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Abstract 

This article introduces the concept of a multiway channel, a 
physical channel shared by a fixed number of routers and 
nodes. A router designed around the concept of a multiway 
channel interfaces two channels only, irrespective of the 
network topology. This has two immediate advantages: The 
same router can be used to build networks with different 
dimensionalities or topologies and physical channels can be 
very wide (typically 128-bit-data wide). This is to be 
contrasted with state of the art wormhole routers, designed 
for 2D and 3D networks, which typically have 8-bit or 16-
bit data links. The design of a new wormhole router, based 
on the concept of multiway channel, is detailed in this 
paper. The performance of networks, that use multiway 
channels, is evaluated. The results are very encouraging and 
promise a new line of research. 

Keywords: multiway channel, wormhole router, 
interconnection networks, router architecture. 

1. Interconnection Networks 

The interconnection network is often the critical part of a 
massively parallel computer because application 
performance is very sensitive to network latency and 
throughput. An interconnection network is characterized by 
its topology, routing, and flow control. The topology is the 
arrangements of nodes and channels into a graph. Routing 
specifies how a message chooses a path in this graph. Flow 
control deals with the allocation of channel and buffer 
resources to a packet as it traverses this path [Dally 92]. 

Topologies that have been widely used in recent parallel 
computers include two- and three-dimensional meshes and 
tori. The 2D and 3D interconnection topologies can be 
found in Intel Paragon [Paragon 91], Stanford DASH 
[Lenoski 92], Stanford FLASH [Kushkin 94], MIT Alewife 
[Agarwal 90], MIT J-Machine [Noakes 93], MIT Reliable 
Router [Dally 94], Cray T3D [Oed 93] and Cray T3E 
[ScottThorson 96]. Other popular topologies that are less 
commonly used are the hypercube and the fat tree. 

The architecture of a generic wormhole router [Duato 
97] is shown in Figure 1. It includes input and/or output 
buffers for storing flits (flow control units). Each input 
buffer can also be subdivided into several virtual channel 
buffers. A crossbar switch is used for connecting input 

buffers to output buffers. A routing and arbitration unit 
implements the routing algorithm and selects the output link 
for an input message. If multiple messages simultaneously 
request the same output link, this component must provide 
for arbitration between them. Link controllers (LC) are used 
to control the flow of message flits across a physical 
channel. The processor injection and ejection channels 
implement a physical channel interface from/to the local 
processor. 
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Figure 1: Generic wormhole router used in k-ary 2-cube networks 

Router elements in the k-ary n-cube network have many 
dedicated input and output physical channels. For instance, 
routers used in 2D networks require four input and four 
output channels for communication with adjacent routers, as 
well as a fifth input and output channel for communication 
with the local processor. Routers used in 3D networks 
require six input and six output channels for communication 
with adjacent routers. As the dimensionality of the network 
increases, the number of input and output physical channels 
also increases. Since the number of I/O pins in router chips 
are limited by the packaging technology, the increase in the 
number of physical channels will decrease the number of 
wires and thus the bandwidth of a single physical channel. 
State of the art wormhole routers are designed for low 
dimensional networks (2D or 3D) with physical channels 
that typically are 8-bit-data or 16-bit-data wide. 

In this study, I am proposing a new concept called a 
multiway channel. The idea of a multiway channel is that a 
fixed number of routers and nodes can share the same 
physical channel. Routers are designed to interface two 
physical channels only, irrespective of the topology of the 
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network. This is not possible with current wormhole routers. 
The concept of the multiway channel is detailed next. 

2. The Multiway Channel Concept 

A multiway channel is a physical channel shared by a fixed 
number of routers and nodes. Only one router or node can 
drive the physical channel at any given clock cycle. We call 
that router or node a driver. However, all routers and nodes 
connected to a multiway channel can concurrently monitor 
the channel. Thus, at a given clock cycle, exactly one of the 
routers or nodes acts as a driver but all of them act as 
monitors of the physical channel. 

