
1

MIPS Instruction Set

Architecture

ICS 233
Computer Architecture and Assembly Language

Prof. Muhamed Mudawar

College of Computer Sciences and Engineering

King Fahd University of Petroleum and Minerals

MIPS Instruction Set Architecture ICS 233 – Computer Architecture & Assembly Language – KFUPM © Muhamed Mudawar – slide 2

Presentation Outline

� Instruction Set Architecture

� Overview of the MIPS Architecture

� R-Type Arithmetic, Logical, and Shift Instructions

� I-Type Format and Immediate Constants

� Jump and Branch Instructions

� Translating If Statements and Boolean Expressions

� Load and Store Instructions

� Translating Loops and Traversing Arrays

� Addressing Modes

2

MIPS Instruction Set Architecture ICS 233 – Computer Architecture & Assembly Language – KFUPM © Muhamed Mudawar – slide 3

� Critical Interface between hardware and software

� An ISA includes the following …

� Instructions and Instruction Formats

� Data Types, Encodings, and Representations

� Programmable Storage: Registers and Memory

� Addressing Modes: to address Instructions and Data

� Handling Exceptional Conditions (like division by zero)

� Examples (Versions) Introduced in

� Intel (8086, 80386, Pentium, ...) 1978

� MIPS (MIPS I, II, III, IV, V) 1986

� PowerPC (601, 604, …) 1993

Instruction Set Architecture (ISA)

MIPS Instruction Set Architecture ICS 233 – Computer Architecture & Assembly Language – KFUPM © Muhamed Mudawar – slide 4

Instructions

� Instructions are the language of the machine

� We will study the MIPS instruction set architecture

� Known as Reduced Instruction Set Computer (RISC)

� Elegant and relatively simple design

� Similar to RISC architectures developed in mid-1980’s and 90’s

� Very popular, used in many products

� Silicon Graphics, ATI, Cisco, Sony, etc.

� Comes next in sales after Intel IA-32 processors

� Almost 100 million MIPS processors sold in 2002 (and increasing)

� Alternative design: Intel IA-32

� Known as Complex Instruction Set Computer (CISC)

3

MIPS Instruction Set Architecture ICS 233 – Computer Architecture & Assembly Language – KFUPM © Muhamed Mudawar – slide 5

Next . . .

� Instruction Set Architecture

� Overview of the MIPS Architecture

� R-Type Arithmetic, Logical, and Shift Instructions

� I-Type Format and Immediate Constants

� Jump and Branch Instructions

� Translating If Statements and Boolean Expressions

� Load and Store Instructions

� Translating Loops and Traversing Arrays

� Addressing Modes

MIPS Instruction Set Architecture ICS 233 – Computer Architecture & Assembly Language – KFUPM © Muhamed Mudawar – slide 6

Overview of the MIPS Architecture

Memory

Up to 232 bytes = 230 words

4 bytes per word

$0
$1
$2

$31

Hi Lo

ALU

F0
F1
F2

F31
FP

Arith

EPC
Cause

BadVaddr

Status

EIU FPU

TMU

Execution &
Integer Unit
(Main proc)

Floating
Point Unit
(Coproc 1)

Trap &
Memory Unit
(Coproc 0)

. . .

. . .

Integer
mul/div

Arithmetic &
Logic Unit

32 General
Purpose
Registers

Integer
Multiplier/Divider

32 Floating-Point
Registers

Floating-Point
Arithmetic Unit

4

MIPS Instruction Set Architecture ICS 233 – Computer Architecture & Assembly Language – KFUPM © Muhamed Mudawar – slide 7

MIPS General-Purpose Registers

� 32 General Purpose Registers (GPRs)
� Assembler uses the dollar notation to name registers

� $0 is register 0, $1 is register 1, …, and $31 is register 31

� All registers are 32-bit wide in MIPS32

� Register $0 is always zero

� Any value written to $0 is discarded

� Software conventions
� There are many registers (32)

� Software defines names to all registers

� To standardize their use in programs

� Example: $8 - $15 are called $t0 - $t7

� Used for temporary values

$0 = $zero

$1 = $at

$2 = $v0

$3 = $v1

$4 = $a0

$5 = $a1

$6 = $a2

$7 = $a3

$8 = $t0

$9 = $t1

$10 = $t2

$11 = $t3

$12 = $t4

$13 = $t5

$14 = $t6

$15 = $t7

$16 = $s0

$17 = $s1

$18 = $s2

$19 = $s3

$20 = $s4

$21 = $s5

$22 = $s6

$23 = $s7

$24 = $t8

$25 = $t9

$26 = $k0

$27 = $k1

$28 = $gp

$29 = $sp

$30 = $fp

$31 = $ra

MIPS Instruction Set Architecture ICS 233 – Computer Architecture & Assembly Language – KFUPM © Muhamed Mudawar – slide 8

MIPS Register Conventions

Name Register Usage
$zero $0 Always 0 (forced by hardware)
$at $1 Reserved for assembler use
$v0 – $v1 $2 – $3 Result values of a function
$a0 – $a3 $4 – $7 Arguments of a function
$t0 – $t7 $8 – $15 Temporary Values
$s0 – $s7 $16 – $23 Saved registers (preserved across call)
$t8 – $t9 $24 – $25 More temporaries
$k0 – $k1 $26 – $27 Reserved for OS kernel
$gp $28 Global pointer (points to global data)

