and Applications

Although one processor is shown connected to each
channel, it is possible to link several ones. If p processors
are linked to each m-way channel and n is the network
dimension then m = 2n + p. p is called the processor factor.

A k-ary (2n + p)-way network (where m = 2n + p) is
constructed recursively as 2k k-ary (2n- 2)-way networks
wired together orthogonally to produce the nth dimension.
The wiring is done on channels, rather than on routers. p
processor nodes are then linked directly to each channel. A
k-ary (2n + p)-way network has kn m-way channels, p k

n

processors, and n k
n routers in case of a torus, or n (k- 1)

k
n- 1 routers in case of a mesh network. A channel address

is an n digit, radix k number: c = an- 1…a1a0. Each address
digit ai represents a channel's coordinate in dimension i and
can take the values 0 through k-1. Two m-way channels are
adjacent if their addresses differ in one digit by ± 1 (mesh)
or by ± 1 mod k (torus). A processor linked to channel
an- 1…a1a0 has address an- 1…a1a0, l where l is the local
processor address and can assume the values 0 through p- 1.
If p = 1 then a node address becomes equal to its
corresponding channel address. There are 2n routers linked
to each channel. A router linked to channel an- 1…ai…a0 has
address an- 1 …ai…a0, i if it is along the positive i th
dimension, or address an- 1…(ai- 1 mod k)…a0, i if it is
along the negative i th dimension. The modulo-k operation is
necessary when the network has a torus structure.

m-way routers interface two channels, regardless of the
network topology or dimension. This is a distinguishing
feature of multiway channel networks, of which k-ary m-
way networks are a special case. This has important
advantages. First, an m-way channel can be made much
wider than a direct channel. Given a packaging technology,
say about 300 I/O pins per router chip, an m-way router can
be designed to interface channels that are 128-bit data wide.
The 8-way router design that will be discussed in this paper
defines 8-way channels with 128 data and 17 control lines.
A total of 290 I/O pins are used for both channel interfaces.
Contrast this with the router chip of the Cray T3D, which
uses 16 data lines and 8 control lines per physical channel.
There are 6 input and 6 output channels for a total of 288
I/O pins, not counting the lines connecting to the local
node. Therefore, although there are more channels in a k-
ary n-cube than in a k-ary m-way network of similar size
and cost, each channel in a k-ary m-way network can be
made much wider. The overhead of control lines is also less
in a k-ary m-way network.

A second advantage of using m-way channels and routers is
that the same router chip, if carefully designed, can be used
to implement different networks. For instance, an m-way
router can be used to implement low-dimensional and high-
dimensional meshes and tori. This is more difficult to
achieve with direct channel routers because the dimensiona-
lity of a network is related to the number of links per router.
A third advantage is that m-way channels facilitate

broadcasting and multicasting because they are shared. A
message flit placed on a channel can be received in multiple
routers concurrently during the same clock cycle.

3 Router Architecture

The internal structure of an m-way channel router is
depicted in Figure 2. A router has two channel interfaces,
two channel arbitrators, and two sets of buffers with
allocation/mapping units, routing logic, and buffer
arbitrators. The dimensionality of a router, DIM, is
specified through external pins. The directionalities of the
two sets of buffers are DIM+ and DIM- . The directionality
is used to identify a buffer set when selecting a driver for a
channel or when transferring message flits. This
identification should be unique across an m-way channel. In
the case of a processor node, we need also to uniquely
identify its injection and ejection buffer sets. Observe that
no crossbar switch is required. This simplifies the
implementation of a router and makes it faster.

 DIM

Drv

Drv Req OE

Req OE

Ack

Clk

Flit

Stat

Pri

Ack

Clk Ack_out

Stat_out

Stat_in

Ack_in

Ack_in

Ack_out

Pri_sum

Pri_out

Flit

Stat

Pri

Flit_in

Pri_out

C
h

an
n

el
 I

n
te

rf
ac

e
1

Flit_out

Pri_sum

C
h

an
n

el
 I

n
te

rf
ac

e
0

DIM+ Buffer Set

Stat_out

Flit_in

Buffer Alloc
and Mapping
(DIM+ way)

Channel Arb
(DIM+ set)

R
o

ut
in

g

B
u

f A
rb

Flit_out

DIM– Buffer Set

R
o

ut
in

g

B
u

f A
rb

Buffer Alloc
and Mapping
(DIM– way)

Stat_in

Channel Arb
(DIM– set)

Figure 2: Internal Structure of a Router

A physical channel consists of data, control, and arbitration
lines. The Flit lines carry one flit of a message. The Ack
lines are used to acknowledge the transfer of a flit and to
report the full status of the receiver buffer. The priority
lines, Pri, are used for arbitration and carry the sum of
output priorities of requesting drivers. The Stat lines carry
the availability and full status of receiver buffers in a cyclic
fashion. The Clk line is used to synchronize the operation of
an m-way channel.

