
Proceedings of the ISCA 12th International Conference on Parallel and Distributed Computing Systems

506

Multiway Channels in Interconnection Networks*

Muhammed F. Mudawwar

Computer Science Department
The American University in Cairo

mudawwar@aucegypt.edu

* This work is supported by a research grant from the American University in Cairo.

Abstract

This article introduces the concept of a multiway channel, a
physical channel shared by a fixed number of routers and
nodes. A router designed around the concept of a multiway
channel interfaces two channels only, irrespective of the
network topology. This has two immediate advantages: The
same router can be used to build networks with different
dimensionalities or topologies and physical channels can be
very wide (typically 128-bit-data wide). This is to be
contrasted with state of the art wormhole routers, designed
for 2D and 3D networks, which typically have 8-bit or 16-
bit data links. The design of a new wormhole router, based
on the concept of multiway channel, is detailed in this
paper. The performance of networks, that use multiway
channels, is evaluated. The results are very encouraging and
promise a new line of research.

Keywords: multiway channel, wormhole router,
interconnection networks, router architecture.

1. Interconnection Networks

The interconnection network is often the critical part of a
massively parallel computer because application
performance is very sensitive to network latency and
throughput. An interconnection network is characterized by
its topology, routing, and flow control. The topology is the
arrangements of nodes and channels into a graph. Routing
specifies how a message chooses a path in this graph. Flow
control deals with the allocation of channel and buffer
resources to a packet as it traverses this path [Dally 92].

Topologies that have been widely used in recent parallel
computers include two- and three-dimensional meshes and
tori. The 2D and 3D interconnection topologies can be
found in Intel Paragon [Paragon 91], Stanford DASH
[Lenoski 92], Stanford FLASH [Kushkin 94], MIT Alewife
[Agarwal 90], MIT J-Machine [Noakes 93], MIT Reliable
Router [Dally 94], Cray T3D [Oed 93] and Cray T3E
[ScottThorson 96]. Other popular topologies that are less
commonly used are the hypercube and the fat tree.

The architecture of a generic wormhole router [Duato
97] is shown in Figure 1. It includes input and/or output
buffers for storing flits (flow control units). Each input
buffer can also be subdivided into several virtual channel
buffers. A crossbar switch is used for connecting input

buffers to output buffers. A routing and arbitration unit
implements the routing algorithm and selects the output link
for an input message. If multiple messages simultaneously
request the same output link, this component must provide
for arbitration between them. Link controllers (LC) are used
to control the flow of message flits across a physical
channel. The processor injection and ejection channels
implement a physical channel interface from/to the local
processor.

P
hy

si
ca

l I
np

ut
 C

h
an

ne
ls

Switch

Routing &
Arbitration

LC LC

LC

Input Queues Output Queues

P
hy

si
ca

l O
ut

p
ut

 C
h

an
ne

ls

From / To Local Processor

LC

LC

LC

LC

LC

LC

LC

Figure 1: Generic wormhole router used in k-ary 2-cube networks

Router elements in the k-ary n-cube network have many
dedicated input and output physical channels. For instance,
routers used in 2D networks require four input and four
output channels for communication with adjacent routers, as
well as a fifth input and output channel for communication
with the local processor. Routers used in 3D networks
require six input and six output channels for communication
with adjacent routers. As the dimensionality of the network
increases, the number of input and output physical channels
also increases. Since the number of I/O pins in router chips
are limited by the packaging technology, the increase in the
number of physical channels will decrease the number of
wires and thus the bandwidth of a single physical channel.
State of the art wormhole routers are designed for low
dimensional networks (2D or 3D) with physical channels
that typically are 8-bit-data or 16-bit-data wide.

In this study, I am proposing a new concept called a
multiway channel. The idea of a multiway channel is that a
fixed number of routers and nodes can share the same
physical channel. Routers are designed to interface two
physical channels only, irrespective of the topology of the

Proceedings of the ISCA 12th International Conference on Parallel and Distributed Computing Systems

507

network. This is not possible with current wormhole routers.
The concept of the multiway channel is detailed next.