$sp $29 Stack pointer (points to top of stack)
$fp $30 Frame pointer (points to stack frame)
$ra $31 Return address (used by jal for function call)

� Assembler can refer to registers by name or by number
� It is easier for you to remember registers by name

� Assembler converts register name to its corresponding number

5

MIPS Instruction Set Architecture ICS 233 – Computer Architecture & Assembly Language – KFUPM © Muhamed Mudawar – slide 9

Instruction Formats

� All instructions are 32-bit wide, Three instruction formats:

� Register (R-Type)
� Register-to-register instructions

� Op: operation code specifies the format of the instruction

� Immediate (I-Type)
� 16-bit immediate constant is part in the instruction

� Jump (J-Type)
� Used by jump instructions

Op6 Rs5 Rt5 Rd5 funct6sa5

Op6 Rs5 Rt5 immediate16

Op6 immediate26

MIPS Instruction Set Architecture ICS 233 – Computer Architecture & Assembly Language – KFUPM © Muhamed Mudawar – slide 10

Instruction Categories

� Integer Arithmetic
� Arithmetic, logical, and shift instructions

� Data Transfer
� Load and store instructions that access memory

� Data movement and conversions

� Jump and Branch
� Flow-control instructions that alter the sequential sequence

� Floating Point Arithmetic
� Instructions that operate on floating-point registers

� Miscellaneous
� Instructions that transfer control to/from exception handlers

� Memory management instructions

6

MIPS Instruction Set Architecture ICS 233 – Computer Architecture & Assembly Language – KFUPM © Muhamed Mudawar – slide 11

Layout of a Program in Memory

Stack Segment
0x7FFFFFFF

Dynamic Area

Static Area

Text Segment

Reserved

0x04000000

0x10000000

0

Data Segment

Memory
Addresses

in Hex

Stack Grows
Downwards

MIPS Instruction Set Architecture ICS 233 – Computer Architecture & Assembly Language – KFUPM © Muhamed Mudawar – slide 12

MIPS Assembly Language Program
Title: Filename:

Author: Date:

Description:

Input:

Output:

################# Data segment #################### #

.data

. . .

################# Code segment #################### #

.text

.globl main

main: # main program entry

. . .

li $v0, 10 # Exit program

syscall

7

MIPS Instruction Set Architecture ICS 233 – Computer Architecture & Assembly Language – KFUPM © Muhamed Mudawar – slide 13

.DATA, .TEXT, & .GLOBL Directives

� .DATA directive

� Defines the data segment of a program containing data

� The program's variables should be defined under this directive

� Assembler will allocate and initialize the storage of variables

� .TEXT directive

� Defines the code segment of a program containing instructions

� .GLOBL directive

� Declares a symbol as global

� Global symbols can be referenced from other files

� We use this directive to declare main procedure of a program

MIPS Instruction Set Architecture ICS 233 – Computer Architecture & Assembly Language – KFUPM © Muhamed Mudawar – slide 14

Next . . .

� Instruction Set Architecture

� Overview of the MIPS Architecture

� R-Type Arithmetic, Logical, and Shift Instructions

� I-Type Format and Immediate Constants

� Jump and Branch Instructions

� Translating If Statements and Boolean Expressions

� Load and Store Instructions

� Translating Loops and Traversing Arrays

� Addressing Modes

8

MIPS Instruction Set Architecture ICS 233 – Computer Architecture & Assembly Language – KFUPM © Muhamed Mudawar – slide 15

R-Type Format

� Op: operation code (opcode)
� Specifies the operation of the instruction

� Also specifies the format of the instruction

� funct : function code – extends the opcode
� Up to 26 = 64 functions can be defined for the same opcode

� MIPS uses opcode 0 to define R-type instructions

� Three Register Operands (common to many instructions)
� Rs, Rt: first and second source operands

� Rd: destination operand

� sa: the shift amount used by shift instructions

Op6 Rs5 Rt5 Rd5 funct6sa5

MIPS Instruction Set Architecture ICS 233 – Computer Architecture & Assembly Language – KFUPM © Muhamed Mudawar – slide 16

Integer Add /Subtract Instructions
Instruction Meaning R-Type Format
add $s1, $s2, $s3 $s1 = $s2 + $s3 op = 0 rs = $s2 rt = $s3 rd = $s1 sa = 0 f = 0x20
addu $s1, $s2, $s3 $s1 = $s2 + $s3 op = 0 rs = $s2 rt = $s3 rd = $s1 sa = 0 f = 0x21
sub $s1, $s2, $s3 $s1 = $s2 – $s3 op = 0 rs = $s2 rt = $s3 rd = $s1 sa = 0 f = 0x22
subu $s1, $s2, $s3 $s1 = $s2 – $s3 op = 0 rs = $s2 rt = $s3 rd = $s1 sa = 0 f = 0x23

� add & sub: overflow causes an arithmetic exception
� In case of overflow, result is not written to destination register

� addu & subu: same operation as add & sub
� However, no arithmetic exception can occur

� Overflow is ignored

� Many programming languages ignore overflow
� The + operator is translated into addu

� The – operator is translated into subu

9

MIPS Instruction Set Architecture ICS 233 – Computer Architecture & Assembly Language – KFUPM © Muhamed Mudawar – slide 17