A buffer set can concurrently receive a flit while
transferring a second one across a channel. To avoid the use
of a global clock, each channel is designed to operate on a
separate clock. A buffer set operates on two clocks because
it interfaces two channels. The first clock synchronizes the
receiving of a flit, while the second one synchronizes the
transfer of a flit. An arbitrary skew can exist between the
two clocks.

In Proceedings of the 2000 International Conference on Parallel and Distributed Processing Techniques and Applications

3.1 Message Format

A message consists of a header flit followed by an arbitrary
number (possibly zero) of body flits, followed by a tail flit.
A Tag, identifying the kind of flit, is generated at the
sending node and transmitted with each flit. Four tags are
used: Header (H), Body (B), Tail (T), and Invalid (I). This
is depicted in Figure 3. A valid tag is a request to transfer a
flit across an m-way channel. In addition to the tag, the
driver's buffer number, Buf, is transmitted with every flit.
This number identifies the driver's buffer and can change on
every router a message reaches. The tag and driver's buffer
number are control information sent with every flit.

Buf

Buf
Buf
Buf
Buf

B

T

H

B

Data
. . .
Data

 Way Class Dest Len Other Control
Data

B

Figure 3: Message Format

The header flit carries additional control information. It
carries the routing Way, which specifies the direction of a
header flit when it is transmitted across an m-way channel.
It is a number between 0 and m-1. This field is defined at
each router a header flit reaches. If broadcasting or
multicasting on an m-way channel is to be supported then
Way becomes an m-bit field, where each bit is associated
with one direction. The routing Way is required to transfer
header flits, but is not required to transfer body or tail flits.
This is why it is encoded in the header flit only. The Class
field identifies the buffer class or the subset of buffers that
can be allocated at the receiver side. An adaptive routing
algorithm may divide buffers into classes (possibly non-
disjoint) to restrict allocation and to avoid deadlocks. Such
buffer class information should be carried by a header flit to
guide buffer allocation at the receiver side. The destination
processor address, Dest, is another header field that can be
encoded either absolutely or relative to the source processor
address. If a router is designed for networks of different
dimensionalities then the destination field should have
different interpretations of sub-fields. The length field, Len,
encodes the number of data bytes in the flits that follow the
header flit. The length field can be used to allocate storage
at the destination node as soon as a header flit is received. It
can be also used to ensure the correctness of the tags and to
establish a limit on the length of a message.

Additional control information can be carried by a header
flit. For instance, a non-minimal routing algorithm may
require the number of misrouting steps to be carried in the
header flit to avoid livelocks. Other control information can
also include the priority of a message or the address and
context of a thread to be executed at the destination node
when a message header flit is received.

3.2 Channel Arbitration

An m-way channel can have only one router or processor
driving it at any given clock cycle. The channel arbitrator
ensures exclusive access to the channel. It determines
which router (processor) is driving a channel at the current
clock cycle and which router (processor) will be driving the
channel at the next cycle. Channel arbitration is a
distributed hardware algorithm. All channel drivers apply
the same algorithm and reach the same decision. The
channel arbitrator must be fair to avoid starvation. Thus, it
cannot assign fixed priorities to drivers.

At the beginning of each clock cycle, m requests, Req, are
generated internally by the m drivers (buffer sets) of a given
channel (see Figure 2). These m requests are input to all the
channel arbitrators. The channel arbitrators concurrently
compute their internal priorities. The internal priority is
unique in every arbitrator. Output priorities, Pri_out, are
produced at the outputs of all arbitrators. The output
priorities are wired together on the channel priority lines,
Pri, to produce the wired-OR sum. The requester with the
highest internal priority wins and its priority appears on the
channel priority lines. All channel arbitrators read the
channel priority lines and update an internal register that
holds the current channel driver. This is done concurrently
with the edge of a clock that synchronizes the operation of
all drivers interfacing a channel.

