
Proceedings of the 8th International Conference on AI Applications, February 2000

1

Parameterized Types and Polymorphic Functions in SIMPL
Muhammed F. Mudawwar
mudawwar@aucegypt.edu

The American University in Cairo
113 Kasr el Aini, Cairo, Egypt

Abstract

Parametric polymorphism or generic programming has been supported by a number of programming languages.
Templates and generic parameters are most commonly used. When instantiated, templates and generic units
generate new functions, types, packages or modules. This paper shows a different approach to parametric
polymorphism in the frame of a new programming language called SIMPL. Polymorphic functions in SIMPL
carry two lists of parameters: the hidden parameters and the formal parameters. The hidden parameters, which
are used to parameterize a function, appear in the types of the formal function parameters, the result type, and in
the body of a function. Hidden parameters are never passed explicitly when a function is called, but rather
inferred implicitly by the type system. With hidden parameters, polymorphic functions can have a unique and
efficient translation as will be shown in this paper.

Keywords: Parameterized types, polymorphic functions, hidden parameters, SIMPL.

1 Introduction

Programming languages are classified, according to the uniqueness of the type of objects and methods, into
monomorphic languages and polymorphic ones. A monomorphic language is the one whose variables and
functions can be interpreted to be of one and only one type. In contrast, a polymorphic language is one in which
some variables and functions have more than one type. Polymorphism is classified into universal polymorphism
and ad-hoc polymorphism. Universal polymorphism is further classified into parametric (generic)
polymorphism and inheritance polymorphism. Ad-hoc polymorphism is classified into overloading and coercion
[Cardelli 85].

This paper is about parametric polymorphism. A function is parametrically polymorphic if it follows the same
algorithm regardless of the type of its arguments. Examples of parametric polymorphism are the Ada generic
mechanism [Skansholm 97], the Modula-3 generic mechanism [Cardelli 92], the C++ templates [Stroustrup 97,
88], and the ML type schemes [Milner 89].

This paper introduces the concept of hidden parameters in polymorphic functions. This concept is discussed in
the frame of a new programming language called SIMPL (Simplified Imperative Modular Parallel Language).
SIMPL is a new programming language, designed mainly to simplify parallel programming on a wide variety of
architectures. A polymorphic function in SIMPL has two lists of parameters: the hidden parameters and the
formal function parameters. The hidden parameters are specified in the function header, but are not passed
explicitly by the programmer. Instead, the type system infers their values when matching the types of the actual
parameters against the types of the formal parameters and passes them implicitly for each function call.

The basic problem that must be solved for polymorphic languages is that the compiler cannot know the type and
size of the data held in polymorphic variables. Appel discusses four different techniques that are used to solve
this problem. These are: inline expansion, full boxing, coercion-based representation analysis, and type-passing
[Appel 98]. Inline expansion is the expansion of polymorphic functions and types until everything is
monomorphic. This is the way that Ada generics and C++ templates work. The advantage of this approach is a
simple and efficient compilation model. The disadvantage is that functions are replicated, which can cause code
bloat.

The full boxing technique fits all polymorphic variables in one representation. Usually, a single word is used
with all variables. If a variable is too large to fit in a single word, we allocate a record for that variable and use
the pointer to that record as the word. The record representing the boxed variable usually starts with a descriptor
indicating how large the record is. The problem with full boxing is that the entire program uses expensive boxed
representations, even in places where the programmer has not used any polymorphic functions. The idea of
coercion-based representation analysis is to use unboxed representations for values held in monomorphic
variables, and boxed (or tagged) representations for values held in polymorphic variables. That way the
monomorphic parts of the program can be very efficient, with a price paid only when polymorphic functions are
called. Cardelli describes a fully boxed implementation of ML [Cardelli 84], Leroy describes coercion-based
representation analysis [Leroy 92], and Shao and Appel describe a variant that does recursive wrapping only
when necessary [Shao 95].

Another approach to the implementation of polymorphism is to pass to a polymorphic function a description of
the type of polymorphic variables. Harper and Morrisett describe type-passing style [Morrisett 95].

Proceedings of the 8th International Conference on AI Applications, February 2000

2

This paper is organized as follows: Section 2 discusses parameterized types in SIMPL. Section 3 discusses
polymorphic functions and hidden parameters. Section 4 discusses the unification algorithm used to infer the
hidden parameters. Section 5 discusses the translation of polymorphic functions, and Section 6 concludes this
paper.

2 Parameterized Types

Types in SIMPL can be parameterized. This type parameterization allows the development of polymorphic
functions with hidden parameters as will be discussed later. A type declaration informs the compiler of the
existence of a new type. This type may or may not be parameterized. A non-parameterized type is simply an
identifier, while a parameterized type should include at least one formal type parameter surrounded by braces.
Here are some examples of type declarations:

type complex -- Not parameterized
type list{t:type} -- Parameterized
type array{n:integer,t:type} -- Parameterized

A formal type parameter must be either an integer parameter or a type variable. A type variable is a formal type
parameter of type type. The keyword type denotes the set of all types declared by a programmer. Thus, a type
variable is an unspecified element of type. In the above examples, the formal type parameter t is a type variable.
Limiting a formal type parameter to an integer or to a type variable is not really a restriction. To declare a
parameterized type, we need to generalize the size and the type of its elements. The size is generalized using one
or more integer parameters. The type is generalized using one or more type variables.