Addition/Subtraction Example

� Consider the translation of: f = (g+h) – (i+j)

� Compiler allocates registers to variables
� Assume that f, g, h, i, and j are allocated registers $s0 thru $s4

� Called the saved registers: $s0 = $16, $s1 = $17, …, $s7 = $23

� Translation of: f = (g+h) – (i+j)
addu $t0, $s1, $s2 # $t0 = g + h

addu $t1, $s3, $s4 # $t1 = i + j

subu $s0, $t0, $t1 # f = (g+h)–(i+j)

� Temporary results are stored in $t0 = $8 and $t1 = $9

� Translate: addu $t0,$s1,$s2 to binary code

� Solution: 000000

op

10001

rs = $s1

10010

rt = $s2

01000

rd = $t0

00000

sa

100001

func

MIPS Instruction Set Architecture ICS 233 – Computer Architecture & Assembly Language – KFUPM © Muhamed Mudawar – slide 18

Logical Bitwise Operations

� Logical bitwise operations: and, or, xor, nor

� AND instruction is used to clear bits: x and 0 = 0

� OR instruction is used to set bits: x or 1 = 1

� XOR instruction is used to toggle bits: x xor 1 = not x

� NOR instruction can be used as a NOT, how?

� nor $s1,$s2,$s2 is equivalent to not $s1,$s2

x

0
0
1
1

y

0
1
0
1

x and y

0
0
0
1

x

0
0
1
1

y

0
1
0
1

x or y

0
1
1
1

x

0
0
1
1

y

0
1
0
1

x xor y

0
1
1
0

x

0
0
1
1

y

0
1
0
1

x nor y

1
0
0
0

10

MIPS Instruction Set Architecture ICS 233 – Computer Architecture & Assembly Language – KFUPM © Muhamed Mudawar – slide 19

Logical Bitwise Instructions
Instruction Meaning R-Type Format
and $s1, $s2, $s3 $s1 = $s2 & $s3 op = 0 rs = $s2 rt = $s3 rd = $s1 sa = 0 f = 0x24
or $s1, $s2, $s3 $s1 = $s2 | $s3 op = 0 rs = $s2 rt = $s3 rd = $s1 sa = 0 f = 0x25
xor $s1, $s2, $s3 $s1 = $s2 ^ $s3 op = 0 rs = $s2 rt = $s3 rd = $s1 sa = 0 f = 0x26
nor $s1, $s2, $s3 $s1 = ~($s2|$s3) op = 0 rs = $s2 rt = $s3 rd = $s1 sa = 0 f = 0x27

� Examples:

Assume $s1 = 0xabcd1234 and $s2 = 0xffff0000

and $s0,$s1,$s2 # $s0 = 0xabcd0000

or $s0,$s1,$s2 # $s0 = 0xffff1234

xor $s0,$s1,$s2 # $s0 = 0x54321234

nor $s0,$s1,$s2 # $s0 = 0x0000edcb

MIPS Instruction Set Architecture ICS 233 – Computer Architecture & Assembly Language – KFUPM © Muhamed Mudawar – slide 20

Shift Operations

� Shifting is to move all the bits in a register left or right

� Shifts by a constant amount: sll, srl, sra

� sll/srl mean shift left/right logical by a constant amount

� The 5-bit shift amount field is used by these instructions

� sra means shift right arithmetic by a constant amount

� The sign-bit (rather than 0) is shifted from the left

shift-in 0. . .shift-out MSB
sll 32-bit register

. . .shift-in 0 shift-out LSB
srl

. . .shift-in sign-bit shift-out LSB
sra

11

MIPS Instruction Set Architecture ICS 233 – Computer Architecture & Assembly Language – KFUPM © Muhamed Mudawar – slide 21

$s1 = 0x0000abcd

$s1 = 0xcd123400

Shift Instructions
Instruction Meaning R-Type Format
sll $s1,$s2,10 $s1 = $s2 << 10 op = 0 rs = 0 rt = $s2 rd = $s1 sa = 10 f = 0
srl $s1,$s2,10 $s1 = $s2>>>10 op = 0 rs = 0 rt = $s2 rd = $s1 sa = 10 f = 2
sra $s1, $s2, 10 $s1 = $s2 >> 10 op = 0 rs = 0 rt = $s2 rd = $s1 sa = 10 f = 3
sllv $s1,$s2,$s3 $s1 = $s2 << $s3 op = 0 rs = $s3 rt = $s2 rd = $s1 sa = 0 f = 4
srlv $s1,$s2,$s3 $s1 = $s2>>>$s3 op = 0 rs = $s3 rt = $s2 rd = $s1 sa = 0 f = 6
srav $s1,$s2,$s3 $s1 = $s2 >> $s3 op = 0 rs = $s3 rt = $s2 rd = $s1 sa = 0 f = 7

� Shifts by a variable amount: sllv , srlv , srav

� Same as sll , srl , sra , but a register is used for shift amount

� Examples: assume that $s2 = 0xabcd1234, $s3 = 16
sll $s1,$s2,8

sra $s1,$s2,4 $s1 = 0xfabcd123

srlv $s1,$s2,$s3

rt=$s2=10010op=000000 rs=$s3=10011 rd=$s1=10001 sa=00000 f=000110

$s1 = $s2<<8

$s1 = $s2>>4

$s1 = $s2>>>$s3

MIPS Instruction Set Architecture ICS 233 – Computer Architecture & Assembly Language – KFUPM © Muhamed Mudawar – slide 22