An example of a two-dimensional torus with 16 nodes, 32 
routers, and 16 5-way channels is shown in Figure 2a. Each 
5-way channel is a set of wires connecting 4 routers to a 
node. Each channel is identified by its y and x coordinates as 
Cy,x. A node connected to channel Cy,x is identified as 
Ny,x. Routers connected to channel Cy,x are identified as 
Xy,x and Xy,x-1 when they are along the X dimension, and 
Yy,x and Yy-1,x when they are along the Y dimension. 
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Figure 2a: 2D Torus with 16 nodes, 32 routers, and 16 5-way channels 

The structure of a multiway channel is shown in Figure 2b. 
A channel consists of data and control lines. The control 
lines include the arbitration lines used for the selection of 
the channel driver for the next clock cycle. The same wires 
are connected to all router and node interfaces. Although 
only one node is shown connected to a channel, it is also 
possible to have several nodes. 
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Figure 2b: Structure of a Multiway Channel 

2.1 Modified Network Topologies 

A new spectrum of network topologies can be obtained by 
exchanging the role of routers and channels in classical 
networks. Popular topologies include multi-dimensional 
meshes, tori, hypercubes, and trees. Examples of two 
modified network topologies using the multiway channel 
concept are shown in Figure 3. 
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Figure 3: 3D cube with 4-way channels and a tree with 3-way channels 

Routers based on the concept of multiway channels have 
two channel interfaces and are connected to two physical 
channels only, regardless of the network topology. An 
immediate advantage of this approach is that the width of a 
physical channel can be very wide. For a given packaging 
technology, say about 300 I/O pins, a router can be designed 
to interface physical channels that are 128-bit-data wide. 
This is 8 times the width of physical channels used in state 
of the art wormhole routers, such as the Intel Teraflops 
router [Carbonaro 96], the Cray T3E router [ScottThorson 
96], and the MIT Reliable Router [Dally 94]. With extra-
wide channels, a network can achieve higher throughput and 
lower message latency. 
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advantage of the multiway channel concept is that a router 
can be designed to operate under networks with different 
dimensionalities. 

A second immediate advantage of using multiway channels 
is that the same router chip (if carefully designed) can be 
used to implement different topologies. This is because 
routers are connected to two physical channels only. For 
instance, the same router chip can be used to implement 
low-dimensional and high-dimensional networks. This is 
not possible with current wormhole routers. 

2.2 Message Format 

Message routing techniques such as store-and-forward and 
virtual-cut-through can be used in networks with multiway 
channels. However, I will restrict my discussion to the 
wormhole technique because of its low buffering 
requirement and good performance. 

In a wormhole-routed network, a message is divided into 
flow control units, called flits [DallySeitz 87]. A message 
consists of a header flit followed by an arbitrary number 
(possibly zero) of body flits, followed by a tail flit. A tag, 
identifying the kind of flit, is generated at the sending node 
and transmitted with each flit. Four tags are used: Header 
(H), Body (B), Tail (T), and Invalid (I). This is depicted in 
Figure 4. 
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Figure 4: Message Format 

The header flit carries the relative destination address, the 
routing way, and the length of a message. The relative 
destination address, DEST, encodes the destination offsets 
along the different dimensions. Different encodings can be 
used with different topologies. The routing way, WAY, is 
defined at each router a header flit reaches along its path 
from the source node to the destination node. The routing 
way is a number between 0 and W-1 that represents the 
direction that a router has chosen for a header flit, where W 
is the total number of ways for a multiway channel. The 
length field, LEN, encodes the number of data flits that 
follow the header flit. This number should be greater than 
zero because a message must have at least a tail flit. If l bits 
are used to encode the length of a message then the number 
of data flits that can follow the header is between 1 and 2l 
(2l is encoded as zero). The length field is redundant 
because the tag already identifies all the flits of a message. 
However, the length field can be used to allocate storage at 
the destination node as soon as the header flit is received. 

The length field can be also used to ensure the correctness 
of the tags and to establish a limit on the length of a 
message. 

Additional control information can be carried by a header 
flit. For instance, a routing algorithm may need extra 
information to be transferred in the header flit, such as the 
dimension reversal number, DR, used in some routing 
algorithms [DallyAoki 93]. Other control information can 
also include the address and context of a thread to be 
executed at the destination node when a message header flit 
is received. 