2.1 Type Interface and Type Implementation

A SIMPL program is a collection of interfaces and modules stored in separate files and compiled separately. An
interface describes the interface of a module. It consists mainly of type and function interfaces. A module
describes the implementation of an interface. It consists mainly of type and function implementations. All
interface members are public and exportable to other interfaces and modules. Module members not declared in
an interface are private and visible only within the given module.

A type interface contains the public members of a type. A type interface is usually specified in an interface file
to make it exportable, but it can also be made local to a module. An example of a type interface is shown below.
It specifies the interface of the parameterized type stack. There are three public member functions, but no public
field in this type interface.

Example of a Type Interface:

interface stack is

 type stack{n:integer,t:type} is
 function push(x:t)
 function pop():t
 function items():integer
 end -- interface of type stack

end -- interface stack

A type implementation contains the private fields and the implementation of the public functions of a type. It
may also contain additional private functions. A type implementation must be specified in a module. It is not
exportable and cannot be specified in an interface. The implementation of the parameterized type stack is shown
below. It begins with the private keyword and contains two private member objects: top and storage, and the
implementation of the three public functions: push, pop, and items.

Example of a Type Implementation:

module stack is

 private stack{n:integer,t:type} is

 obj top :integer := 0
 obj storage :array{n,t}

 function push(x:t) is ... end -- implementation of push()
 function pop():t is ... end -- implementation of pop()
 function items():integer is ... end -- implementation of items()

 end -- implementation of type stack

end -- module stack

Proceedings of the 8th International Conference on AI Applications, February 2000

3

The implementation of the parameterized type stack uses an array of size n and element type t for internal
storage, where n and t are the formal type parameters. Furthermore, n and t can be used in the implementation of
the member functions. The actual values of n and t are specified when stack objects are declared. The type stack
is an example of a polymorphic type whose size and shape vary according to the actual values of n and t. The
member functions of stack are also polymorphic, because they can be called with stack objects of any size n and
element type t.

2.2 Type Overloading

A type is overloaded if a new type with the same identifier has been declared. A type can be overloaded if and
only if the new type (with the same identifier) has a different signature. A type signature consists of the type
identifier and the signature of the formal parameters, which can be either integers or type variables. The
signature of an integer parameter is "I", and the signature of a type variable is "T". For example, the following
stack types can coexist because their signatures are different. The programmer can implement each stack type
differently.

Declared Type: Type Signature:

type stack stack
type stack{t:type} stackT
type stack{n:integer, t:type} stackIT
type stack{t:type, n:integer} stackTI

2.3 Type Instantiation and Subtyping

Given a parameterized type, we can derive instances of that type. A parameterized type instance is a type
identifier followed by a list of actual type parameters. An actual type parameter can be an integer identifier, an
integer literal, a type variable, a type identifier, or a parameterized type instance. If the formal type parameter is
an integer parameter then the actual parameter should be an integer identifier or an integer literal. If the formal
type parameter is a type variable then the actual type parameter can be either a type variable, a type identifier, or
a parameterized type instance.

Different instances of a parameterized type are considered different types. For example, the types array{100
,real}, array{200, real}, and array{100, array{100, real}} are different. The types array{m, real} and array{n,
real} are also considered different even when the values of m and n turn out to be identical at runtime. This is
because type checking is done statically at compile time and the compiler cannot, in general, verify that two
integer identifiers have identical values. Finally, integer identifiers used as actual type parameters should not be
modifiable objects. They can be integer constants declared in a function, read-only value parameters or hidden
parameters of a function as will be clarified later.

A type is said to be polymorphic if it contains at least one type variable or an integer parameter. Otherwise, it is
called monomorphic. For example, the types t, array{n, array{n, real}}, and stack{5, t} are polymorphic, while
the types integer and array{10, real} are monomorphic. Types are also related by instantiation. A subtyping
relationship is defined between a polymorphic type and its instances. For example, the types array{100, t},
array{n, real}, and array{100, array{200, real}} are all subtypes (because they are instances) of array{n, t}.
However, the types array{100, t} and array{n, real} are not related (neither one is a subtype of the other), but
have a common subtype which is array{100, real}.

The subtyping relation defined by type instantiation is a reflexive, anti-symmetric, and transitive relation. The
notation <: means a subtype (adopted from [Cardelli 97]). If T is a type then T <: T. If T1 <: T2 and T2 <: T1
then T1 and T2 must be equivalent. If T1 <: T2 and T2 <: T3 then T1 <: T3.

2.4 Processing Types

A parameterized type in SIMPL is not a type generator as is the case with the class template of C++. A
parameterized type is itself a type and occupies a unique place in a symbol table when processed. To process a
parameterized type, we need to record its size, its fields, and its member functions. Figure 1 shows a symbol
table with entries for the integer type, the arrayIT type, and the stackIT type of Section 2.1. Types and fields are
recorded in this symbol table. Functions are omitted here and will be covered in Section 3.