2. The Multiway Channel Concept

A multiway channel is a physical channel shared by a fixed
number of routers and nodes. Only one router or node can
drive the physical channel at any given clock cycle. We call
that router or node a driver. However, all routers and nodes
connected to a multiway channel can concurrently monitor
the channel. Thus, at a given clock cycle, exactly one of the
routers or nodes acts as a driver but all of them act as
monitors of the physical channel.

An example of a two-dimensional torus with 16 nodes, 32
routers, and 16 5-way channels is shown in Figure 2a. Each
5-way channel is a set of wires connecting 4 routers to a
node. Each channel is identified by its y and x coordinates as
Cy,x. A node connected to channel Cy,x is identified as
Ny,x. Routers connected to channel Cy,x are identified as
Xy,x and Xy,x-1 when they are along the X dimension, and
Yy,x and Yy-1,x when they are along the Y dimension.

X0,0 X0,1 X0,2

Y0,0

X1,0 X1,1

X2,0 X2,1

X3,0 X3,1

Y0,1

Y1,0 Y1,1 Y1,2

Y2,0 Y2,1N2,0

N1,0

N0,0

N3,0Y3,0 Y3,1

N0,1

N3,1

N2,1

X0,3

N1,1

X1,2 X1,3

N0,2 N0,3Y0,2 Y0,3

N1,2 N1,3Y1,3

Y2,2

X2,2 X2,3

N2,2 N2,3Y2,3

Y3,2

X3,2 X3,3

N3,2 N3,3Y3,3

Figure 2a: 2D Torus with 16 nodes, 32 routers, and 16 5-way channels

The structure of a multiway channel is shown in Figure 2b.
A channel consists of data and control lines. The control
lines include the arbitration lines used for the selection of
the channel driver for the next clock cycle. The same wires
are connected to all router and node interfaces. Although
only one node is shown connected to a channel, it is also
possible to have several nodes.

N
od

e
N y

,
x

R
ou

te
r

Y y
-1

,
x

R
ou

te
r

Y y
,
x

Router Xy, x-1 Router Xy, x

Data + Ctrl X
+

 D
ire

ct
io

n

X-

X+

X
-

 D
ire

ct
io

n

Y+ Direction

Y-

Y+

Y- Direction

X
+

 D
ire

ct
io

n

X-

X+

X
-

 D
ire

ct
io

n

Y+ Direction

Y-

Y+

Y- Direction

Channel Cy, x

Node Interface

Eject Inject

E

I

Figure 2b: Structure of a Multiway Channel

2.1 Modified Network Topologies

A new spectrum of network topologies can be obtained by
exchanging the role of routers and channels in classical
networks. Popular topologies include multi-dimensional
meshes, tori, hypercubes, and trees. Examples of two
modified network topologies using the multiway channel
concept are shown in Figure 3.

R

R

R

R

R
R

R

R

R
R

RR

NN

N N

NN

N N

RR

NNNN

RR

NNNN

R R

Figure 3: 3D cube with 4-way channels and a tree with 3-way channels

Routers based on the concept of multiway channels have
two channel interfaces and are connected to two physical
channels only, regardless of the network topology. An
immediate advantage of this approach is that the width of a
physical channel can be very wide. For a given packaging
technology, say about 300 I/O pins, a router can be designed
to interface physical channels that are 128-bit-data wide.
This is 8 times the width of physical channels used in state
of the art wormhole routers, such as the Intel Teraflops
router [Carbonaro 96], the Cray T3E router [ScottThorson
96], and the MIT Reliable Router [Dally 94]. With extra-
wide channels, a network can achieve higher throughput and
lower message latency.

Proceedings of the ISCA 12th International Conference on Parallel and Distributed Computing Systems

508

advantage of the multiway channel concept is that a router
can be designed to operate under networks with different
dimensionalities.

A second immediate advantage of using multiway channels
is that the same router chip (if carefully designed) can be
used to implement different topologies. This is because
routers are connected to two physical channels only. For
instance, the same router chip can be used to implement
low-dimensional and high-dimensional networks. This is
not possible with current wormhole routers.

