
1

Integer Multiplication

and Division

ICS 233
Computer Architecture & Assembly Language

Prof. Muhamed Mudawar

College of Computer Sciences and Engineering

King Fahd University of Petroleum and Minerals

Integer Multiplication and Division ICS 233 – KFUPM © Muhamed Mudawar – slide 2

Presentation Outline

� Unsigned Integer Multiplication

� Signed Integer Multiplication

� Faster Integer Multiplication

� Integer Division

� Integer Multiplication and Division in MIPS

2

Integer Multiplication and Division ICS 233 – KFUPM © Muhamed Mudawar – slide 3

� Paper and Pencil Example:

Multiplicand 1100 2 = 12
Multiplier × 1101 2 = 13

1100
0000

1100
1100

Product 10011100 2 = 156

� m-bit multiplicand × n-bit multiplier = (m+n)-bit product

� Accomplished via shifting and addition

� Consumes more time and more chip area than addition

Unsigned Integer Multiplication

Binary multiplication is easy
0 × multiplicand = 0

1 × multiplicand = multiplicand

Integer Multiplication and Division ICS 233 – KFUPM © Muhamed Mudawar – slide 4

Sequential Unsigned Multiplication

� Initialize Product = 0

� Check each bit of the Multiplier

� If Multiplier bit = 1 then Product = Product + Multiplicand

� Rather than shifting the multiplicand to the left

Instead, Shift the Product to the Right

Has the same net effect and produces the same result

Minimizes the hardware resources

� One cycle per iteration (for each bit of the Multiplier)

� Addition and shifting can be done simultaneously

3

Integer Multiplication and Division ICS 233 – KFUPM © Muhamed Mudawar – slide 5

� Initialize HI = 0

� Initialize LO = Multiplier

� Final Product = HI and LO registers

� Repeat for each bit of Multiplier

Sequential Multiplication Hardware

= 0

Start

LO[0]?

HI = HI + Multiplicand

32nd Repetition?

Done

= 1

No

Yes

HI = 0, LO=Multiplier

Shift (Carry, HI, LO) Right 1 bit32-bit ALU

Control

64 bits

32 bits

write

add

LO[0]

Multiplicand

shift right

32 bits

HI LO

32 bits
carry

Integer Multiplication and Division ICS 233 – KFUPM © Muhamed Mudawar – slide 6

Sequential Multiplier Example

� Consider: 11002 × 11012 , Product = 100111002

� 4-bit multiplicand and multiplier are used in this example

� 4-bit adder produces a 5-bit sum (with carry)

1 1 0 0Shift Right (Carry, HI, LO) by 1 bit 0 1 1 1 1 0 0 1

LO[0] = 0 => Do Nothing

1 1 0 0Shift Right (Carry, HI, LO) by 1 bit 0 0 1 1 0 0 1 1

1 1 0 0Shift Right (Carry, HI, LO) by 1 bit 0 1 1 0 0 1 1 0

1 1 0 0Shift Right (Carry, HI, LO) by 1 bit 1 0 0 1 1 1 0 0

2

1 1 0 0 0 0 0 0 1 1 0 1Initialize (HI = 0, LO = Multiplier)0

1

3

4

Multiplicand Product = HI, LOCarryIteration

0 1 1 0 0 1 1 0 1LO[0] = 1 => ADD +

0 1 1 1 1 0 0 1 1LO[0] = 1 => ADD +

1 0 0 1 1 1 0 0 1LO[0] = 1 => ADD +

4

Integer Multiplication and Division ICS 233 – KFUPM © Muhamed Mudawar – slide 7

Next . . .

� Unsigned Integer Multiplication

� Signed Integer Multiplication

� Faster Integer Multiplication

� Integer Division

� Integer Multiplication and Division in MIPS

Integer Multiplication and Division ICS 233 – KFUPM © Muhamed Mudawar – slide 8

Signed Integer Multiplication
� So far, we have dealt with unsigned integer multiplication

� First Attempt:

� Convert multiplier and multiplicand into positive numbers

� If negative then obtain the 2's complement and remember the sign

� Perform unsigned multiplication

� Compute the sign of the product

� If product sign < 0 then obtain the 2's complement of the product

� Better Version:

� Use the unsigned multiplication hardware

� When shifting right, extend the sign of the product

� If multiplier is negative, the last step should be a subtract

5

Integer Multiplication and Division ICS 233 – KFUPM © Muhamed Mudawar – slide 9

Signed Multiplication (Pencil & Paper)
� Case 1: Positive Multiplier

Multiplicand 1100 2 = -4
Multiplier × 0101 2 = +5

1111 1100
111100

Product 11101100 2 = -20

� Case 2: Negative Multiplier
Multiplicand 1100 2 = -4
Multiplier × 1101 2 = -3

1111 1100
111100
00100 (2's complement of 1100)

Product 00001100 2 = +12

Sign-extension

Sign-extension

Integer Multiplication and Division ICS 233 – KFUPM © Muhamed Mudawar – slide 10

� ALU produces 32-bit result + Sign bit

� Check for overflow

� No overflow � Extend sign-bit of result

� Overflow � Invert sign bit

Sequential Signed Multiplier

= 0

Start

LO[0]?