3 Router Architecture 

The internal architecture of a router is depicted in Figure 5. 
A router has two channel interfaces identified as the positive 
and negative sides of a router. In addition, we need to 
identify whether a router is along the X dimension, Y 
dimension, etc. The dimensionality of a router, DIM, is 
hardwired through external pins. The dimensionality of a 
router is combined with the polarity of a channel interface to 
obtain a unique identification for a channel interface across 
a multiway channel. The channel interface identification 
defines also its directiona-lity. It is used for routing and for 
physical channel arbitration. The directionality of a channel 
interface means that the interface accepts flits routed in its 
direction. For instance, a channel interface identified as X+ 
can accept message flits going in the X+ direction. In the 
case of a processing node, we need also to uniquely identify 
its channel interface. 
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Figure 5: Internal Architecture of a Router 

A physical channel consists of data, control, and arbitration 
lines. The DATA lines are used to carry one flit of a message 
at a time. The TAG lines are used to carry the tag of a flit. 
The VC lines are used to carry the Virtual Channel number 
of a flit. The STAT lines are used to carry W allocation status 
of the virtual channel buffers in the W routers and nodes 
attached to a multiway channel. The ARB lines are used to 
carry the W requests of the W channel drivers. A channel 
arbitrator uses the ARB lines to determine the next channel 
driver for the next clock cycle. Finally, the CLK input is 
used to synchronize the operation of a multiway channel. 
Each multiway channel has its own clock. This means that 
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two different clocks drive the two sides of a router, as 
shown in Figure 5. 

A router includes two sets of the following components: 
channel arbitrator, routing unit, virtual channel allocation 
and mapping unit, and virtual channel buffers. The channel 
arbitrator is used to determine the next channel driver. The 
routing logic implements the routing algorithm and 
determines the routing way of a header flit. The virtual 
channel buffers are used to buffer the flits of different 
messages. The virtual channel allocation and mapping 
manages the allocation of virtual channels and maps the 
virtual channel number of the input flits to its internal 
buffers. Observe that no crossbar switch is required. This 
simplifies the implementation of a router and makes it 
simpler and faster. 

3.1 Physical Channel Arbitration 

Recall that a multiway channel can have a maximum of W 
routers and nodes driving it. Only one router or node should 
be driving the channel at any given clock cycle. The 
physical channel arbitrator ensures exclusive access to the 
channel. Channel arbitration is a distributed hardware 
algorithm. All channel drivers apply the same algorithm, 
and thus the same decision is reached by all. The channel 
arbitrator must be fair to avoid starvation. Thus, it cannot 
assign fixed priorities to drivers. 

The channel arbitrator determines which router (node) is 
driving a multiway channel at the current clock cycle and 
which router (node) will be driving the channel at the next 
cycle. At the beginning of each clock cycle, W request 
outputs are generated by the W drivers of a given channel. 
These W requests are then input to all the channel arbitrators 
through the arbitration lines. The channel arbitrators 
concurrently determine the next driver, based on the current 
driver and the input requests. The arbitration algorithm is a 
finite state machine as shown in Figure 6a. The current state 
of the FSM is the current driver and the transitions are based 
on the W requests: R0, R1, ..., and RW-1, issued by the W 
drivers of a channel at a given clock cycle (the ARB lines in 
Figure 5 hold the W requests). The double-circled state in 
Figure 6a is the starting state on hardware reset. 

An implementation of the FSM of the channel arbitrator is 
the block diagram of Figure 6b. In this diagram, DRV is a 
register holding the number of the current driver and 
Next_DRV will be the driver number during the next clock 
cycle. ARB_in are the W input requests: 

1210 ,,,, RRRR W �−  that are right rotated so that 1R  
appears as the least significant bit, 2R  as the second least 
significant bit, and 0R  as the most significant bit. RR is a 
combinational circuit that does right rotation on the ARB_in 
bits by the current value of DRV. LS1 is another 
combinational circuit that returns the address of the least 
significant bit whose value is 1. The address of the least 
significant bit is 1 (not 0), the address of the second least 

significant bit is 2, and the address of the most significant 
bit is 0 (not W-1). If no request is issued (i.e., all the request 
bits are zeros), LS1 returns 0. The address of the least 
significant 1 is then added to DRV to obtain Next_DRV. The 
diagram of Figure 6b is effectively an implementation of the 
following equation: 
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Figure 6a: FSM of the Channel Arbitrator 
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Figure 6b: Implementing the Channel Arbitrator 

Consider an 8-way channel with ARB_in = R0 R7 R6 R5 R4 
R3 R2 R1 = 10001011 and with DRV = 4 during the current 
cycle. Then, 10001011 RR 4 = 10111000 and 
LS1(10111000) = 4. Therefore, Next_DRV = 4+4 MOD 8 = 
0. This is the expected answer, because R0 is the first non-
zero request that appears after R4 (R5 = R6 = R7 = 0). 