The channel arbitrator can generate the internal priorities
according to Round Robin. This implementation is shown
in Figure 4. A maximum of 8 drivers, uniquely identified as
0 to 7, are allowed across a channel. The internal priority of
driver i, PRI_int(i), is computed as Drv – i, where Drv is
the current driver number in all channel arbitrators and i is
the driver's identifier (DIM+ or DIM–). The subtraction is
done modulo 8. Because i is unique in every driver, the
internal priorities are guaranteed to be unique. The internal
priorities also change in cycles (round-robin) when the
current driver changes. The output priority of driver i,
PRI_out(i), is a function of its internal priority, PRI_int(i),
the sum priority, PRI_sum, and the request input, Req(i),
from the buffer set. The sum priority, PRI_sum = s2s1s0, is a
3-bit vector that represents the wired-OR sum of all output
priorities. The sum priority is fed as input to all channel
arbitrators to adjust their output priorities. The output
priorities are adjusted according to the table of Figure 4.
PRI_out(i) is defined such that the sum priority, PRI_sum,
will be equal to the highest internal priority of a requesting
driver.

Once the sum priority is determined, it is subtracted from
the current driver number, DRV, to determine the next one,
Next_DRV. The driver register that holds the current driver
number is updated at the beginning of a clock cycle. The
update is done concurrently in all channel arbitrators. The
current driver number is used to enable the output of

In Proceedings of the 2000 International Conference on Parallel and Distributed Processing Techniques and Applications

exactly one driver (OE(i) = 1 when DRV = i). Channel
arbitration does not waste clock cycles. It is done
concurrently while transferring a message flit.

 Next_DRV

PRI_int(i)

DRV

PRI_out(i)

PRI_out
Req(i)

-

ID = i

OE(i)

PRI_sum

-

=

ID = i
Clk

∑
=

==
7

0
012)(__

i
ioutPRIssssumPRI

0
s2'.s1'.req(i)

0
s2'.req(i)

0
s1'.req(i)

0
req(i)

0
0

s2'.req(i)
s2'.req(i)

0
0

req(i)
req(i)

0
0
0
0

req(i)
req(i)
req(i)
req(i)

000
001
010
011
100
101
110
111

PRI_out(i) PRI_int(i)

Figure 4: Channel Arbitrator and Output Priority Function

3.3 Buffer State

Each buffer in a buffer set has associated state information,
as depicted in Figure 5. The allocation bit, A, indicates the
allocation status. The full bit, F, indicates the full status.
The driver number, Drv, indicates the driver set from which
the flits of a message are received. The driver's buffer
number, Buf, specifies a buffer in a buffers set. Drv and Buf
locate the previous buffer along the routing path. The front
pointer, Fptr, points to the front entry in a buffer. The rear
pointer, Rptr, points to the rear entry. The receiver's full
status, RF, indicates whether the receiver buffer of a
message has a full status.

 A: Allocation bit
F: Full bit
Drv: Driver number
Buf: Driver's Buffer number
Fptr: Front Pointer
Rptr: Rear Pointer
RF: Receiver's Full status

BUF0

BUF1

BUF2

BUF3

A F Drv Buf Fptr Rptr RF

Figure 5: Buffer associated state information

3.4 Buffer Allocation

An m-way channel operates as follows: At the beginning of
a clock cycle, a driver puts a header flit on an m-way
channel. The header flit carries the header tag, H, the
driver's buffer number, Buf, and the routing Way in addition
to other control information. The buffer allocation and
mapping units in all the directions of an m-way channel
receive the header flit. However, only one buffer allocation
unit will accept the header flit, depending on the routing
Way. In the case of multicasting and broadcasting, it is also
possible to have several buffer allocation units concurrently
accepting the header flit. Once accepted, the buffer
allocation unit will allocate a buffer for the header flit and
send back an acknowledgment, Ack_out.

BUF0

BUF1

BUF2

BUF3

Y+ Buffer Set

 A F Drv Buf

 1 0 X− 0

 0→1 0→0 → X+ → 2

 0 0 Y+ 3

 1 1 Y+ 1

Ack_out

Drv = X+

Tag = H
Buf = 2

Way = Y+
Flit_in

…

Figure 6: Allocation of a buffer in a buffer set

Figure 6 illustrates the allocation of a buffer to a header flit.
All channel arbitration units at a given channel have
concurrently selected buffer set X+ to be the current driver.
Observe that the current driver, Drv, is passed from the
channel arbitrator to the buffer allocation unit as shown in
Figure 2. The header flit carries the driver's buffer number,
which is 2 in Figure 6. The driver's number, Drv, and the
driver's buffer number, Buf, are stored in the allocated
entry. This allows each buffer to identify the previous
buffer along the routing path.