First 31 iterations: HI = HI + Multiplicand

Last iteration: HI = HI – Multiplicand

32nd Repetition?

Done

= 1

No

Yes

HI = 0, LO = Multiplier

Shift Right (Sign, HI, LO) 1 bit32-bit ALU

Control

64 bits

32 bits

write

add, sub

LO[0]

Multiplicand

shift right

32 bits

HI LO

32 bitssign

6

Integer Multiplication and Division ICS 233 – KFUPM © Muhamed Mudawar – slide 11

Signed Multiplication Example

� Consider: 11002 (-4) × 11012 (-3), Product = 000011002

� Check for overflow: No overflow � Extend sign bit

� Last iteration: add 2's complement of Multiplicand

1 1 0 0Shift (Sign, HI, LO) right 1 bit 1 1 0 1 1 0 0 1

LO[0] = 0 => Do Nothing

1 1 0 0Shift (Sign, HI, LO) right 1 bit 1 1 1 1 0 0 1 1

1 1 0 0Shift (Sign, HI, LO) right 1 bit 1 1 1 0 0 1 1 0

Shift (Sign, HI, LO) right 1 bit 0 0 0 0 1 1 0 0

2

1 1 0 0 0 0 0 0 1 1 0 1Initialize (HI = 0, LO = Multiplier)0

1

3

4

Multiplicand Product = HI, LOSignIteration

1 1 1 0 0 1 1 0 1LO[0] = 1 => ADD +

1 1 0 1 1 0 0 1 1LO[0] = 1 => ADD +

0 1 0 0 0 0 0 0 1 1 0 0 1LO[0] = 1 => SUB (ADD 2's compl) +

Integer Multiplication and Division ICS 233 – KFUPM © Muhamed Mudawar – slide 12

Next . . .

� Unsigned Integer Multiplication

� Signed Integer Multiplication

� Faster Integer Multiplication

� Integer Division

� Integer Multiplication and Division in MIPS

7

Integer Multiplication and Division ICS 233 – KFUPM © Muhamed Mudawar – slide 13

Faster Integer Multiplier

�Uses Multiple Adders (Cost vs. Performance)

� Can be pipelined

Integer Multiplication and Division ICS 233 – KFUPM © Muhamed Mudawar – slide 14

Using Multiple Adders

� 32-bit adder for each bit of the multiplier

� AND multiplicand with each bit of multiplier

� Product = accumulated shifted sum

� Each adder produces a 33-bit output

� Most significant bit is a carry bit

� Array multiplier can be optimized

� Additions can be done in parallel

� Multiple-level tree reduction to produce final product

� Carry save adders reduce delays

8

Integer Multiplication and Division ICS 233 – KFUPM © Muhamed Mudawar – slide 15

Carry Save Adders

� Used when adding multiple numbers (as in multipliers)

� All the bits of a carry-save adder work in parallel
� The carry does not propagate as in a carry-propagate adder

� This is why a carry-save is faster than a carry-propagate adder

� A carry-save adder has 3 inputs and produces two outputs
� It adds 3 numbers and produces partial sum and carry bits

Carry-Propagate Adder

+

a0 b0

s0

+

a1 b1

s1

+

a31 b31

s31

. . .cout cin

Carry-Save Adder

. . .+

a31 b31

s'31c'31

c31

+

a1 b1

s'1c'1

c1

+

a0 b0

s'0c'0

c0

Integer Multiplication and Division ICS 233 – KFUPM © Muhamed Mudawar – slide 16

Tree Multiplier - 1 of 2

� Suppose we want to multiply two numbers A and B
� Example on 4-bit numbers: A = a3 a2 a1 a0 and B = b3 b2 b1 b0

� Step 1: AND (multiply) each bit of A with each bit of B
� Requires n2 AND gates and produces n2 product bits

� Position of aibj = (i+j). For example, Position of a2b3 = 2+3 = 5

a0b0a1b0a2b0a3b0

a0b1a1b1a2b1a3b1

a0b2a1b2a2b2a3b2

a0b3a1b3a2b3a3b3

A × B

9

Integer Multiplication and Division ICS 233 – KFUPM © Muhamed Mudawar – slide 17

Tree Multiplier – 2 of 2

Step 2: Use carry save adders to add the partial products
� Reduce the partial products to just two numbers

Step 3: Add last two numbers using a carry-propagate adder

P0

+

a2b0 a1b1

++

+

a3b0 a2b1 a0b0

+

a1b0 a0b1

+

+

+++

+

a3b1 a2b2

+

a3b2

a2b3

a3b3

a1b3 a0b3

a1b2 a0b2

P1P2P3P4P5P6P7

Carry Save Adder

Carry Propagate Adder

Integer Multiplication and Division ICS 233 – KFUPM © Muhamed Mudawar – slide 18

Next . . .