Binary Multiplication

� Shift-left (sll) instruction can perform multiplication

� When the multiplier is a power of 2

� You can factor any binary number into powers of 2

� Example: multiply $s1 by 36

� Factor 36 into (4 + 32) and use distributive property of multiplication

� $s2 = $s1*36 = $s1*(4 + 32) = $s1*4 + $s1*32

sll $t0, $s1, 2 ; $t0 = $s1 * 4

sll $t1, $s1, 5 ; $t1 = $s1 * 32

addu $s2, $t0, $t1 ; $s2 = $s1 * 36

12

MIPS Instruction Set Architecture ICS 233 – Computer Architecture & Assembly Language – KFUPM © Muhamed Mudawar – slide 23

Your Turn . . .

sll $t0, $s1, 1 ; $t0 = $s1 * 2

sll $t1, $s1, 3 ; $t1 = $s1 * 8

addu $s2, $t0, $t1 ; $s2 = $s1 * 10

sll $t0, $s1, 4 ; $t0 = $s1 * 16

addu $s2, $s2, $t0 ; $s2 = $s1 * 26

Multiply $s1 by 26, using shift and add instructions

Hint: 26 = 2 + 8 + 16

Multiply $s1 by 31, Hint: 31 = 32 – 1

sll $s2, $s1, 5 ; $s2 = $s1 * 32

subu $s2, $s2, $s1 ; $s2 = $s1 * 31

MIPS Instruction Set Architecture ICS 233 – Computer Architecture & Assembly Language – KFUPM © Muhamed Mudawar – slide 24

Next . . .

� Instruction Set Architecture

� Overview of the MIPS Architecture

� R-Type Arithmetic, Logical, and Shift Instructions

� I-Type Format and Immediate Constants

� Jump and Branch Instructions

� Translating If Statements and Boolean Expressions

� Load and Store Instructions

� Translating Loops and Traversing Arrays

� Addressing Modes

13

MIPS Instruction Set Architecture ICS 233 – Computer Architecture & Assembly Language – KFUPM © Muhamed Mudawar – slide 25

I-Type Format
� Constants are used quite frequently in programs

� The R-type shift instructions have a 5-bit shift amount constant

� What about other instructions that need a constant?

� I-Type: Instructions with Immediate Operands

� 16-bit immediate constant is stored inside the instruction
� Rs is the source register number

� Rt is now the destination register number (for R-type it was Rd)

� Examples of I-Type ALU Instructions:
� Add immediate: addi $s1, $s2, 5 # $s1 = $s2 + 5

� OR immediate: ori $s1, $s2, 5 # $s1 = $s2 | 5

Op6 Rs5 Rt5 immediate16

MIPS Instruction Set Architecture ICS 233 – Computer Architecture & Assembly Language – KFUPM © Muhamed Mudawar – slide 26

I-Type ALU Instructions
Instruction Meaning I-Type Format
addi $s1, $s2, 10 $s1 = $s2 + 10 op = 0x8 rs = $s2 rt = $s1 imm16 = 10
addiu $s1, $s2, 10 $s1 = $s2 + 10 op = 0x9 rs = $s2 rt = $s1 imm16 = 10
andi $s1, $s2, 10 $s1 = $s2 & 10 op = 0xc rs = $s2 rt = $s1 imm16 = 10
ori $s1, $s2, 10 $s1 = $s2 | 10 op = 0xd rs = $s2 rt = $s1 imm16 = 10
xori $s1, $s2, 10 $s1 = $s2 ^ 10 op = 0xe rs = $s2 rt = $s1 imm16 = 10
lui $s1, 10 $s1 = 10 << 16 op = 0xf 0 rt = $s1 imm16 = 10

� addi: overflow causes an arithmetic exception

� In case of overflow, result is not written to destination register

� addiu: same operation as addi but overflow is ignored

� Immediate constant for addi and addiu is signed

� No need for subi or subiu instructions

� Immediate constant for andi, ori, xori is unsigned

14

MIPS Instruction Set Architecture ICS 233 – Computer Architecture & Assembly Language – KFUPM © Muhamed Mudawar – slide 27

� Examples: assume A, B, C are allocated $s0, $s1, $s2

� No need for subi , because addi has signed immediate

� Register 0 ($zero) has always the value 0

Examples: I-Type ALU Instructions

A = B+5; translated as

C = B–1; translated as

addiu $s0,$s1,5

addiu $s2,$s1,-1

A = B&0xf; translated as

C = B|0xf; translated as

andi $s0,$s1,0xf

ori $s2,$s1,0xf

C = 5; translated as

A = B; translated as

ori $s2,$zero,5

ori $s0,$s1,0

rt=$s2=10010op=001001 rs=$s1=10001 imm = -1 = 1111111111111111

MIPS Instruction Set Architecture ICS 233 – Computer Architecture & Assembly Language – KFUPM © Muhamed Mudawar – slide 28

� I-Type instructions can have only 16-bit constants

� What if we want to load a 32-bit constant into a register?