3.5 Buffer Mapping

When a driver places a body or a tail flit on a channel (Tag
= B or T), it does not include the routing Way as part of the
flit. All allocation and mapping units across a channel
receive the flit that carries the driver's buffer number, Buf.
They also receive the current driver number, Drv, from the
channel arbitrator. All allocation and mapping units are
searched in parallel by content for a match with Drv and
Buf. If a match occurs and the allocation bit is set, the
corresponding buffer allocation and mapping unit will
accept the body or tail flit. Otherwise, it will reject it. An
acknowledgment is sent back.

An allocated buffer can be freed as soon as a tail flit is
received. This is called early buffer freeing. Alternatively,
we can free a buffer after a tail flit is transmitted, which is
called late buffer freeing. With early buffer freeing, it is
possible to have more than one message stored in a buffer.

In Proceedings of the 2000 International Conference on Parallel and Distributed Processing Techniques and Applications

This is not a problem because the tags, which are stored
with the data of each flit, indicate the boundaries of each
message. Early buffer freeing improves the utilization of
buffers. However, the analysis of deadlock-free adaptive
routing algorithms with early buffer freeing becomes more
complex.

Allocating buffers and mapping them at the receiver side
rather than on the driver side has several advantages. It
reduces the number of control lines because the routing way
is carried only in the header flit and is not required in the
body and tail flits. It also simplifies the implementation
because a driver does not have to keep track of the
allocation status of every buffer across an m-way channel.
Furthermore, broadcasting and multicasting are facilitated
because only the driver's buffer number has to be carried in
every flit, rather than the numbers of all allocated buffers at
the receiver sides.

3.6 Routing

Routing across an m-way channel is to determine the next
router and buffer along the routing path. A routing
algorithm is defined as a routing function and a selection
function. It is implemented in the routing logic at the
driver's side as well as in the allocation unit at the receiver's
side. The routing logic at the driver's side determines the
routing Way and buffer Class for a header flit, denoted as
(Way, Class). The routing Way specifies the next router
across an m-way channel. The buffer Class specifies a
subset of buffers. It is used to ensure deadlock freedom for
some adaptive routing algorithms. The routing function
specifies one (deterministic) or more (adaptive) choices of
(Way, Class) pairs, and the selection function chooses one
of them (in case of adaptive routing). The routing function
must be deadlock-free and livelock-free. The selection
function can affect only performance. The allocation unit at
the receiver side accepts a header flit only if it along its
Way and allocates a new buffer that belongs to the specified
buffer Class. The same routing algorithms and deadlock-
avoidance theories discussed in the literature [4], [6] for
wormhole-routed k-ary n-cube networks are also applicable
to k-ary m-way networks.

4 Network Simulation and Results

To measure the performance of interconnection networks
with multiway channels, I have simulated a number of mesh
networks varying few parameters in every run. The
simulator is a C++ program that simulates k-ary m-way
networks at the flit level. A flit transfer between two
adjacent routers, over an m-way channel, takes place in one
clock cycle. The network is simulated synchronously,
moving all flits that have been granted channels in one
clock cycle and then advancing time to the next cycle. The
simulator can be configured to support different network
sizes, dimensionalities, processor factors, buffers in a set,

buffer sizes, routing algorithms, arbitration algorithms,
messages lengths, message generation rates, and traffic
patterns. Flags indicating the use of full and availability
status by a router can also be set. The simulator can
generate various statistics, such as average message latency,
maximum latency, latency standard deviation, latency
histogram, channel utilization rate, injection rate, and
ejection rate.

Latency is measured from the time a message is queued at a
source processor until the tail flit is ejected at a destination
processor. Source queuing time is included in the latency
measurement. Traffic is measured as the percentage of
utilization of channels. A channel is utilized during a clock
cycle if it is used to transfer a flit successfully. The
injection/ejection rate of a processor is the percentage of
channel cycles used to inject/eject a flit successfully
into/from the network. The injection and ejection rates are
equal at steady state.

4.1 Effect of Increasing the Buffers and their Sizes

The purpose of this experiment is to measure the effect of
increasing the buffer size and the number of buffers in a
buffer set. A medium size 2D-mesh network with 16 × 16
5-way channels and 256 nodes is simulated. Dimension-
order routing is used. The traffic is uniform. All messages
carry 64 bytes of data. They occupy 4 data flits + a header
flit. Each flit is 16 bytes long and is transferable over a
channel in one clock cycle. The first experiment uses 1
buffer only in each set. However, the size of the buffer is
varied from 1 to 128 flits. The second experiment varies the
number of buffers in each set from 1 to 16. However, the
size of each buffer is fixed at 2 flits. Each simulation run
took 100,000 cycles of which the first 30,000 cycles are
startup. Startup cycles are ignored in the statistics. The
results of these experiments are shown in Figures 7 and 8,
respectively.