A physical channel arbitrator generates an Output Enable 
signal (OE in Figure 5) when the current driver number 
DRV is equal to the driver identifier of that channel 
interface. The driver identifier is either DIM+ or DIM−, 
where the dimensionality, DIM, of the router is supplied 
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directly through external pins. Since the driver identifier is 
unique in each driver of a given physical channel, the OE 
signal will be 1 in exactly one driver (router or node) at any 
given time. When the output is enabled, the channel 
interface puts the DATA_out, TAG_out, and VC_out signals 
on the physical channel. The channel interface uses three-
state buffers to drive the physical channel. 

Other approaches for physical channel arbitration do exist, 
but I believe that my approach is simple and fast. I should 
emphasize that physical channel arbitration and flit transfer 
are completely overlapped during a given clock cycle. No 
cycles are wasted just for channel arbitration. The number 
of ARB lines in a multiway channel should be W. This 
number can be reduced by half if only W/2 sources can 
request the channel in a given clock cycle. 

3.2 Virtual Channels 

Virtual channels allow the simultaneous multiplexing of 
different messages across a physical channel on a flit-by-flit 
basis. Virtual channels were originally introduced to solve 
the problem of deadlock in wormhole-routed networks. 
However, they are also used to reduce message latency and 
improve network throughput [Dally 92]. 

A virtual channel consists of a buffer that can hold one or 
more flits of a message and associated state information. 
Several virtual channels share the bandwidth of a multiway 
channel. Shown in Figure 5 are three virtual channel buffers 
per direction. However, a relatively large number (8 or 16) 
of virtual channel buffers can be supported quite easily. 

When more than one virtual channel buffer exists per 
direction, a virtual channel arbitrator selects the next non-
empty virtual channel buffer to drive the physical channel. 
To be fair and to avoid starvation, the virtual channel 
arbitrator uses a hardware algorithm, similar to one of the 
physical channel arbitrator, to select the next non-empty 
virtual channel buffer. However, in the presence of a header 
flit, the virtual channel arbitrator gives the header flit a 
higher priority if it has been successfully routed. Routing of 
header flits is discussed in Section 4.1. 

3.3 Virtual Channel Allocation 

Each virtual channel buffer has associated state information. 
The state information includes the allocation status (i.e., free 
or allocated), the current number of flits in the buffer (i.e., 
the used part of the buffer), the driver number, and the 
driver virtual channel number. When a header flit is 
received, a new virtual channel buffer is allocated. When the 
tail of a message is successfully transmitted, its virtual 
channel buffer is freed. 

To efficiently utilize a multiway channel, the status of the 
virtual channel buffers in the W directions across the 
channel should be known to all drivers. The STAT_out line 
in Figure 5 represents the status of all virtual channel 

buffers in a given direction. STAT_out is 1 when at least one 
of the virtual channel buffers is free. It is 0 when all the 
virtual channel buffers are allocated. The STAT_out lines of 
the W interfaces across a mutliway channel are collectively 
called the STAT lines as shown in Figure 5. The W STAT 
lines are then fed as input (STAT_in) to all the W drivers of a 
multiway channel. The routing logic uses the W STAT_in 
lines to select a routing way for a header flit, as will be 
discussed next. 

4 Routing 

Routing in networks that use multiway channels is different 
than routing in networks that use dedicated point-to-point 
channels. In a conventional router with multiple input and 
output channels, routing of a header flit is done internally 
inside the router. The routing logic decides which output 
channel (physical and virtual) to select based on the 
availability of the output channels and on the destination 
address in the header flit. The routing logic also controls a 
crossbar switch that establishes simultaneous paths between 
input and output channels. 

