

	Sequential Mu	ıltiplier	Exc	ample
*	Consider: 1100 ₂ × 1101 ₂	, Product =	10011	1002
•••	4-hit multiplicand and mu	ltinlier are i	ised in	this example
•				
*	4-bit adder produces a <mark>5</mark> -	bit sum (wi	th carr	y)
tera	ation	Multiplicand	Carry	Product = HI, LO
0	Initialize (HI = 0, LO = Multiplier)	1100		- 0000 110 1
	LO[0] = 1 => ADD	↓	→0	1100 1101
1	Shift Right (Carry, HI, LO) by 1 bit	1100		0110 0110
2	LO[0] = 0 => Do Nothing			
2	Shift Right (Carry, HI, LO) by 1 bit	1100		- 0011 001 1
2	LO[0] = 1 => ADD	↓ + -	→0	1111 00 11
3	Shift Right (Carry, HI, LO) by 1 bit	1100 -		- 0111 100 1
	LO[0] = 1 => ADD	↓ + -	→1	0011 1001
4	Shift Right (Carry, HI, LO) by 1 bit	1100		1001 1100
·				1001 1100

Unsigned D	ivision (Pap	oer & Pencil)
Divisor 1011 ₂	$10011_2 = 2$ $11011001_2 = 2$ 1011	19Quotient217Dividend
Dividend	10 101 1010 10100 10100	Try to see how big a number can be subtracted, creating a digit of the quotient on each attempt
Quotient × Divisor + Remainder 217 = 19 × 11 + 8	1001 1001 -1011	Binary division is accomplished via shifting and subtraction
Integer Multiplication and Division	$1000_2 = 8$	8 Remainder © Muhamed Mudawar – slide 19

	Unsigned Inte	eger D	ivisio	n Exa	mple
*	Example: 1110 ₂ / 001	1 ₂ (4-bit o	dividend	& divisor)
*	Result Quotient = 010	10_2 and R	emainde	r = 0010	2
*	4-bit registers for Rem	nainder a	nd Divisc	or (4-bit A	ALU)
Iteration		HI	LO	Divisor	Difference
0	Initialize	0000	1110	0011	
	1: Shift Left, Diff = HI - Divisor	0001 🔸	- 1100	0011	1110
1	2: Diff < 0 => Do Nothing				
	1: Shift Left, Diff = HI - Divisor	0011 🕇	- 1000	0011	0000
~					
2	2: Rem = Diff, set Isb of LO	0000	1001		
2	2: Rem = Diff, set Isb of LO 1: Shift Left, Diff = HI - Divisor	0000 0001 ←	1001 - 0010	0011	1110
2 3	2: Rem = Diff, set Isb of LO 1: Shift Left, Diff = HI - Divisor 2: Diff < 0 => Do Nothing	0000	1001 - 0010	0011	1110
2 3	2: Rem = Diff, set Isb of LO 1: Shift Left, Diff = HI - Divisor 2: Diff < 0 => Do Nothing 1: Shift Left, Diff = HI - Divisor	0000 0001 ← 0010 ←	1001 - 0010 - 0100	0011	1110

insu	uction	Meaning			For	mat		
mult	Rs, Rt	Hi, Lo = $Rs \times Rt$	$0p^{6} = 0$	Rs⁵	Rt⁵	0	0	0x18
multu	ı Rs, Rt	Hi, Lo = $Rs \times Rt$	$0p^{6} = 0$	Rs⁵	Rt⁵	0	0	0x19
mul	Rd, Rs, Rt	$Rd = Rs \times Rt$	0x1c	Rs⁵	Rt⁵	Rd⁵	0	0x02
div	Rs, Rt	Hi, Lo = Rs / Rt	$0p^{6} = 0$	Rs⁵	Rt⁵	0	0	0x1a
divu	Rs, Rt	Hi, Lo = Rs / Rt	$op^{6} = 0$	Rs⁵	Rt⁵	0	0	0x1b
mfhi	Rd	Rd = Hi	$0p^{6} = 0$	0	0	Rd⁵	0	0x10
mflo	Rd	Rd = Lo	$0p^{6} = 0$	0	0	Rd⁵	0	0x12
• ~ ·	anod arith	nmetic: mult_c	div (Rs	and F	Rt are	e sigr	ned)	