2.2 Message Format

Message routing techniques such as store-and-forward and
virtual-cut-through can be used in networks with multiway
channels. However, I will restrict my discussion to the
wormhole technique because of its low buffering
requirement and good performance.

In a wormhole-routed network, a message is divided into
flow control units, called flits [DallySeitz 87]. A message
consists of a header flit followed by an arbitrary number
(possibly zero) of body flits, followed by a tail flit. A tag,
identifying the kind of flit, is generated at the sending node
and transmitted with each flit. Four tags are used: Header
(H), Body (B), Tail (T), and Invalid (I). This is depicted in
Figure 4.

WAY DEST LEN Other Control Info

DATA

DATA

DATA

. . .

B

B

B

T

H

Tag Very Wide Flit

Tag Meaning

I Invalid

H Header

B Body

T Tail

DEST = Relative Destination
= Zoffset, Yoffset, Xoffset

Figure 4: Message Format

The header flit carries the relative destination address, the
routing way, and the length of a message. The relative
destination address, DEST, encodes the destination offsets
along the different dimensions. Different encodings can be
used with different topologies. The routing way, WAY, is
defined at each router a header flit reaches along its path
from the source node to the destination node. The routing
way is a number between 0 and W-1 that represents the
direction that a router has chosen for a header flit, where W
is the total number of ways for a multiway channel. The
length field, LEN, encodes the number of data flits that
follow the header flit. This number should be greater than
zero because a message must have at least a tail flit. If l bits
are used to encode the length of a message then the number
of data flits that can follow the header is between 1 and 2l
(2l is encoded as zero). The length field is redundant
because the tag already identifies all the flits of a message.
However, the length field can be used to allocate storage at
the destination node as soon as the header flit is received.

The length field can be also used to ensure the correctness
of the tags and to establish a limit on the length of a
message.

Additional control information can be carried by a header
flit. For instance, a routing algorithm may need extra
information to be transferred in the header flit, such as the
dimension reversal number, DR, used in some routing
algorithms [DallyAoki 93]. Other control information can
also include the address and context of a thread to be
executed at the destination node when a message header flit
is received.

3 Router Architecture

The internal architecture of a router is depicted in Figure 5.
A router has two channel interfaces identified as the positive
and negative sides of a router. In addition, we need to
identify whether a router is along the X dimension, Y
dimension, etc. The dimensionality of a router, DIM, is
hardwired through external pins. The dimensionality of a
router is combined with the polarity of a channel interface to
obtain a unique identification for a channel interface across
a multiway channel. The channel interface identification
defines also its directiona-lity. It is used for routing and for
physical channel arbitration. The directionality of a channel
interface means that the interface accepts flits routed in its
direction. For instance, a channel interface identified as X+
can accept message flits going in the X+ direction. In the
case of a processing node, we need also to uniquely identify
its channel interface.

DATA

&TAG

STAT

STAT_out

VC_out

TAG_out &

DATA_out

FreeVC

TAG_in
 VCS

STAT_in

STAT_out

Routing Logic

TAG_in & DATA_in

DIM

DATA

&TAG

C
ha

n
ne

l I
nt

er
fa

ce
 (

D
IM+

 d
ir

ec
tio

n) TAG_out &

DATA_out

DRV

ARB_out

Channel
Arbitration

OE

ARB_in

VC_in

V
C

 A
rb

itr
at

io
n

C
ha

n
ne

l I
nt

er
fa

ce
 (

D
IM-

 d
ir

ec
tio

n)

ARB

VC

STAT

CLK

ARB

VC

CLK

VC Allocation
& Mapping

FreeVC

TAG_in

 VCS

STAT_in
Routing Logic

TAG_in & DATA_in

DRV

ARB_out

Channel
Arbitration OE

ARB_in

VC_in

V
C

 A
rb

itr
at

io
n

VC Allocation
& Mapping

VC_out

Figure 5: Internal Architecture of a Router

A physical channel consists of data, control, and arbitration
lines. The DATA lines are used to carry one flit of a message
at a time. The TAG lines are used to carry the tag of a flit.
The VC lines are used to carry the Virtual Channel number
of a flit. The STAT lines are used to carry W allocation status
of the virtual channel buffers in the W routers and nodes
attached to a multiway channel. The ARB lines are used to
carry the W requests of the W channel drivers. A channel
arbitrator uses the ARB lines to determine the next channel
driver for the next clock cycle. Finally, the CLK input is
used to synchronize the operation of a multiway channel.
Each multiway channel has its own clock. This means that

Proceedings of the ISCA 12th International Conference on Parallel and Distributed Computing Systems

509

two different clocks drive the two sides of a router, as
shown in Figure 5.