Routing across a multiway channel is a distributed hardware 
algorithm, done simultaneously by all the routers and nodes 
that are connected to a physical channel. Only one router 
(node) will accept an injected flit, while all other routers 
(nodes) will reject it. If the injected flit is invalid (with tag I) 
then all routers and nodes will reject it and nothing takes 
place. If the injected flit is valid (header, body, or tail) and 
has been accepted then the receiving router (node) 
acknowledges the transfer of this flit by driving the tag lines 
back to invalid. Thus, the tag lines are used to implement 
the handshaking protocol. 

4.1 Routing a Header Flit 

Routing a header flit is to determine a routing way for the 
flit. The routing way is determined based on the destination 
address, stored in the header, and on the status of the virtual 
channels in the W directions. If the routing logic (see Figure 
5) can successfully determine a routing way for which at 
least one of the virtual channel buffers is free then this 
routing way is stored in the header flit as shown in Figure 4. 

When a driver injects a header flit into a multiway channel, 
it also injects the driver's virtual channel number of that 
header flit. The routing way, encoded in the header flit, is 
compared with the directionality of all the channel 
interfaces across a multiway channel. Only one channel 
interface, whose directionality is equal to the routing way, 
will accept the header flit and all the other interfaces will 
reject it. The TAG_in bits will be H (Header) in one router 
(or node interface) and will be I (Invalid) in all other routers 
and node interfaces. 

Once a header flit is accepted, the virtual channel allocation 
and mapping unit will allocate a new virtual channel buffer 
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for this header flit (TAG_in = H). This is shown in Figure 7. 
In this Figure, A is the allocation bit (0=Free and 
1=Allocated), Drv is the driver's number, and VC is the 
driver's virtual channel number. There should be at least one 
free virtual channel. Otherwise, the transfer of the header flit 
will not be acknowledged. The virtual channel allocation 
and mapping unit stores the driver's number (supplied by the 
physical channel arbitrator) and the driver's virtual channel 
number in the allocated entry. The allocated virtual channel 
number is then used to select the virtual channel buffer 
(VCS lines). The driver does not (and need not) known the 
virtual channel number of the allocated buffer. 
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Figure 7: Allocating a virtual channel for a header flit 

4.2 Routing a Body or a Tail Flit 

When the tag of a flit on a multiway channel is H (Header), 
the Way encoded in the first few bits of the header flit will 
guide its routing. When the tag is B (body) or T (tail), all 
virtual channel allocation units across a multiway channel 
will lookup their tables concurrently. The allocation tables 
are searched by content for an allocated entry that holds the 
driver's number, supplied by the physical channel arbitrator, 
and the driver's virtual channel number given at the VC 
lines. This entry should be found in exactly one table (where 
it was previously allocated). Once the entry is found, the 
driver's virtual channel number (VC_in) is mapped to the 
allocated number. The allocated virtual channel number is 
then placed on the VCS lines to select the appropriate virtual 
channel buffer. Thus, the virtual channel allocation unit, 
used to allocate new virtual channel buffers for header flits, 
is also used as a mapping unit for body and tail flits. If the 
mapped virtual channel buffer is not full, the transfer of the 
body (or tail) flit is acknowledged. 

4.3 Routing Algorithms 

Networks with multiway channels can use the same routing 
algorithms developed for networks with dedicated (i.e., 
point to point) channels. The routing algorithm can be 
deterministic, such as the XY routing used in 2D meshes 
and the Dimension-Order routing used in high-dimensional 
meshes and hypercubes. It can be partially adaptive such as 
the Planar Adaptive routing proposed by Chien and Kim 
[ChienKim 92], or the West-First and other similar 
algorithms that use the Turn Model of Glass and Ni 
[GlassNi 92]. The routing algorithm can be fully adaptive, 

such as routing based on the concept of Virtual Networks 
[LinderHarden 91] or based on the concept of Dimension 
Reversal [DallyAoki 93]. 

The routing algorithm can also be described as being 
minimal or non-minimal. It should be deadlock and 
livelock-free. The routing logic, shown in Figure 5, 
implements the routing algorithm. It determines the routing 
way for header flits, based on the routing information 
(destination address and possibly other information) stored 
in the header flit and the allocation status of the virtual 
channels in all directions (the W-bit STAT_in input in Figure 
5). 

5. Performance Evaluation 

To measure the performance of interconnection networks 
with multiway channels, I have simulated a number of 2D 
mesh networks varying the length of messages, the number 
of virtual channels, the routing function, and the injection 
rate. 