� Can’t have a 32-bit constant in I-Type instructions �

� We have already fixed the sizes of all instructions to 32 bits

� Solution: use two instructions instead of one ☺

� Suppose we want: $s1=0xAC5165D9 (32-bit constant)

� lui : load upper immediate

32-bit Constants

Op6 Rs5 Rt5 immediate16

lui $s1,0xAC51

ori $s1,$s1,0x65D9 0xAC51 0x65D9$s1=$17

0xAC51 0x0000$s1=$17

clear lower
16 bits

load upper
16 bits

15

MIPS Instruction Set Architecture ICS 233 – Computer Architecture & Assembly Language – KFUPM © Muhamed Mudawar – slide 29

Next . . .

� Instruction Set Architecture

� Overview of the MIPS Architecture

� R-Type Arithmetic, Logical, and Shift Instructions

� I-Type Format and Immediate Constants

� Jump and Branch Instructions

� Translating If Statements and Boolean Expressions

� Load and Store Instructions

� Translating Loops and Traversing Arrays

� Addressing Modes

MIPS Instruction Set Architecture ICS 233 – Computer Architecture & Assembly Language – KFUPM © Muhamed Mudawar – slide 30

J-Type Format

� J-type format is used for unconditional jump instruction:

j label # jump to label
. . .

label:

� 26-bit immediate value is stored in the instruction
� Immediate constant specifies address of target instruction

� Program Counter (PC) is modified as follows:

� Next PC =

� Upper 4 most significant bits of PC are unchanged

Op6 immediate26

immediate26PC4 00
least-significant

2 bits are 00

16

MIPS Instruction Set Architecture ICS 233 – Computer Architecture & Assembly Language – KFUPM © Muhamed Mudawar – slide 31

� MIPS compare and branch instructions:

beq Rs,Rt,label branch to label if (Rs == Rt)

bne Rs,Rt,label branch to label if (Rs != Rt)

� MIPS compare to zero & branch instructions

Compare to zero is used frequently and implemented efficiently

bltz Rs,label branch to label if (Rs < 0)

bgtz Rs,label branch to label if (Rs > 0)

blez Rs,label branch to label if (Rs <= 0)

bgez Rs,label branch to label if (Rs >= 0)

� No need for beqz and bnez instructions. Why?

Conditional Branch Instructions

MIPS Instruction Set Architecture ICS 233 – Computer Architecture & Assembly Language – KFUPM © Muhamed Mudawar – slide 32

Set on Less Than Instructions

� MIPS also provides set on less than instructions

slt rd,rs,rt if (rs < rt) rd = 1 else rd = 0

sltu rd,rs,rt unsigned <

slti rt,rs,im 16 if (rs < im16) rt = 1 else rt = 0

sltiu rt,rs,im 16 unsigned <

� Signed / Unsigned Comparisons

Can produce different results

Assume $s0 = 1 and $s1 = -1 = 0xffffffff

slt $t0,$s0,$s1 results in $t0 = 0

stlu $t0,$s0,$s1 results in $t0 = 1

17

MIPS Instruction Set Architecture ICS 233 – Computer Architecture & Assembly Language – KFUPM © Muhamed Mudawar – slide 33

More on Branch Instructions

� MIPS hardware does NOT provide instructions for …

blt, bltu branch if less than (signed/unsigned)

ble, bleu branch if less or equal (signed/unsigned)

bgt, bgtu branch if greater than (signed/unsigned)

bge, bgeu branch if greater or equal (signed/unsigned)

Can be achieved with a sequence of 2 instructions

� How to implement: blt $s0,$s1,label
� Solution: slt $at,$s0,$s1

bne $at,$zero,label

� How to implement: ble $s2,$s3,label
� Solution: slt $at,$s3,$s2

beq $at,$zero,label

MIPS Instruction Set Architecture ICS 233 – Computer Architecture & Assembly Language – KFUPM © Muhamed Mudawar – slide 34

Pseudo-Instructions

� Introduced by assembler as if they were real instructions

� To facilitate assembly language programming

� Assembler reserves $at = $1 for its own use

� $at is called the assembler temporary register

ori $s1, $zero, 0xabcdli $s1, 0xabcd

slt $s1, $s3, $s2sgt $s1, $s2, $s3

nor $s1, $s2, $s2not $s1, $s2

slt $at, $s1, $s2
bne $at, $zero, label

blt $s1, $s2, label

lui $s1, 0xabcd
ori $s1, $s1, 0x1234

li $s1, 0xabcd1234

addu Ss1, $s2, $zeromove $s1, $s2
Conversion to Real InstructionsPseudo-Instructions

18

MIPS Instruction Set Architecture ICS 233 – Computer Architecture & Assembly Language – KFUPM © Muhamed Mudawar – slide 35

Jump, Branch, and SLT Instructions
Instruction Meaning Format
j label jump to label op6 = 2 imm26

beq rs, rt, label branch if (rs == rt) op6 = 4 rs5 rt5 imm16

bne rs, rt, label branch if (rs != rt) op6 = 5 rs5 rt5 imm16

blez rs, label branch if (rs<=0) op6 = 6 rs5 0 imm16

bgtz rs, label branch if (rs > 0) op6 = 7 rs5 0 imm16

bltz rs, label branch if (rs < 0) op6 = 1 rs5 0 imm16

bgez rs, label branch if (rs>=0) op6 = 1 rs5 1 imm16

Instruction Meaning Format
slt rd, rs, rt rd=(rs<rt?1:0) op6 = 0 rs5 rt5 rd5 0 0x2a
sltu rd, rs, rt rd=(rs<rt?1:0) op6 = 0 rs5 rt5 rd5 0 0x2b
slti rt, rs, imm16 rt=(rs<imm?1:0) 0xa rs5 rt5 imm16

sltiu rt, rs, imm16 rt=(rs<imm?1:0) 0xb rs5 rt5 imm16

MIPS Instruction Set Architecture ICS 233 – Computer Architecture & Assembly Language – KFUPM © Muhamed Mudawar – slide 36

Next . . .