The graphs shown below are not functions. Both the latency
and the traffic are measured values. When the traffic is
below saturation, the message latency is affected only
slightly by the traffic. However, as the network saturates,
latencies start increasing sharply. The latency standard
deviation, not shown in the figures, also varies with the
offered load and traffic. Below saturation point, the latency
standard deviation is a small value that is almost a constant.
However, the latency standard deviation increases sharply
beyond the saturation point. Saturation occurs when the
nodes of a network generate messages at a higher rather
than they can be delivered. These messages end up waiting
at the source node queues. Adding more buffers or
increasing the depth of buffers improves the injection and
ejection rates and allows the network to accept more traffic.
Increasing the depth of a buffer from 1 to 8 flits in Figure 7
improves the traffic significantly. However, little
improvement is obtained beyond this buffer size. Similarly,

In Proceedings of the 2000 International Conference on Parallel and Distributed Processing Techniques and Applications

increasing the number of buffers in a set from 1 to 4 is
justifiable. Adding more buffers increases the cost and
latency of hardware and does not provide significant
improvement.

0

50

100

150

200

250

300

10% 20% 30% 40% 50% 60% 70%

Traffic (% of channel utilization)

A
ve

ra
ge

 L
at

en
cy

 (
cy

cl
es

)

BufSize = 1 Flit 2 8 32 128

Figure 7: Effect of increasing the buffer size

0

50

100

150

200

250

300

350

10% 20% 30% 40% 50% 60% 70%
Traffic (% of channel utilization)

A
ve

ra
ge

 L
at

en
cy

 (
cy

cl
es

)

1 Buffer/Set 2 4 8 16

Figure 8: Effect of increasing the number of buffers

5.2 Traffic Distribution in a Mesh

The traffic of Figures 7 and 8 did not exceed 70%. The
question is why? To answer this question, it is important to
examine the traffic distribution in a mesh. The traffic
distribution or channel utilization is not uniform, even when
the generated traffic is uniform. The traffic distribution is
shown in Figure 9. The traffic is saturated (about 100%) at
the center of the mesh, while it is very light (about 20%) at
the corners. This is a property of the mesh topology because
it is not a symmetric network. The problem can be
alleviated using a torus network, but with added cost. It can
also be alleviated if the generated traffic exploits locality.

5.3 Effect of Network Dimension, and Processor Factor

In this experiment eleven networks are simulated. All
networks have 512 processors. All buffer sets consist of 4

buffers each of size 2 flits. All messages carry 64 bytes of
data (1 header + 4 data flits). The traffic pattern is uniform.
Dimension order routing is used. The results are shown in
Figure 10. The first graph shows 2D and 3D networks. The
second graph shows 4D, 7D, 8D, and 9D networks. The
processor factor varies from 1 to 4. For example, the
network 32×16×P1 is a 2D mesh with 32 channels along the
X dimension, 16 channels along the Y dimension, and a
processor factor of 1. The network 8×4×4×P4 is a 3D mesh
with 8 channels along the X dimension, 4 channels along
the Y and Z dimensions, and a processor factor of 4. The
network 8D-HC×P2 is an 8D-hypercube network with a
processor factor of 2. The total number of channels varies
from 128 to 512 depending on the processor factor. The
size, cost, and bandwidth of a network decrease when the
processor factor increases.

0

3

6

9 12

15

0

2

4

6

810

12
14

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

X-coordinate
Y-coordinate

Figure 9: Traffic Distribution in a 16 × 16 mesh network

The results of Figure 10 reveal that high-dimensional k-ary
m-way networks perform better than low-dimensional ones.
However, they have a higher cost. The higher the ejection
rate, the more the number of flits (or messages) that can be
transferred in a network in a given period of time. The
highest performer is the 9D-HC×P1 hypercube network,
which also has the highest number of routers and cost. The
average ejection rate per processor exceeds 17%. The
network traffic reaches 95% at saturation point (not shown
in Figure 10). At steady state, the injection rate is equal to
the ejection rate. Thus, 17% + 17% = 34% of channel
cycles is used for injection and ejection. The remaining
95% − 34% = 61% is used to transfer flits between routers.
The lowest performer is the 2D 16×8×P4 network, which
also has the least number of routers. The average injection
rate per router is about 1.9% and the network traffic is 68%
at saturation. Because 4 processors are wired to a channel in
the 16×8×P4 network, 4 × 1.9% × 2 = 15.2% of channel
cycles are used for injection and ejection. This leaves 68%
− 15.2% = 52.8% of channel cycles for transferring flits
between routers.