A router includes two sets of the following components:
channel arbitrator, routing unit, virtual channel allocation
and mapping unit, and virtual channel buffers. The channel
arbitrator is used to determine the next channel driver. The
routing logic implements the routing algorithm and
determines the routing way of a header flit. The virtual
channel buffers are used to buffer the flits of different
messages. The virtual channel allocation and mapping
manages the allocation of virtual channels and maps the
virtual channel number of the input flits to its internal
buffers. Observe that no crossbar switch is required. This
simplifies the implementation of a router and makes it
simpler and faster.

3.1 Physical Channel Arbitration

Recall that a multiway channel can have a maximum of W
routers and nodes driving it. Only one router or node should
be driving the channel at any given clock cycle. The
physical channel arbitrator ensures exclusive access to the
channel. Channel arbitration is a distributed hardware
algorithm. All channel drivers apply the same algorithm,
and thus the same decision is reached by all. The channel
arbitrator must be fair to avoid starvation. Thus, it cannot
assign fixed priorities to drivers.

The channel arbitrator determines which router (node) is
driving a multiway channel at the current clock cycle and
which router (node) will be driving the channel at the next
cycle. At the beginning of each clock cycle, W request
outputs are generated by the W drivers of a given channel.
These W requests are then input to all the channel arbitrators
through the arbitration lines. The channel arbitrators
concurrently determine the next driver, based on the current
driver and the input requests. The arbitration algorithm is a
finite state machine as shown in Figure 6a. The current state
of the FSM is the current driver and the transitions are based
on the W requests: R0, R1, ..., and RW-1, issued by the W
drivers of a channel at a given clock cycle (the ARB lines in
Figure 5 hold the W requests). The double-circled state in
Figure 6a is the starting state on hardware reset.

An implementation of the FSM of the channel arbitrator is
the block diagram of Figure 6b. In this diagram, DRV is a
register holding the number of the current driver and
Next_DRV will be the driver number during the next clock
cycle. ARB_in are the W input requests:

1210 ,,,, RRRR W �− that are right rotated so that 1R
appears as the least significant bit, 2R as the second least
significant bit, and 0R as the most significant bit. RR is a
combinational circuit that does right rotation on the ARB_in
bits by the current value of DRV. LS1 is another
combinational circuit that returns the address of the least
significant bit whose value is 1. The address of the least
significant bit is 1 (not 0), the address of the second least

significant bit is 2, and the address of the most significant
bit is 0 (not W-1). If no request is issued (i.e., all the request
bits are zeros), LS1 returns 0. The address of the least
significant 1 is then added to DRV to obtain Next_DRV. The
diagram of Figure 6b is effectively an implementation of the
following equation:

Next_DRV = LS1(ARB_in RR DRV) + DRV MOD W

DRV0

DRV2

DRVW-1

121 R R R −W�

1310 R R R R −k�

120 R R R −W�

1310 R R R R −W�

210 R R R

143 R R R −W�

Ri is a request from DRVi

0R
1R

121 R R R −W�

120 R R R −W�

DRV1
10 R R

130 R R R −W�

2R

21 R R

Figure 6a: FSM of the Channel Arbitrator

ARB_in

1210 RRRR W �−

W
bits

 W2log

bits

 W2log
bits

DRV

+
(mod W)

Clk

Next_DRV

DRV

RR

LS1

Figure 6b: Implementing the Channel Arbitrator

Consider an 8-way channel with ARB_in = R0 R7 R6 R5 R4
R3 R2 R1 = 10001011 and with DRV = 4 during the current
cycle. Then, 10001011 RR 4 = 10111000 and
LS1(10111000) = 4. Therefore, Next_DRV = 4+4 MOD 8 =
0. This is the expected answer, because R0 is the first non-
zero request that appears after R4 (R5 = R6 = R7 = 0).