� Instruction Set Architecture

� Overview of the MIPS Architecture

� R-Type Arithmetic, Logical, and Shift Instructions

� I-Type Format and Immediate Constants

� Jump and Branch Instructions

� Translating If Statements and Boolean Expressions

� Load and Store Instructions

� Translating Loops and Traversing Arrays

� Addressing Modes

19

MIPS Instruction Set Architecture ICS 233 – Computer Architecture & Assembly Language – KFUPM © Muhamed Mudawar – slide 37

Translating an IF Statement

� Consider the following IF statement:

if (a == b) c = d + e; else c = d – e;

Assume that a, b, c, d, e are in $s0, …, $s4 respectively

� How to translate the above IF statement?

bne $s0, $s1, else

addu $s2, $s3, $s4

j exit

else: subu $s2, $s3, $s4

exit: . . .

MIPS Instruction Set Architecture ICS 233 – Computer Architecture & Assembly Language – KFUPM © Muhamed Mudawar – slide 38

Compound Expression with AND

� Programming languages use short-circuit evaluation

� If first expression is false, second expression is skipped

if (($s1 > 0) && ($s2 < 0)) {$s3++;}

One Possible Implementation ...

bgtz $s1, L1 # first expression

j next # skip if false

L1: bltz $s2, L2 # second expression

j next # skip if false

L2: addiu $s3,$s3,1 # both are true

next:

20

MIPS Instruction Set Architecture ICS 233 – Computer Architecture & Assembly Language – KFUPM © Muhamed Mudawar – slide 39

Better Implementation for AND

The following implementation uses less code

Reverse the relational operator

Allow the program to fall through to the second expression

Number of instructions is reduced from 5 to 3

if (($s1 > 0) && ($s2 < 0)) {$s3++;}

Better Implementation ...

blez $s1, next # skip if false

bgez $s2, next # skip if false

addiu $s3,$s3,1 # both are true

next:

MIPS Instruction Set Architecture ICS 233 – Computer Architecture & Assembly Language – KFUPM © Muhamed Mudawar – slide 40

Compound Expression with OR

� Short-circuit evaluation for logical OR

� If first expression is true, second expression is skipped

� Use fall-through to keep the code as short as possible

� bgt , ble , and li are pseudo-instructions

� Translated by the assembler to real instructions

if (($sl > $s2) || ($s2 > $s3)) {$s4 = 1;}

bgt $s1, $s2, L1 # yes, execute if part

ble $s2, $s3, next # no: skip if part

L1: li $s4, 1 # set $s4 to 1

next:

21

MIPS Instruction Set Architecture ICS 233 – Computer Architecture & Assembly Language – KFUPM © Muhamed Mudawar – slide 41

Your Turn . . .

� Translate the IF statement to assembly language

� $s1 and $s2 values are unsigned

� $s3, $s4, and $s5 values are signed

bgtu $s1, $s2, next

move $s3, $s4

next:

if($s1 <= $s2) {

$s3 = $s4

}

if (($s3 <= $s4) &&

($s4 > $s5)) {

$s3 = $s4 + $s5

}

bgt $s3, $s4, next

ble $s4, $s5, next

addu $s3, $s4, $s5

next:

MIPS Instruction Set Architecture ICS 233 – Computer Architecture & Assembly Language – KFUPM © Muhamed Mudawar – slide 42

Next . . .

� Instruction Set Architecture

� Overview of the MIPS Architecture

� R-Type Arithmetic, Logical, and Shift Instructions

� I-Type Format and Immediate Constants

� Jump and Branch Instructions

� Translating If Statements and Boolean Expressions

� Load and Store Instructions

� Translating Loops and Traversing Arrays

� Addressing Modes

22

MIPS Instruction Set Architecture ICS 233 – Computer Architecture & Assembly Language – KFUPM © Muhamed Mudawar – slide 43

Load and Store Instructions

� Instructions that transfer data between memory & registers

� Programs include variables such as arrays and objects

� Such variables are stored in memory

� Load Instruction:

� Transfers data from memory to a register

� Store Instruction:

� Transfers data from a register to memory

� Memory address must be specified by load and store

MemoryRegisters

load

store

MIPS Instruction Set Architecture ICS 233 – Computer Architecture & Assembly Language – KFUPM © Muhamed Mudawar – slide 44

� Load Word Instruction (Word = 4 bytes in MIPS)

lw Rt, imm 16(Rs) # Rt ���� MEMORY[Rs+imm16]

� Store Word Instruction

sw Rt, imm 16(Rs) # Rt ���� MEMORY[Rs+imm16]