In Proceedings of the 2000 International Conference on Parallel and Distributed Processing Techniques and Applications

0

50

100

150

200

250

300

350

400

0% 1% 2% 3% 4% 5% 6% 7% 8%

Average Ejection Rate per Processor

A
ve

ra
ge

 la
te

nc
y

(c
yc

le
s)

32x16xP1 8x8x8xP1 16x16xP2

8x8x4xP2 16x8xP4 8x4x4xP4

0

50

100

150

200

250

300

350

400

0% 2% 4% 6% 8% 10% 12% 14% 16% 18%

Average Ejection Rate per Pro cessor

A
ve

ra
ge

 L
at

en
cy

 (c
yc

le
s)

8x4x4x4xP1 4x4x4x4xP2 9D-HCxP1

8D-HCxP2 7D-HCxP4

Figure 10: Effect of network size, dimension, and node factor
in low and high dimensional networks

It is interesting to observe that the 7D-HC×P4 hypercube
network with 448 routers outperforms the 3D 8×8×4×P2
network with 640 routers, which also outperforms the 2D
32×16×P1 network with 976 routers. The average injection
rate at saturation point is 5.1% for the 7D-HC×P4
hypercube network, while it is 4.7% for the 3D 8×8×4×P2
network and 3.9% for the 2D 32×16×P1 network. Similarly,
the 8D-HC×P2 hypercube network with 1024 routers
outperforms the 3D 8×8×8×P1 network with 1344 routers
and comes close to the 4D 8×4×4×4×P1 with 1600 routers.

6 Conclusion and Further Research

This paper introduced a new class of interconnection
networks called k-ary m-way networks. These networks are
based on m-way channels. The idea is to reduce the number
of links per router to only two and to make channels very
wide. The design of an m-way switch-free router was
detailed in this paper. The performance of multi-
dimensional mesh and hypercube networks was evaluated.
The initial results are encouraging and stimulate more

research in this direction. The router discussed in this paper
is described in VHDL and was tested for correctness. It is
currently being extended to support broadcasting and
multicasting. Further research in this direction is to study
the engineering-aspects of system packaging for higher
dimensional networks and to support fault-tolerant routing.

References

[1] J.-C. Bermond and F. Ergincan, Bus Interconnection
Networks, Discrete Applied Mathematics, 68, pages 1-15,
1996.

[2] Carbonaro J. and Verhoorn F., Cavallino: The teraflops
router and NIC, Proceedings of Hot Interconnects
Symposium IV, August 1996.

[3] Dally W., et al., Architecture and implementation
of the Reliable Router, Proceedings of Hot Interconnects
Symposium II, August 1994.

[4] J. Duato, A Necessary and Sufficient Condition for
Deadlock-Free Adaptive Routing in Wormhole
Networks, IEEE Transactions on Parallel and
Distributed Systems, vol. 6, no. 10, pages 1055-1067,
October 1995.

[5] Duato J., Yalamanchili S., and Ni L., Interconnection
Networks: An Engineering Approach, IEEE Computer
Society Press, 1997.

[6] E. Fleury, P. Fraigniaud, A General Theory for
Deadlock Avoidance in Wormhole-Routed Networks,
IEEE Transactions on Parallel and Distributed Systems,
vol. 9, no. 7, pages 626- 638, July 1998.

[7] Mudawwar M., Multiway Channels in Interconnection
Networks, in Proceedings of the ISCA 12th International
Conference on Parallel and Distributed Computing
Systems, August 1999.

[8] Noakes M., Wallach D., and Dally W., The J-Machine
Multicomputer: An architecture evaluation, Proceedings
of the 20th International Symposium on Computer
Architecture, p 224-235, May 1993.

[9] W. Oed, The Cray Research Massively Parallel
Processing System: Cray T3D, Cray Research, 1993.

[10] Scott S. L. and Thorson G., The Cray T3E network:
adaptive routing in a high performance 3D torus,
Proceedings of Hot Interconnects Symposium IV, August
1996.

[11] T. Szymanski, Hypermeshes: Optical interconnection
networks for parallel processing, Journal of Parallel and
Distributed Computing, vol. 26, pages 1-23, January
1995.