A physical channel arbitrator generates an Output Enable
signal (OE in Figure 5) when the current driver number
DRV is equal to the driver identifier of that channel
interface. The driver identifier is either DIM+ or DIM−,
where the dimensionality, DIM, of the router is supplied

Proceedings of the ISCA 12th International Conference on Parallel and Distributed Computing Systems

510

directly through external pins. Since the driver identifier is
unique in each driver of a given physical channel, the OE
signal will be 1 in exactly one driver (router or node) at any
given time. When the output is enabled, the channel
interface puts the DATA_out, TAG_out, and VC_out signals
on the physical channel. The channel interface uses three-
state buffers to drive the physical channel.

Other approaches for physical channel arbitration do exist,
but I believe that my approach is simple and fast. I should
emphasize that physical channel arbitration and flit transfer
are completely overlapped during a given clock cycle. No
cycles are wasted just for channel arbitration. The number
of ARB lines in a multiway channel should be W. This
number can be reduced by half if only W/2 sources can
request the channel in a given clock cycle.

3.2 Virtual Channels

Virtual channels allow the simultaneous multiplexing of
different messages across a physical channel on a flit-by-flit
basis. Virtual channels were originally introduced to solve
the problem of deadlock in wormhole-routed networks.
However, they are also used to reduce message latency and
improve network throughput [Dally 92].

A virtual channel consists of a buffer that can hold one or
more flits of a message and associated state information.
Several virtual channels share the bandwidth of a multiway
channel. Shown in Figure 5 are three virtual channel buffers
per direction. However, a relatively large number (8 or 16)
of virtual channel buffers can be supported quite easily.

When more than one virtual channel buffer exists per
direction, a virtual channel arbitrator selects the next non-
empty virtual channel buffer to drive the physical channel.
To be fair and to avoid starvation, the virtual channel
arbitrator uses a hardware algorithm, similar to one of the
physical channel arbitrator, to select the next non-empty
virtual channel buffer. However, in the presence of a header
flit, the virtual channel arbitrator gives the header flit a
higher priority if it has been successfully routed. Routing of
header flits is discussed in Section 4.1.

3.3 Virtual Channel Allocation

Each virtual channel buffer has associated state information.
The state information includes the allocation status (i.e., free
or allocated), the current number of flits in the buffer (i.e.,
the used part of the buffer), the driver number, and the
driver virtual channel number. When a header flit is
received, a new virtual channel buffer is allocated. When the
tail of a message is successfully transmitted, its virtual
channel buffer is freed.

To efficiently utilize a multiway channel, the status of the
virtual channel buffers in the W directions across the
channel should be known to all drivers. The STAT_out line
in Figure 5 represents the status of all virtual channel

buffers in a given direction. STAT_out is 1 when at least one
of the virtual channel buffers is free. It is 0 when all the
virtual channel buffers are allocated. The STAT_out lines of
the W interfaces across a mutliway channel are collectively
called the STAT lines as shown in Figure 5. The W STAT
lines are then fed as input (STAT_in) to all the W drivers of a
multiway channel. The routing logic uses the W STAT_in
lines to select a routing way for a header flit, as will be
discussed next.

4 Routing

Routing in networks that use multiway channels is different
than routing in networks that use dedicated point-to-point
channels. In a conventional router with multiple input and
output channels, routing of a header flit is done internally
inside the router. The routing logic decides which output
channel (physical and virtual) to select based on the
availability of the output channels and on the destination
address in the header flit. The routing logic also controls a
crossbar switch that establishes simultaneous paths between
input and output channels.

Routing across a multiway channel is a distributed hardware
algorithm, done simultaneously by all the routers and nodes
that are connected to a physical channel. Only one router
(node) will accept an injected flit, while all other routers
(nodes) will reject it. If the injected flit is invalid (with tag I)
then all routers and nodes will reject it and nothing takes
place. If the injected flit is valid (header, body, or tail) and
has been accepted then the receiving router (node)
acknowledges the transfer of this flit by driving the tag lines
back to invalid. Thus, the tag lines are used to implement
the handshaking protocol.