� Base or Displacement addressing is used

� Memory Address = Rs (base) + Immediate16 (displacement)

� Immediate16 is sign-extended to have a signed displacement

Load and Store Word

Op6 Rs5 Rt5 immediate16

Base or Displacement Addressing

Memory Word

Base address

+

23

MIPS Instruction Set Architecture ICS 233 – Computer Architecture & Assembly Language – KFUPM © Muhamed Mudawar – slide 45

Example on Load & Store

� Translate A[1] = A[2] + 5 (A is an array of words)

� Assume that address of array A is stored in register $s0

lw $s1, 8($s0) # $s1 = A[2]

addiu $s2, $s1, 5 # $s2 = A[2] + 5

sw $s2, 4($s0) # A[1] = $s2

� Index of a[2] and a[1] should be multiplied by 4. Why?

sw

Memory

A[1]

A[0]

A[2]

A[3]

. . .

. . .

A+12

A+8

A+4

A

Registers

address of A$s0 = $16

value of A[2]$s1 = $17

A[2] + 5$s2 = $18

. . .

. . .

lw

MIPS Instruction Set Architecture ICS 233 – Computer Architecture & Assembly Language – KFUPM © Muhamed Mudawar – slide 46

0 0

s s s

s s

0 0

s

bu

b

h

hu

sign – extend

zero – extend

sign – extend

zero – extend

32-bit Register

� The MIPS processor supports the following data formats:
� Byte = 8 bits, Halfword = 16 bits, Word = 32 bits

� Load & store instructions for bytes and halfwords
� lb = load byte, lbu = load byte unsigned, sb = store byte

� lh = load half, lhu = load half unsigned, sh = store halfword

� Load expands a memory data to fit into a 32-bit register

� Store reduces a 32-bit register to fit in memory

Load and Store Byte and Halfword

24

MIPS Instruction Set Architecture ICS 233 – Computer Architecture & Assembly Language – KFUPM © Muhamed Mudawar – slide 47

Load and Store Instructions
Instruction Meaning I-Type Format
lb rt, imm16(rs) rt = MEM[rs+imm16] 0x20 rs5 rt5 imm16

lh rt, imm16(rs) rt = MEM[rs+imm16] 0x21 rs5 rt5 imm16

lw rt, imm16(rs) rt = MEM[rs+imm16] 0x23 rs5 rt5 imm16

lbu rt, imm16(rs) rt = MEM[rs+imm16] 0x24 rs5 rt5 imm16

lhu rt, imm16(rs) rt = MEM[rs+imm16] 0x25 rs5 rt5 imm16

sb rt, imm16(rs) MEM[rs+imm16] = rt 0x28 rs5 rt5 imm16

sh rt, imm16(rs) MEM[rs+imm16] = rt 0x29 rs5 rt5 imm16

sw rt, imm16(rs) MEM[rs+imm16] = rt 0x2b rs5 rt5 imm16

� Base or Displacement Addressing is used
� Memory Address = Rs (base) + Immediate16 (displacement)

� Two variations on base addressing
� If Rs = $zero = 0 then Address = Immediate16 (absolute)

� If Immediate16 = 0 then Address = Rs (register indirect)

MIPS Instruction Set Architecture ICS 233 – Computer Architecture & Assembly Language – KFUPM © Muhamed Mudawar – slide 48

Next . . .

� Instruction Set Architecture

� Overview of the MIPS Architecture

� R-Type Arithmetic, Logical, and Shift Instructions

� I-Type Format and Immediate Constants

� Jump and Branch Instructions

� Translating If Statements and Boolean Expressions

� Load and Store Instructions

� Translating Loops and Traversing Arrays

� Addressing Modes

25

MIPS Instruction Set Architecture ICS 233 – Computer Architecture & Assembly Language – KFUPM © Muhamed Mudawar – slide 49

Translating a WHILE Loop

� Consider the following WHILE statement:

i = 0; while (A[i] != k) i = i+1;

Where A is an array of integers (4 bytes per element)

Assume address A, i, k in $s0, $s1, $s2, respectively

� How to translate above WHILE statement?
xor $s1, $s1, $s1 # i = 0
move $t0, $s0 # $t0 = address A

loop: lw $t1, 0($t0) # $t1 = A[i]
beq $t1, $s2, exit # exit if (A[i]== k)
addiu $s1, $s1, 1 # i = i+1
sll $t0, $s1, 2 # $t0 = 4*i
addu $t0, $s0, $t0 # $t0 = address A[i]
j loop

exit: . . .

Memory

A[2]

A[i]

A[1]

A[0]

. . .

. . .

A

A+4

A+8

A+4×i

. . .