Symbol table entries have a simple structure. Each symbol table entry includes a name and an attribute. The
name field can be implemented as a reference to a string in a string space (not shown), while the attribute field
is a reference to an attribute entry in an attribute space. The attribute space is an array of tags and values. Type
signatures are entered in the symbol table rather than type names because they are unique and encode the
signature of the formal parameters (using the I and T letters to denote an integer formal type parameter and a
type variable respectively). SIMPL identifiers are not case sensitive. They are converted to lowercase when
entered in the symbol table.

Proceedings of the 8th International Conference on AI Applications, February 2000

4

Each type (built-in or user-defined) has a unique place in the attribute space, whose tag is type and whose value
is the number of formal type parameters. For example, the type integer has zero parameters while the type
arrayIT has two parameters. If a type is parameterized, the next entries in the attribute space capture the formal
parameters. For example, the first parameter of arrayIT is an intpar (i.e., an integer parameter), and the second
formal parameter is an typevar (i.e., a type variable). The address (or index) of a type in an attribute space
uniquely identifies the type and serves the purpose of specifying the types of objects, fields, parameters, and
function results.

Field names are postfixed when entered in a symbol table. The postfix @stackIT represents the address (or
index) of the type stackIT in the attribute space. This encoding will make a field name unique and will simplify
its search. A field entry in an attribute space holds the address of its type. If the type of a field entry is a subtype
of a parameterized type, new entries in the attribute space are allocated for the subtype. A subtype entry holds
the address of a parameterized type. The entries that follow a subtype entry specify the actual parameters of the
subtype. The actual parameters to the array{n, t} type of the field storage are references to the formal
parameters of the type stackIT as indicated by the ref entries in the attribute space.

Symbol Table Attribute Space

Name Attribute Tag Value
integer type 0

arrayIT type 2

intpar null... ...
typevar null

stackIT

top@stackIT type 2

storage@stackIT intpar null

typevar null

field

field

subtype

ref

ref

Figure 1 : Symbol table and attribute space showing the type stackIT and its fields.

The size of a parameterized type and the offset (relative address) of a field need not be constant values, but are
in general functions of the formal type parameters. Furthermore, even when a type is not parameterized and its
size is a constant value, the size is not known, in general, when a type is imported because a type interface does
not list the private members. Therefore, for each type, the compiler generates a function to calculate its size
instead of recording the size in the attribute space. These functions can be expanded inline whenever possible to
avoid the overhead of calling them.

The name of a generated size function should be encoded in a special way to distinguish it from other functions.
Thus, SIZE@integer, SIZE@arrayIT, and SIZE@stackIT are the names of the functions that return the size of
the types integer, arrayIT, and stackIT. The address of a type is encoded in the SIZE function name. The
parameters of a size function are the formal parameters of the corresponding type. The size of a type can be
related to the size of other types and can have only addition and multiplication operators when generated.
Knowing the size of types, we can determine the size of objects, fields, and parameters, as well as the relative
offsets of fields and local declarations. However, the size value is not known in general until runtime and cannot
be assumed at compile time.

function SIZE@integer():integer is
 result := 4
end -- SIZE@integer

function SIZE@arrayIT(n,SIZEt:integer):integer
 if n <= 0 then result := 0
 else result := n*SIZEt end -- if
end -- SIZE@arrayIT

function SIZE@stackIT(n,SIZEt:integer):integer
 result := SIZE@integer() + SIZE@arrayIT(n,SIZEt)
end -- SIZE@stackIT

Proceedings of the 8th International Conference on AI Applications, February 2000

5

3 Polymorphic Functions and Hidden Parameters

A function denotes a computation that may or may not have a result value. In SIMPL, we do not distinguish
between a function and a procedure. All methods are functions. A function with no result value is equivalent to a
procedure in other languages, but the keyword procedure is not used in this language. Functions in SIMPL can
be polymorphic. The formal function parameters may assume different types. Polymorphic functions have
hidden parameters; a feature, I believe, is unique to this programming language.

A function declaration is the interface of a function. It informs the compiler about the formal parameters, the
hidden parameters, and the result type of a function. A function can be declared in an interface or in a module.
However, it cannot be declared twice. A function declared in an interface is public and exportable to other
compilation units. A function declared in a module is private and visible only inside the module.

Examples of function declarations are shown below. The first function defines the addition of two complex
numbers. This function is monomorphic because its actual parameters can assume only one type. The second
function is polymorphic and uses two lists of parameters. The first list is the hidden function parameters, while
the second list is the formal function parameters. Hidden parameters are formal type parameters used in the
types of the formal function parameters, and possibly in the result type of a function. For example, the second
function declares n as a hidden parameter, and uses it in the types of the formal parameters x and y as well as in
the result type. The third function has two hidden parameters, n and t, and one formal parameter x. Hidden
parameters are enclosed by braces, while formal function parameters are enclosed by parenthesis. The obj
keyword indicates that x is an object parameter. Formal function parameters are explained next.