4.1 Routing a Header Flit

Routing a header flit is to determine a routing way for the
flit. The routing way is determined based on the destination
address, stored in the header, and on the status of the virtual
channels in the W directions. If the routing logic (see Figure
5) can successfully determine a routing way for which at
least one of the virtual channel buffers is free then this
routing way is stored in the header flit as shown in Figure 4.

When a driver injects a header flit into a multiway channel,
it also injects the driver's virtual channel number of that
header flit. The routing way, encoded in the header flit, is
compared with the directionality of all the channel
interfaces across a multiway channel. Only one channel
interface, whose directionality is equal to the routing way,
will accept the header flit and all the other interfaces will
reject it. The TAG_in bits will be H (Header) in one router
(or node interface) and will be I (Invalid) in all other routers
and node interfaces.

Once a header flit is accepted, the virtual channel allocation
and mapping unit will allocate a new virtual channel buffer

Proceedings of the ISCA 12th International Conference on Parallel and Distributed Computing Systems

511

for this header flit (TAG_in = H). This is shown in Figure 7.
In this Figure, A is the allocation bit (0=Free and
1=Allocated), Drv is the driver's number, and VC is the
driver's virtual channel number. There should be at least one
free virtual channel. Otherwise, the transfer of the header flit
will not be acknowledged. The virtual channel allocation
and mapping unit stores the driver's number (supplied by the
physical channel arbitrator) and the driver's virtual channel
number in the allocated entry. The allocated virtual channel
number is then used to select the virtual channel buffer
(VCS lines). The driver does not (and need not) known the
virtual channel number of the allocated buffer.

VC_in = 2 VCS = 1

Drv = Y+

VC = 2

Way = X+

X
+

 d
ir

ec
tio

n

TAG_in & DATA_in

TAG_in = H
TAG = H

A Drv VC

0 1
1 0 1 Y+ 2
2 0

3 0

Physical Channel
Arbitrator

Virtual

Channel

Buffers

Figure 7: Allocating a virtual channel for a header flit

4.2 Routing a Body or a Tail Flit

When the tag of a flit on a multiway channel is H (Header),
the Way encoded in the first few bits of the header flit will
guide its routing. When the tag is B (body) or T (tail), all
virtual channel allocation units across a multiway channel
will lookup their tables concurrently. The allocation tables
are searched by content for an allocated entry that holds the
driver's number, supplied by the physical channel arbitrator,
and the driver's virtual channel number given at the VC
lines. This entry should be found in exactly one table (where
it was previously allocated). Once the entry is found, the
driver's virtual channel number (VC_in) is mapped to the
allocated number. The allocated virtual channel number is
then placed on the VCS lines to select the appropriate virtual
channel buffer. Thus, the virtual channel allocation unit,
used to allocate new virtual channel buffers for header flits,
is also used as a mapping unit for body and tail flits. If the
mapped virtual channel buffer is not full, the transfer of the
body (or tail) flit is acknowledged.

4.3 Routing Algorithms

Networks with multiway channels can use the same routing
algorithms developed for networks with dedicated (i.e.,
point to point) channels. The routing algorithm can be
deterministic, such as the XY routing used in 2D meshes
and the Dimension-Order routing used in high-dimensional
meshes and hypercubes. It can be partially adaptive such as
the Planar Adaptive routing proposed by Chien and Kim
[ChienKim 92], or the West-First and other similar
algorithms that use the Turn Model of Glass and Ni
[GlassNi 92]. The routing algorithm can be fully adaptive,

such as routing based on the concept of Virtual Networks
[LinderHarden 91] or based on the concept of Dimension
Reversal [DallyAoki 93].

The routing algorithm can also be described as being
minimal or non-minimal. It should be deadlock and
livelock-free. The routing logic, shown in Figure 5,
implements the routing algorithm. It determines the routing
way for header flits, based on the routing information
(destination address and possibly other information) stored
in the header flit and the allocation status of the virtual
channels in all directions (the W-bit STAT_in input in Figure
5).