� Unsigned Integer Multiplication

� Signed Integer Multiplication

� Faster Integer Multiplication

� Integer Division

� Integer Multiplication and Division in MIPS

10

Integer Multiplication and Division ICS 233 – KFUPM © Muhamed Mudawar – slide 19

Try to see how big a
number can be

subtracted, creating a
digit of the quotient on

each attempt

= 19 Quotient

Divisor 1011 2 11011001 2 = 217 Dividend
-1011

10
101
1010
10100
-1011

1001
10011
-1011

1000 2 = 8 Remainder

Unsigned Division (Paper & Pencil)

Binary division is
accomplished via

shifting and subtraction

Dividend =

Quotient × Divisor

+ Remainder

217 = 19 × 11 + 8

10011 2

Integer Multiplication and Division ICS 233 – KFUPM © Muhamed Mudawar – slide 20

Sequential Division

� Uses two registers: HI and LO

� Initialize: HI = Remainder = 0 and LO = Dividend

� Shift (HI, LO) LEFT by 1 bit (also Shift Quotient LEFT)

� Shift the remainder and dividend registers together LEFT

� Has the same net effect of shifting the divisor RIGHT

� Compute: Difference = Remainder – Divisor

� If (Difference ≥ 0) then

� Remainder = Difference

� Set Least significant Bit of Quotient

� Observation to Reduce Hardware:

� LO register can be also used to store the computed Quotient

11

Integer Multiplication and Division ICS 233 – KFUPM © Muhamed Mudawar – slide 21

Sequential Division Hardware

� Initialize:
� HI = 0, LO = Dividend

� Results:
� HI = Remainder

� LO = Quotient

Start

Difference?

2. HI = Remainder = Difference
Set least significant bit of LO

32nd Repetition?

Done

< 0≥ 0

No

Yes

1. Shift (HI, LO) Left
Difference = HI – Divisor

shift left

Divisor

32-bit ALU

LO

32 bits

write

sub

32 bits

Difference
sign

set lsb

HI
32 bits

Control

Integer Multiplication and Division ICS 233 – KFUPM © Muhamed Mudawar – slide 22

2: Diff < 0 => Do Nothing

Unsigned Integer Division Example
� Example: 11102 / 00112 (4-bit dividend & divisor)

� Result Quotient = 01002 and Remainder = 00102

� 4-bit registers for Remainder and Divisor (4-bit ALU)

2: Rem = Diff, set lsb of LO 1 0 0 10 0 0 0

2: Diff < 0 => Do Nothing

2: Diff < 0 => Do Nothing

2

0 0 0 0 1 1 1 0Initialize0

1

3

4

HI DifferenceLOIteration

0 0 1 1

Divisor

1 1 1 01: Shift Left, Diff = HI - Divisor 0 0 0 1 1 1 0 0 0 0 1 1

0 0 0 01: Shift Left, Diff = HI - Divisor 0 0 1 1 1 0 0 0 0 0 1 1

1 1 1 01: Shift Left, Diff = HI - Divisor 0 0 0 1 0 0 1 0 0 0 1 1

1 1 1 11: Shift Left, Diff = HI - Divisor 0 0 1 0 0 1 0 0 0 0 1 1

12

Integer Multiplication and Division ICS 233 – KFUPM © Muhamed Mudawar – slide 23

Signed Integer Division

� Simplest way is to remember the signs

� Convert the dividend and divisor to positive

� Obtain the 2's complement if they are negative

� Do the unsigned division

� Compute the signs of the quotient and remainder

� Quotient sign = Dividend sign XOR Divisor sign

� Remainder sign = Dividend sign

� Negate the quotient and remainder if their sign is negative

� Obtain the 2's complement to convert them to negative

Integer Multiplication and Division ICS 233 – KFUPM © Muhamed Mudawar – slide 24

Signed Integer Division Examples

1. Positive Dividend and Positive Divisor

� Example: +17 / +3 Quotient = +5 Remainder = +2

2. Positive Dividend and Negative Divisor

� Example: +17 / –3 Quotient = –5 Remainder = +2

3. Negative Dividend and Positive Divisor

� Example: –17 / +3 Quotient = –5 Remainder = –2

4. Negative Dividend and Negative Divisor

� Example: –17 / –3 Quotient = +5 Remainder = –2

The following equation must always hold:

Dividend = Quotient × Divisor + Remainder

13

Integer Multiplication and Division ICS 233 – KFUPM © Muhamed Mudawar – slide 25

Next . . .