Examples of Function Declarations:

function add (x,y:complex):complex
function add {n:integer}(x,y:array{n,real}):array{n,real}
function reverse {n:integer,t:type}(obj x:array{n,t})

3.1 Formal Function Parameters

A formal function parameter has a mode and a type. The mode can be object or value. The presence of the obj
keyword means an object parameter, while its absence means a value parameter. The semantics of formal
function parameters are summarized in Figure 2. If the formal parameter is a value parameter, the actual
parameter can be an expression, but if it is an object parameter, the actual parameter should be an object. A
function body can read value and object parameters but can write only object parameters. A value parameter can
be passed only to a value parameter, while an object parameter can be passed either to a value or to an object
parameter.

Formal Parameter value object

Can be read ü ü
Can be written ü
Can be passed to a value parameter ü ü
Can be passed to an object parameter ü

Figure 2: Semantics of formal function parameters

Object parameters are passed by reference, while value parameters are passed by constant value. Because no
change will occur to a value parameter inside the body of a function, two implementations are possible. The
actual parameter can be passed either by value or by reference. For instance, scalar values are passed by value,
while large data structures are passed by reference to avoid copying them. However, copying may sometimes be
necessary and can be handled transparently by the compiler when the same object is passed to a value and to an
object parameter.

3.2 Hidden Parameters

Hidden parameters are formal type parameters, which are optionally specified in a function declaration. With
hidden parameters, a function has two sets of parameters: the hidden parameters and the formal function
parameters. Hidden parameters are enclosed by braces and are listed first. Formal parameters are enclosed by
parenthesis.

An example of a function with hidden parameters is shown below. The function swap is a polymorphic function
that exchanges two rows of a square matrix m of any size n and element type t, where n and t are hidden
parameters. We can access each row in matrix m by indexing the first dimension. For example, m[i] and m[j] are
the ith and jth rows, respectively.

Proceedings of the 8th International Conference on AI Applications, February 2000

6

function swap {n:integer,t:type}(obj m:array{n,array{n,t}}, i,j:integer) is
 obj row:array{n,t}
 -- swap row i with row j
 row := m[i]
 m[i] := m[j]
 m[j] := row
end -- function swap

A hidden parameter must be used in the type of at least one formal function parameter, or else it cannot be
inferred. Furthermore, a hidden parameter may be used in the body of a function as if it were a formal value
parameter. Hidden and formal value parameters are considered constants inside the body of the function and can
be used as actual parameters to parameterized types. The function swap uses n and t in the declaration of the
local variables.

As the name indicates, hidden parameters are truly hidden. They are not passed explicitly when a function is
called, but rather inferred by the type system when unifying the types of the actual parameters against the types
of the formal parameters. For example, consider the function CallSwap with calls to the above function swap.
Observe that the number of actual function parameters matches the number of formal function parameters, and
that the actual values of the hidden parameters are not passed explicitly. In the first call, the inferred value of n
is 10 and t is real. In the second call, the inferred value of n is 20 and t is array{10, real}. These values are
obtained by unifying the types of the actual parameters against the types of the formal parameters. The third call
results in a compile-time error since the type system is unable to unify the type of the first actual parameter
against the type of the first formal parameter. Matrix c has a different number of rows and columns.

function CallSwap() is
 obj a:array{10,array{10,real}}
 obj b:array{20,array{20,array{10,real}}}
 obj c:array{10,array{20,real}}
 swap(a,1,3)
 swap(b,0,4)
 swap(c,2,5) -- compile-time error
end

Hidden parameters are needed because they facilitate the development of polymorphic functions, such as the
above swap function. If hidden parameters were not allowed then additional formal parameters would be
required. For example, without hidden parameters the header of the function swap would be written differently
as shown below. When calling the new swap function, we now have to pass actual values for the formal
parameters n and t. Not only is this superfluous and awkward, it is also illegal. SIMPL does not permit the use
of type parameters as formal function parameters. The declaration of the new swap function results in a
compile-time error. Thus, SIMPL forces you to use hidden parameters when declaring or implementing
polymorphic functions.

function swap(n:integer, t:type, obj m:array{n,array{n,t}}, i,j:integer) is
 -- same as the body of the above swap function
end -- function

function CallSwap() is
 obj a:array{10,array{10,real}}
 swap(10,real,a,1,3)
end

3.3 Processing Polymorphic Functions

Parameterized polymorphic functions in SIMPL are not function generators such as the template function of
C++. Each function (whether monomorphic or polymorphic) has a unique translation and a unique place in the
symbol table and attribute space. This section presents the processing of function headers. Section 5 discusses
the translation of polymorphic functions. Consider now the swap function of the previous section. This function
has the following header:

function swap {n:integer,t:type}(obj m:array{n,array{n,t}}, i,j:integer)

The internal representation of the swap function header is shown in Figure 3. A function entry in an attribute
space specifies the number of hidden parameters. In this case there are two hidden parameters. The first hidden
parameter is an intpar (integer parameter) while the second one is a typevar (type variable). Following the
hidden parameters are the formal function parameters. The formal parameters are collectively called a tuple. A
tuple is an ordered list of elements of possibly different types. A tuple entry in an attribute space specifies the
number of elements. In this example there are three elements (or formal parameters). The first formal parameter
is an obj (object parameter) while the second and third parameters are val (value parameters). Each parameter
entry (whether obj or val) specifies its type. If the type of a formal parameter is an instance of a parameterized

Proceedings of the 8th International Conference on AI Applications, February 2000

7

type then a subtype entry is allocated in the attribute space. The subtype entry points to a parameterized type.
The entries that follow the subtype entry specify the actual type parameters. The result entry in an attribute
space specifies the result type of a function. If a function does not have a result type, a null pointer is used as the
value of the result entry.