The simulator is a C++ program that simulates 
interconnection networks at the flit level. A flit transfer 
between two adjacent routers, over a multiway channel, is 
assumed to take place in one clock cycle. The network is 
simulated synchronously, moving all flits that have been 
granted channels in one clock cycle and then advancing time 
to the next cycle. The simulator can be configured to 
support different network sizes, different number of virtual 
channels and buffer sizes, different routing algorithms, and 
different traffic patterns. At the moment, the only topology 
supported is a 2D mesh because it is the representative of 
many parallel machines. This is the topology used in my 
simulation results. However, I am currently writing a newer 
version of the simulator that supports multi-dimensional 
meshes, tori, and multi-level trees. The impact of network 
topology on performance will be studied in another paper. 

Simulations were run using dimension-order deterministic 
routing and also the turn model (west-first routing). Latency 
is measured by applying a constant rate source at each node 
and measuring the time from the injection of the header flit 
of a message at a source node until the ejection of the tail 
flit at a destination node. Source queuing time is not 
included in the latency measurement. The network traffic is 
the average number of flits transferred by k-way channels 
per clock cycle. The average is taken over all channels in 
the network and over a period of time. The network traffic is 
100% (or 1) if all channels are busy transferring flits 
successfully at all times. In this situation, the network is said 
to run at full capacity. 

The first experiment is to measure the maximum traffic that 
a 2D-mesh network can accept by varying the number of 
virtual channels at each router. The experiment uses 
dimension-order deterministic routing and west-first 
routing. The source nodes are driven at saturation to obtain 
the highest traffic possible for a given number of virtual 
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channels. The traffic pattern is randomized. All messages 
are 64-byte long. The flit size is 16 bytes (128 bits). The 
results are shown in Figure 8a. Clearly, the network can 
accept more traffic as the number of virtual channel 
increases. However, with even 32 virtual channels per 
routing direction, the maximum network traffic was not able 
to reach 90% capacity! This may be attributed to the 
wormhole routing technique and is still under investigation. 
Finally, dimension-order routing is a clear winner over the 
west-first algorithm. This is because the network traffic is 
uniformly distributed and dimension-order routing works 
well with uniform traffic. 

The second experiment is to measure the message latency 
by varying the injection rate and the number of virtual 
channels. The results are shown in Figure 8b. Dimension-
order routing is used and all messages are 64-byte long. 
Observe that the graph is not a function. Both the latency 
and the traffic are measured values. When the traffic is 
below saturation, the message latency is not affected by the 
traffic. However, as the network saturates, latencies start 
increasing sharply. Driving the network hard beyond its 
saturation point deteriorates the traffic, but only slightly. 
Finally, adding virtual channels slightly increases the 
message latency for low traffic, but allows the network to 
accept more traffic. 
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The last experiment is to measure the effect of message 
length on latency. Three message lengths are used in this 
experiment: 64 bytes, 256 bytes and 1024 bytes. The 
number of virtual channels was fixed to 1 and deterministic-
order routing is used with uniformly distributed traffic. The 
results are shown in Figure 8c. The average latency of 64-
byte messages is 28 cycles, the average latency of 256-byte 
messages is about 110 cycles, and the average latency of 
1024-byte messages is about 440 cycles when the traffic is 
below saturation. The latency scaled linearly with the 
message length. 
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Figure 8a: Maximum traffic versus virtual channels 
Figure 8b: Latency versus traffic (64-byte messages) 
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Figure 8c: Latency versus traffic under different message 

lengths 

6. Conclusion and further research 

This paper introduced a new class of interconnection 
networks based on the concept of k-way channels. The idea 
is to reduce the number of links per router to only two and 
to make channels very wide. A detailed design of a router 
was presented and the performance of 2D mesh networks 
was evaluated. The initial results are very encouraging and 
stimulate research in this direction. An improved version of 
the simulator is currently being developed to support 
different topologies and dimensions. We are also describing 
the router design in VHDL and implementing it using high-
density FPGAs. Further research in this direction includes 
multicasting and broadcasting in networks with k-way 
channels, fault-tolerance, and the design of a versatile router 
that can be used to build many different topologies. 
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