MIPS Instruction Set Architecture ICS 233 – Computer Architecture & Assembly Language – KFUPM © Muhamed Mudawar – slide 50

Using Pointers to Traverse Arrays

� Consider the same WHILE loop:

i = 0; while (A[i] != k) i = i+1;

Where address of A, i, k are in $s0, $s1, $s2, respectively

� We can use a pointer to traverse array A
Pointer is incremented by 4 (faster than indexing)

move $t0, $s0 # $t0 = $s0 = addr A

j cond # test condition

loop: addiu $s1, $s1, 1 # i = i+1

addiu $t0, $t0, 4 # point to next

cond: lw $t1, 0($t0) # $t1 = A[i]

bne $t1, $s2, loop # loop if A[i]!= k

� Only 4 instructions (rather than 6) in loop body

26

MIPS Instruction Set Architecture ICS 233 – Computer Architecture & Assembly Language – KFUPM © Muhamed Mudawar – slide 51

Copying a String

move $t0, $s0 # $t0 = pointer to source

move $t1, $s1 # $t1 = pointer to target

L1: lb $t2, 0($t0) # load byte into $t2

sb $t2, 0($t1) # store byte into target

addiu $t0, $t0, 1 # increment source pointer

addiu $t1, $t1, 1 # increment target pointer

bne $t2, $zero, L1 # loop until NULL char

The following code copies source string to target string

Address of source in $s0 and address of target in $s1

Strings are terminated with a null character (C strings)

i = 0;

do {target[i]=source[i]; i++;} while (source[i]!=0) ;

MIPS Instruction Set Architecture ICS 233 – Computer Architecture & Assembly Language – KFUPM © Muhamed Mudawar – slide 52

Summing an Integer Array

move $t0, $s0 # $t0 = address A[i]

xor $t1, $t1, $t1 # $t1 = i = 0

xor $s2, $s2, $s2 # $s2 = sum = 0

L1: lw $t2, 0($t0) # $t2 = A[i]

addu $s2, $s2, $t2 # sum = sum + A[i]

addiu $t0, $t0, 4 # point to next A[i]

addiu $t1, $t1, 1 # i++

bne $t1, $s1, L1 # loop if (i != n)

Assume $s0 = array address, $s1 = array length = n

sum = 0;

for (i=0; i<n; i++) sum = sum + A[i];

27

MIPS Instruction Set Architecture ICS 233 – Computer Architecture & Assembly Language – KFUPM © Muhamed Mudawar – slide 53

Next . . .

� Instruction Set Architecture

� Overview of the MIPS Architecture

� R-Type Arithmetic, Logical, and Shift Instructions

� I-Type Format and Immediate Constants

� Jump and Branch Instructions

� Translating If Statements and Boolean Expressions

� Load and Store Instructions

� Translating Loops and Traversing Arrays

� Addressing Modes

MIPS Instruction Set Architecture ICS 233 – Computer Architecture & Assembly Language – KFUPM © Muhamed Mudawar – slide 54

Addressing Modes

Op6 Rs5 Rt5 immediate16

Base or Displacement Addressing

Word

Operand is in memory (load/store)

Register = Base address

+ HalfwordByte

Op6 Rs5 Rt5 immediate16

Immediate Addressing

Operand is a constant

Op6 Rs5 Rt5 Rd5 funct6sa5

Register Addressing

Register

Operand is in a register

� Where are the operands?

� How memory addresses are computed?

28

MIPS Instruction Set Architecture ICS 233 – Computer Architecture & Assembly Language – KFUPM © Muhamed Mudawar – slide 55

Branch / Jump Addressing Modes

Used for branching (beq, bne, …)

Word = Target Instruction

Op6 Rs5 Rt5 immediate16

PC-Relative Addressing

PC30 00

+1

Target Instruction Address
PC = PC + 4 × (1 + immediate16)

PC30 + immediate16 + 1 00

immediate26PC4 00Target Instruction Address

Word = Target Instruction

immediate26Op6

Pseudo-direct Addressing

PC26

:
00

Used by jump instruction

PC4

MIPS Instruction Set Architecture ICS 233 – Computer Architecture & Assembly Language – KFUPM © Muhamed Mudawar – slide 56

Jump and Branch Limits

� Jump Address Boundary = 226 instructions = 256 MB

� Text segment cannot exceed 226 instructions or 256 MB

� Upper 4 bits of PC are unchanged

� Branch Address Boundary

� Branch instructions use I-Type format (16-bit immediate constant)

� PC-relative addressing:

� Target instruction address = PC + 4×(1 + immediate16)

� Count number of instructions to branch from next instruction

� Positive constant => Forward Branch, Negative => Backward branch

� At most ±215 instructions to branch (most branches are near)

immediate26PC4 00Target Instruction Address

PC30 + immediate16 + 1 00

29

MIPS Instruction Set Architecture ICS 233 – Computer Architecture & Assembly Language – KFUPM © Muhamed Mudawar – slide 57

Summary of RISC Design

� All instructions are typically of one size

� Few instruction formats

� All operations on data are register to register

� Operands are read from registers

� Result is stored in a register

� General purpose integer and floating point registers

� Typically, 32 integer and 32 floating-point registers

� Memory access only via load and store instructions

� Load and store: bytes, half words, words, and double words

� Few simple addressing modes

MIPS Instruction Set Architecture ICS 233 – Computer Architecture & Assembly Language – KFUPM © Muhamed Mudawar – slide 58

Four Design Principles

1. Simplicity favors regularity
� Fix the size of instructions (simplifies fetching & decoding)

� Fix the number of operands per instruction

� Three operands is the natural number for a typical instruction

2. Smaller is faster
� Limit the number of registers for faster access (typically 32)

3. Make the common case fast
� Include constants inside instructions (faster than loading them)

� Design most instructions to be register-to-register

4. Good design demands good compromises
� Fixed-size instructions compromise the size of constants