Module Symbol Table Module Attribute Space

Name Attribute Tag Value
swap function 2

... ... intpar null

typevar null

Function Symbol Table tuple 3

n obj

t val @integer

m val @integer
i result null
j subtype @arrayIT
row ref

subtype @arrayIT

ref

Function Attribute Space ref

Figure 3: Internal representation of the swap function header

The symbol table of the swap function is also shown in Figure 3. Identifiers local to a function (hidden
parameters, formal parameters, local object and constant declarations) are placed in a function symbol table. In
Figure 3, the hidden parameters n and t, the formal parameters m, i, and j, and the local object row of the
function swap are placed in this function symbol table. The attributes of the hidden and formal parameters are in
the module attribute space, while the attribute of the local object row is placed in the function attribute space
(not shown in Figure 3). A function symbol table and its attribute space are recycled when the compiler finishes
the translation of a function.

Member functions declared in type interfaces are processed exactly like non-member ones. Consider the
interface of the type stack of Section 2.1. This interface can be written differently as shown below. The two
interfaces are semantically equivalent. The difference is syntactic only. Functions encapsulated in a
parameterized type use the formal type parameters as hidden parameters. These hidden parameters are
manifested when the function is declared outside the type interface. The first formal parameter of a function is
omitted when that function is encapsulated in a type interface. The first formal parameter of an encapsulated
function is always an obj parameter whose type is the encapsulating type.

interface stack is

type stack{n:integer,t:type} is
 function push(x:t)
 function pop():t
 function items():integer
end -- interface of type stack

end -- interface stack

interface stack is

type stack{n:integer,t:type}

function push {n:integer,t:type}(obj s:stack{n,t},x:t)
function pop {n:integer,t:type}(obj s:stack{n,t}):t
function items{n:integer,t:type}(obj s:stack{n,t}):integer

end -- interface stack

3.4 Basic Polymorphic Types, Operators, and Functions

Every programming language needs some basic types, operators, and functions upon which other types and
functions can be constructed. The SIMPL language defines four scalar non-parameterized core types and three
parameterized ones. The four scalar types are integer (32-bit signed), real (64-bit IEEE 754-1985 double-
precision floating-point standard), char, and boolean. In practice, we may need more than one integer and
floating-point types for space efficiency reasons. The char and boolean types are called enumeration types. All
enumeration literals are enclosed by single quotes to distinguish them from identifiers. The enumeration literals
for the boolean type are 'true' and 'false' (enclosed by single quotes). String literals are enclosed by
double quotes. Enumeration and string literals are case sensitive, while identifiers and keywords are not.

In addition to the four basic scalar types, SIMPL defines three parameterized core types: the reference type
ref{t}, and the two array types array{n, t} and array{t}. The reference type has a single parameter that specifies
the type of the target object being referenced. A reference object carries either the null address, or the address of
a dynamically allocated object. The statically sized array{n, t} has two formal parameters that specify the length
of the array and the type of its elements. All array objects start at index zero. Array objects of length zero are
allowed. Array objects of a negative length are rounded to zero. The dynamically sized array{t} has a single

Proceedings of the 8th International Conference on AI Applications, February 2000

8

parameter that specifies the array element type. The length is not specified. The new function is used to allocate
a dynamic array object of a given length.

Polymorphic functions require the existence of some basic polymorphic operators. SIMPL assignment and
equality operators are polymorphic and can be applied to any type t. Their interfaces are shown below. The
assignment operator copies all the bytes of an expression to an object of the same type t. The equality operators
(= and <>) compare two expressions byte by byte as long as their types are identical.

function := {t:type}(obj object:t, expression:t)
function = {t:type}(expr1,expr2:t):boolean
function <> {t:type}(expr1,expr2:t):boolean

The new functions shown below are also examples of core polymorphic functions. The first new function is used
to allocate a dynamic object of type t and returns its address of type ref{t} through the object parameter r. The
second new function is used to allocate a dynamic array of length n. A reference to the dynamic array as well as
its length n are then stored in the object parameter a.

function new {t:type}(obj r:ref{t})
function new {t:type}(obj a:array{t}, n:integer)

4 Static Type-Checking and Inferring Hidden Parameters

The body of a polymorphic function consists of object declarations, statements, and expressions. When
translated, local object declarations allocate storage on the run-time stack. Non-control statements and
expressions are calls to their respective functions and operators. For example, the translation of the following
assignment statement involves two calls to the index operator and one call to the assignment operator.

m[j] := m[i] Temp1 <- INDEX(m,i)
 Temp2 <- INDEX(m,j)
 ASSIGN(Temp2,Temp1)

To statically type-check the body of a polymorphic function is equivalent to say that all the calls generated by
the statements and expressions are valid calls. A function call is valid if we can unify the types of the actual
parameters against the types of the formal parameters. Therefore, the translation of a polymorphic function boils
down to calling a polymorphic function and inferring the hidden parameters.