5. Performance Evaluation

To measure the performance of interconnection networks
with multiway channels, I have simulated a number of 2D
mesh networks varying the length of messages, the number
of virtual channels, the routing function, and the injection
rate.

The simulator is a C++ program that simulates
interconnection networks at the flit level. A flit transfer
between two adjacent routers, over a multiway channel, is
assumed to take place in one clock cycle. The network is
simulated synchronously, moving all flits that have been
granted channels in one clock cycle and then advancing time
to the next cycle. The simulator can be configured to
support different network sizes, different number of virtual
channels and buffer sizes, different routing algorithms, and
different traffic patterns. At the moment, the only topology
supported is a 2D mesh because it is the representative of
many parallel machines. This is the topology used in my
simulation results. However, I am currently writing a newer
version of the simulator that supports multi-dimensional
meshes, tori, and multi-level trees. The impact of network
topology on performance will be studied in another paper.

Simulations were run using dimension-order deterministic
routing and also the turn model (west-first routing). Latency
is measured by applying a constant rate source at each node
and measuring the time from the injection of the header flit
of a message at a source node until the ejection of the tail
flit at a destination node. Source queuing time is not
included in the latency measurement. The network traffic is
the average number of flits transferred by k-way channels
per clock cycle. The average is taken over all channels in
the network and over a period of time. The network traffic is
100% (or 1) if all channels are busy transferring flits
successfully at all times. In this situation, the network is said
to run at full capacity.

The first experiment is to measure the maximum traffic that
a 2D-mesh network can accept by varying the number of
virtual channels at each router. The experiment uses
dimension-order deterministic routing and west-first
routing. The source nodes are driven at saturation to obtain
the highest traffic possible for a given number of virtual

Proceedings of the ISCA 12th International Conference on Parallel and Distributed Computing Systems

512

channels. The traffic pattern is randomized. All messages
are 64-byte long. The flit size is 16 bytes (128 bits). The
results are shown in Figure 8a. Clearly, the network can
accept more traffic as the number of virtual channel
increases. However, with even 32 virtual channels per
routing direction, the maximum network traffic was not able
to reach 90% capacity! This may be attributed to the
wormhole routing technique and is still under investigation.
Finally, dimension-order routing is a clear winner over the
west-first algorithm. This is because the network traffic is
uniformly distributed and dimension-order routing works
well with uniform traffic.

The second experiment is to measure the message latency
by varying the injection rate and the number of virtual
channels. The results are shown in Figure 8b. Dimension-
order routing is used and all messages are 64-byte long.
Observe that the graph is not a function. Both the latency
and the traffic are measured values. When the traffic is
below saturation, the message latency is not affected by the
traffic. However, as the network saturates, latencies start
increasing sharply. Driving the network hard beyond its
saturation point deteriorates the traffic, but only slightly.
Finally, adding virtual channels slightly increases the
message latency for low traffic, but allows the network to
accept more traffic.

0.4

0.5

0.6

0.7

0.8

0.9

1 2 3 4 5 6 7 8 10 12 14 16 20 24 28 32

Virtual Channels

M
ax

im
um

 T
ra

ffi
c

DOR WF

The last experiment is to measure the effect of message
length on latency. Three message lengths are used in this
experiment: 64 bytes, 256 bytes and 1024 bytes. The
number of virtual channels was fixed to 1 and deterministic-
order routing is used with uniformly distributed traffic. The
results are shown in Figure 8c. The average latency of 64-
byte messages is 28 cycles, the average latency of 256-byte
messages is about 110 cycles, and the average latency of
1024-byte messages is about 440 cycles when the traffic is
below saturation. The latency scaled linearly with the
message length.