� Unsigned Integer Multiplication

� Signed Integer Multiplication

� Faster Multiplication

� Integer Division

� Integer Multiplication and Division in MIPS

Integer Multiplication and Division ICS 233 – KFUPM © Muhamed Mudawar – slide 26

Integer Multiplication in MIPS

� Multiply instructions
� mult $s1,$s2 Signed multiplication

� multu $s1,$s2 Unsigned multiplication

� 32-bit multiplication produces a 64-bit Product

� Separate pair of 32-bit registers

� HI = high-order 32-bit of product

� LO = low-order 32-bit of product

� MIPS also has a special mul instruction

� mul $s0,$s1,$s2 $s0 = $s1 × $s2

� Put low-order 32 bits into destination register

� HI & LO are undefined

Multiply

Divide

$0

HI LO

$1

..

$31

14

Integer Multiplication and Division ICS 233 – KFUPM © Muhamed Mudawar – slide 27

Integer Division in MIPS

� Divide instructions
� div $s1,$s2 Signed division

� divu $s1,$s2 Unsigned division

� Division produces quotient and remainder

� Separate pair of 32-bit registers

� HI = 32-bit remainder

� LO = 32-bit quotient

� If divisor is 0 then result is unpredictable

� Moving data from HI/LO to MIPS registers
� mfhi Rd (move from HI to Rd)

� mflo Rd (move from LO to Rd)

Multiply

Divide

$0

HI LO

$1

..

$31

Integer Multiplication and Division ICS 233 – KFUPM © Muhamed Mudawar – slide 28

Integer Multiply/Divide Instructions
Instruction Meaning Format
mult Rs, Rt Hi, Lo = Rs × Rt op6 = 0 Rs5 Rt5 0 0 0x18
multu Rs, Rt Hi, Lo = Rs × Rt op6 = 0 Rs5 Rt5 0 0 0x19
mul Rd, Rs, Rt Rd = Rs × Rt 0x1c Rs5 Rt5 Rd5 0 0x02
div Rs, Rt Hi, Lo = Rs / Rt op6 = 0 Rs5 Rt5 0 0 0x1a
divu Rs, Rt Hi, Lo = Rs / Rt op6 = 0 Rs5 Rt5 0 0 0x1b
mfhi Rd Rd = Hi op6 = 0 0 0 Rd5 0 0x10
mflo Rd Rd = Lo op6 = 0 0 0 Rd5 0 0x12

� Signed arithmetic: mult, div (Rs and Rt are signed)
� LO = 32-bit low-order and HI = 32-bit high-order of multiplication

� LO = 32-bit quotient and HI = 32-bit remainder of division

� Unsigned arithmetic: multu, divu (Rs and Rt are unsigned)

� NO arithmetic exception can occur

15

Integer Multiplication and Division ICS 233 – KFUPM © Muhamed Mudawar – slide 29

Integer to String Conversion

� Objective: convert an unsigned 32-bit integer to a string

� How to obtain the decimal digits of the number?

� Divide the number by 10, Remainder = decimal digit (0 to 9)

� Convert decimal digit into its ASCII representation ('0' to '9')

� Repeat the division until the quotient becomes zero

� Digits are computed backwards from least to most significant

� Example: convert 2037 to a string

� Divide 2037/10 quotient = 203 remainder = 7 char = '7'

� Divide 203/10 quotient = 20 remainder = 3 char = '3'

� Divide 20/10 quotient = 2 remainder = 0 char = '0'

� Divide 2/10 quotient = 0 remainder = 2 char = '2'

Integer Multiplication and Division ICS 233 – KFUPM © Muhamed Mudawar – slide 30

Integer to String Procedure
#-- ------------
int2str: Converts an unsigned integer into a str ing
Input: $a0 = unsigned integer

In/Out: $a1 = address of string buffer (12 byte s)
#-- ------------
int2str:

move $t0, $a0 # $t0 = dividend = unsigned integer
li $t1, 10 # $t1 = divisor = 10
addiu $a1, $a1, 11 # start at end of string buffer

sb $zero, 0($a1) # store a NULL byte
convert:

divu $t0, $t1 # LO = quotient, HI = remainder

mflo $t0 # $t0 = quotient
mfhi $t2 # $t2 = remainder
addiu $t2, $t2, 0x30 # convert digit to a character

addiu $a1, $a1, -1 # point to previous byte
sb $t2, 0($a1) # store digit character
bnez $t0, convert # loop if quotient is not 0

jr $ra # return to caller