The unification algorithm used to check the validity of a function call and inferring the hidden parameters is
shown below. The unify function has two parameters: formal and actual which represent the formal and actual
parameter types of a function. The type attref (attribute reference) represents the address (or index) of an
attribute entry in an attribute space. Thus, formal and actual are the addresses of attribute entries. The following
functions are defined on attribute references and are used in the unify function. The value v that can be stored in
an attribute entry must be either an integer value or a reference to an attribute entry.

tag(formal), Get the tag of the attribute entry pointed to by formal.
value(formal), Get the value of the attribute entry pointed to by formal.
setvalue(formal, v), Set the value of the attribute entry pointed to by formal to v.
formal+1 The address of the attribute entry that follows the entry pointed to by formal.

The unify function returns a boolean value. If it returns 'true' then successful unification was achieved.
Otherwise, unification is unsuccessful and the call cannot be made. As a side effect, the unify function defines
the hidden parameters. The null values of the hidden parameter entries are substituted with references to
attribute entries that define the actual values of hidden parameters for a given function call.

function unify(formal,actual:attref):boolean is
 obj i:integer := 1

 if tag(formal)='ref' then result := unify(value(formal),actual)
 elsif tag(actual)='ref' then result := unify(formal,value(actual))
 elsif tag(formal)='tuple' and tag(actual)='tuple' and value(formal)=value(actual) then
 result := 'true'
 while result and i <= value(formal) do
 result := unify(formal+i,actual+i)
 i := i+1
 end -- while
 elsif tag(formal)='obj' and tag(actual)='obj' then
 result := unify(value(formal,value(actual))
 elsif tag(formal)='val' and (tag(actual)='val' or tag(actual)='obj') then
 result := unify(value(formal),value(actual))
 elsif tag(formal)='typevar' and value(formal)='null' and
 (tag(actual)='type' or tag(actual)='subtype' or tag(actual)='typevar') then
 setvalue(formal,actual)

Proceedings of the 8th International Conference on AI Applications, February 2000

9

 result := 'true'
 elsif tag(formal)='typevar' and value(formal)<>'null' then
 result := unify(value(formal),actual)
 elsif tag(formal)='intpar' and value(formal)='null' and
 (tag(actual)='intlit' or tag(actual)='intpar') then
 setvalue(formal,actual)
 result := 'true'
 elsif tag(formal)='intpar' and value(formal)<>'null' then
 result := equiv(value(formal),actual)
 elsif tag(formal) = 'subtype' and tag(actual) = 'subtype' and
 value(formal) = value(actual) then
 result := 'true'
 while result and i <= value(value(formal)) do
 result := unify(formal+i,actual+i)
 i := i+1
 end -- while
 elsif tag(formal) = 'intpar' and (tag(actual) = 'iliteral' or
 tag(actual) = 'intpar' or tag(actual) = 'val') then
 setvalue(formal,actual)
 result := 'true'
 elsif tag(formal) = 'intpar' and value(formal) <> 'null' and
 (value(formal) = actual or (tag(value(formal) = 'iliteral' and
 tag(actual) = 'iliteral' and value(value(formal)) = value(actual))) then
 result := 'true'
 else
 result := 'false'
 end -- if
end -- function unify

function equiv(t1, t2: attref):boolean is
 if t1 = t2 then result := 'true'
 elsif tag(t1) = 'subtype' and tag(t2) = 'subtype' and value(t1)=value(t2) then
 result := 'true'
 while result and i<= value(value(t1)) do
 result := equiv(t1+i, t2+i)
 i := i+1
 end -- while
 elsif tag(t1) = 'ref' then
 equiv(value(t1), t2)
 elsif tag(t2) = 'ref' then
 equiv(t1, value(t2))
 elsif tag(t1) = 'iliteral' and tag(t2) = 'iliteral' and value(t1) = value(t2) then
 result := 'true'
 else
 result := 'false'
 end -- if
end -- function equiv

The following example illustrates the operation of the unification algorithm. The headers of functions f and g are
first processed and entered in the module attribute space as shown in Figure 4. The local identifiers of function g
are entered in g's symbol table. The attributes of local objects b and c are entered in g's attribute space. To apply
function f on the tuple (a,b), we first enter this tuple in the attribute space of function g (the caller function). The
attribute values of the hidden parameters of function f are initialized to null.

function f{n:integer,t:type}(obj x:array{n,t}, y:t):t

function g{n:integer,t:type}(obj a:array{n,array{n,t}}) is

 obj b:array{n,t}
 obj c:t
 b := f(a,b) -- ok
 c := f(a,c) -- error

end -- callmult

The unify function is called by passing the address of the formal tuple of function f (in the module attribute
space) to formal and the address of the actual tuple (in g's attribute space) to actual as shown in Figure 4. The
unify function starts by unifying the type of the first actual parameter against the type of the first formal
parameter. The result of this unification is that the attribute value of the first hidden parameter of f becomes the
address of the first hidden parameter of g and the attribute value of the second hidden parameter of f becomes
the address of the subtype entry array{n,t} as illustrated by the dashed lines in Figure 4.