20

40

60

80

100

120

140

0 0.2 0.4 0.6 0.8

Traffic (fraction of capacity)

La
te

nc
y

(in
 c

yc
le

s)

VC = 1 VC = 2 VC = 4

Figure 8a: Maximum traffic versus virtual channels
Figure 8b: Latency versus traffic (64-byte messages)

0

100

200

300

400

500

600

700

800

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Traffic (fraction of capacity)

La
te

nc
y

(c
yc

le
s)

64 bytes 256 bytes 1024 bytes

Figure 8c: Latency versus traffic under different message

lengths

6. Conclusion and further research

This paper introduced a new class of interconnection
networks based on the concept of k-way channels. The idea
is to reduce the number of links per router to only two and
to make channels very wide. A detailed design of a router
was presented and the performance of 2D mesh networks
was evaluated. The initial results are very encouraging and
stimulate research in this direction. An improved version of
the simulator is currently being developed to support
different topologies and dimensions. We are also describing
the router design in VHDL and implementing it using high-
density FPGAs. Further research in this direction includes
multicasting and broadcasting in networks with k-way
channels, fault-tolerance, and the design of a versatile router
that can be used to build many different topologies.

Proceedings of the ISCA 12th International Conference on Parallel and Distributed Computing Systems

513

References

[Agarwal 90] A. Agarwal el al, "APRIL: A processor
architecture for multiprocessing", Proceedings of the 17th
International Symposim on Computer Architecture, pp
104-114, June 1990.

[Carbonaro 96] J. Carbonaro and F. Verhoorn, "Cavallino:
The teraflops router and NIC", Proceedings of Hot
Interconnects Symposium IV, August 1996.

[ChienKim 92] A. A. Chien and J. H. Kim, "Planar-
adaptive routing: Low-cost adaptive networks for
multiprocessors", Proceedings of the 19th International
Symposium on Computer Architecture, pages 268-277,
May 1992.

[Dally 94] W. J. Dally, et al., "Architecture and
implementation of the Reliable Router", Proceedings of
Hot Interconnects Symposium II, August 1994.

[Dally 92] W. J. Dally, "Virtual-channel flow
control", IEEE Transactions on Parallel and Distributed
Systems, vol.3, no.2, pages 194-205, March 1992.

[DallySeitz 87] W. J. Dally and C. L. Seitz, "Deadlock-
free message routing in multiprocessor interconnection
networks", IEEE Transactions on Computers, vol. C-36,
no.5, pages 547-553, May 1987.

[DallyAoki 93] W. J. Dally and H. Aoki, "Deadlock-free
adaptive routing in multicomputer networks using virtual
channels", IEEE Transactions on Parallel and Distributed
Systems, vol. 4, no. 4, pages 466-475, April 1993.

[Duato 97] J. Duato et al, Interconnection Networks:
An Engineering Approach, IEEE Computer Society Press,
1997.

[Kushkin 94] J. Kushkin et al, "The Stanford FLASH
multiprocessor", Proceedings of the 21st International
Symposium on Computer Architecture, pp 302-313, April
1994.

GlassNi 92] C. J. Glass and L.M. Ni, "The turn model
for adaptive routing", Proceedings of the 19th
International Symposium on Computer Architecture,
pages 278-287, May 1992.

[Lenoski 92] D. Lenoski et al., "The Stanford DASH
multiprocessor", IEEE Computer, vol 25, no 3, pp 63-79,
March 1992.

[LinderHarden 91] D. H. Linder and J. C. Harden, "An
adaptive and fault tolerant wormhole routing strategy for
k-ary n-cubes", IEEE Transactions on Computers, vol. C-
40, no. 1, pages 2-12, January 1991.

[Noakes 93] M. Noakes, D. Wallach, and W. Dally,
"The J-Machine Multicomputer: An architecture
evaluation", Proceedings of the 20th International
Symposimum on Computer Architecture, pp 224-235,
May 1993.

[Oed 93]W. Oed, "The Cray Research Massively Parallel
Processing System: Cray T3D", Cray Research, 1993.

[Paragon 91] Paragon XP/S Product Overview, Intel
Corporation, Supercomputer Systems Division,
Beaverton, Oregon, 1991.

[ScottThorson 96] S.L. Scott and G. Thorson, "The
Cray T3E network: adaptive routing in a high
performance 3D torus", Proceedings of Hot Interconnects
Symposium IV, August 1996.