The unify function then unifies the type of the second actual parameter against the type of the second formal
parameter and validates that both are subtype array{n, t}. This is required because of the constraint set in
function f that the type of y and the element type of the array x should be identical. Therefore, the unify function

Proceedings of the 8th International Conference on AI Applications, February 2000

10

returns 'true' for the first call. However, it returns 'false' for the second call because it is unable to unify the type
of actual parameter c (typevar t) against the type of the formal parameter y (subtype array{n,t}).

Module Symbol Table Module Attribute Space
f function 2
g intpar

typevar
Function g Attribute Space tuple 2
obj obj
subtype @arrayIT val
ref result
ref subtype @arrayIT
obj ref
tuple 2 ref
ref function 2
ref intpar null
... ... typevar null

tuple 1

Function g Symbol Table obj
n result null
t subtype @arrayIT
a ref
b subtype @arrayIT
c ref

ref

(a,b)

formal →

← actual

Figure 4: Illustrating the unification algorithm

After a successful unification, we obtain the attribute values of the hidden parameters of the callee function.
These values are important for translation. We also get the result type for further use. For example, we need the
result type of f(a, b) (which is subtype array{n,t}) to validate the call to the assignment operator as well as for
translation.

5 Translating Polymorphic Functions with Hidden Parameters

To have a unique translation for a polymorphic function with hidden parameters, we must have a unique
translation for the basic polymorphic operators. This is because a polymorphic function, such as the swap()
function of Section 3.2, is written using basic polymorphic operators, such as the assignment operator.
Fortunately, a unique translation for the basic polymorphic operators exists.

Let SIZEt be the size of type t (in bytes). There can be a unique translation for each of the basic polymorphic
operators and functions as long as SIZEt is passed as a hidden parameter. The assignment operator needs to
know SIZEt to determine the number of bytes to be copied. The equality operators (= and <>) need SIZEt to
determine the number of bytes to be compared. The new function needs SIZEt to determine the number of bytes
to be allocated. The index operator [] needs SIZEt to calculate the address of the indexed element. Observe that
the actual type of t is not important in this discussion. SIZEt is all that is required. In general, a polymorphic
function with a type variable as a hidden parameter, needs to know the size of the type variable for each function
call. This size, which is equal to the size of the actual parameter, can be obtained for each function call after
inferring the hidden parameters.

Consider the translation of the polymorphic assignment and the array index operators. The translated functions
ASSIGN and INDEX are shown below. The hidden parameters become formal parameters of the translated
functions. SIZEt is passed as an integer parameter. The type address means a virtual address in the address space
of a process. The parameters of a translated function are normally passed through registers. Integer and address
parameters use integer registers. I distinguish them here for clarity. User-defined types vanish when a function is
translated.

function ASSIGN (SIZEt:integer, object:address, expression:address) is
 -- copy SIZEt bytes from expression to object
 -- account for the possible overlap between object and expression
end

function INDEX (n:integer, SIZEt:integer, a:address, i:integer):address is
 if i >= 0 and i < n then
 result := a+i*SIZEt
 else
 Index is Out of Range
 end -- if
end

Proceedings of the 8th International Conference on AI Applications, February 2000

11

Now consider the translation of the swap function of section 3.2. This function has 2 hidden parameters n and t
and 3 formal parameters m, i, and j. All become formal parameters in the translated function. The body of the
swap function had one local object row. The size of row is calculated by calling the SIZE@arrayIT function
with actual parameters n and SIZEt. This is because row is of type array{n,t}. We then allocate space for row on
the stack by modifying the stack pointer. This modification to the stack pointer is done after the function swap is
called (i.e., after allocating a frame for the temporaries, saved registers, return address, and other known fixed
size local objects). The indexing and assignment operations are then translated into calls to the polymorphic
INDEX and ASSIGN functions. These functions require hidden parameters, which are inferred by the unification
algorithm. Observe that actual integer parameters are passed for hidden parameters (which are no longer hidden)
in the assignment and the indexing operator calls.

function swap(n:integer, SIZEt:integer, m:address, i:integer ,j:integer) is
 row :address
 Temp1:integer
 Temp2:address
 Temp3:address

 Temp1 <- SIZE@arrayIT(n,SIZEt) -- size of array{n,t}
 row <- PUSH(Temp1) -- modify the stack pointer
 Temp2 <- INDEX(n,Temp1,m,i) -- compute address of m[i]
 ASSIGN(Temp1,row,Temp2) -- row := m[i]; copy Temp1 bytes
 Temp3 <- INDEX(n,Temp1,m,j) -- compute address of m[j]
 ASSIGN(Temp1,Temp2,Temp3) -- m[i] := m[j]; copy Temp1 bytes
 ASSIGN(Temp1,Temp3,row) -- m[j] := row; copy Temp1 bytes
 POP(Temp1) -- restore the previous stack pointer
end

6 Conclusion and Further Research

This paper has shown the importance of hidden parameters to polymorphic functions. It has also demonstrated
that polymorphic functions can have a unique translation, provided that hidden parameters are inferred and
passed properly. Type information was not required to translate a polymorphic function. The size of a type
variable is all that was required. At this point, I would like to caution the reader that this statement is not always
true and type information is sometimes needed at runtime. This is the case if function specialization is permitted
in a programming language. Let me clarify this point.

This paper has focused only on one kind of polymorphism, namely parametric polymorphism. Neither
overloading nor inheritance was discussed to limit my scope. Overloading of polymorphic functions adds a
second dimension to a polymorphic language. With overloading, one can overload the assignment operator to
allow the assignment of a real to a complex, or a value of type t to all the elements of an array of type array{n,t}
as shown below:

function := (obj x:complex, y:real)
function := {n:integer,t:type}(obj x:array{n,t}, y:t)

A special case of function overloading is called function specialization. An overloading function is said to be a
specialization of an overloaded function, if the type of the overloading function parameters is a subtype of the
overloaded function parameters. For example, one may wish to overload the assignment operator for list{t}
parameters to handle the appropriate copying of lists. This overloading is called specialization because the type
of the specialized function parameters (list{t}, list{t}) is a subtype of the overloaded function parameters (t, t).
Similarly, the third function is a specialization of both the second and first functions.

function := {t:type}(obj x:t, y:t)
function := {t:type}(obj x:list{t}, y:list{t})
function := (obj x:list{real}, y:list{real})

Overloading with specialization is more powerful in a programming language but much more difficult to
implement than overloading without specialization. There are essentially two problems to solve:

• We need to identify and implement the rules for unambiguous overloading.
• We need to bind function calls to function addresses.

An example of ambiguous overloading is given below. If function f is called with an actual parameter of type
array{100, real} then both functions can apply. This is because the types array{n, real} and array{100, t} are
not related but have the common subtype array{100, real}. This ambiguous overloading can be eliminated by
either dropping one of the two functions, or by introducing a third function f with parameter type array{100,
real}.

Proceedings of the 8th International Conference on AI Applications, February 2000

12

function f {n:integer}(obj x:array{n,real})
function f {t:type} (obj x:array{100,t})

A more serious problem with function specialization is that we cannot always determine statically at compile
time the address of a called function. In other words, it is not always possible to statically bind a function call to
a function address. Type information is needed at runtime to achieve dynamic or late binding. The following
example clarifies this problem. Function g calls function f. If x is of an array type, the second function f should
be called. Otherwise, the first one should be called. The difficulty here is that the specialized (second) function f
can be defined in a different module after function g has been compiled. Other specialized functions of f can be
defined elsewhere. Therefore, SIZEt is no longer sufficient as a hidden parameter and type information is
required when function specialization is permitted in a programming language. The problem of overloading with
specialization is currently being investigated and will be addressed in depth in a separate paper.

function f {t:type}(obj x:t)
function f {n:integer,t:type}(obj x:array{n,t})

function g {t:type}(obj x:t) is
 ...
 f(x)
 ...
end

References

[Appel 98] A. Appel, Modern Compiler Implementation, Cambridge University Press, 1998.

[Cardelli 97] L. Cardelli, "Type Systems", Handbook of Computer Science and Engineering, Chapter 103,
CRC Press, 1997.

[Cardelli 92] L. Cardelli, J. Donahue, L. Glassman, M. Jordan, B. Kalsow, G. Nelson, "Modula-3 Language
Definition", ACM Sigplan Notices, vol. 27, no 8, August 1992, pages 15-43.

[Cardelli 85] L. Cardelli and P. Wegner, "On Understanding Types, Data Abstraction, and Polymorphism",
Computing Surveys, vol. 17, no 4, pages 471-522, December 1985.

[Cardelli 84] L. Cardelli, "Compiling a Functional Language", 1984 Symposium on LISP and Functional
Programming, 1984, pages 208-217.

[Harper 95] R. Harper and G. Morrisett, "Compiling Polymorphism using Intensional Type Analysis", 22nd
ACM Symposium on Principles of Programming Languages, 1995, pages 130-141.

[Ichbiah 79] J. Ichbiah, et al., "Rationale for the Design of the ADA Programming Language", ACM
Sigplan Notices, vol. 14, no 6, June 1979

[Milner 89] R. Milner, M. Tofte, and R. Harper, The definition of Standard ML, MIT Press, 1989.

[Mudawwar 98] M. Mudawwar, "SIMPL: Language Definition", Technical Report, Computer Science
Department, The American University in Cairo, June 1998.

[Leroy 92] X. Leroy, "Unboxed Objects and Polymorphic Typing", 19th ACM Symposium on Principles
of Programming Languages, 1992, pages 177-188.

[Shao 95] Z. Shao and A. Appel, "A type-based compiler for standard ML", 1995 ACM Conference on
Programming Language Design and Implementation, pages 116-129.

[Skansholm 97] J. Skansholm, Ada 95 From the Beginning, Addison-Wesley, New York, 1997.

[Stroustrup 97] B. Stroustrup, The C++ Programming Language, 3rd edition, Addison-Wesley, 1997.

[Stroustrup 88] B. Stroustrup, "Parameterized Types for C++", USENIX C++ Conference, Denver, October
1988.

[Thompson 95] S. Thompson, Miranda: the Craft of Functional Programming, Addison-Wesley, Wokingham,
1995.

[Wirth 85] N. Wirth, "Programming in Modula-2", Texts and Monographs in Computer Science,
Springer-Verlag, Germany, 1985.

