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Presentation Outline
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� Critical Interface between hardware and software

� An ISA includes the following …

� Instructions and Instruction Formats

� Data Types, Encodings, and Representations

� Programmable Storage: Registers and Memory

� Addressing Modes: to address Instructions and Data

� Handling Exceptional Conditions (like division by zero)

� Examples (Versions) Introduced in

� Intel (8086, 80386, Pentium, ...) 1978 

� MIPS (MIPS I, II, III, IV, V) 1986

� PowerPC (601, 604, …) 1993

Instruction Set Architecture (ISA)
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Instructions

� Instructions are the language of the machine

� We will study the MIPS instruction set architecture

� Known as Reduced Instruction Set Computer (RISC)

� Elegant and relatively simple design

� Similar to RISC architectures developed in mid-1980’s and 90’s

� Very popular, used in many products

� Silicon Graphics, ATI, Cisco, Sony, etc.

� Comes next in sales after Intel IA-32 processors

� Almost 100 million MIPS processors sold in 2002 (and increasing)

� Alternative design: Intel IA-32

� Known as Complex Instruction Set Computer (CISC)



3

MIPS Instruction Set Architecture ICS 233 – Computer Architecture & Assembly Language  – KFUPM © Muhamed Mudawar – slide 5

Next . . .

� Instruction Set Architecture

� Overview of the MIPS Architecture

� R-Type Arithmetic, Logical, and Shift Instructions

� I-Type Format and Immediate Constants 

� Jump and Branch Instructions

� Translating If Statements and Boolean Expressions

� Load and Store Instructions

� Translating Loops and Traversing Arrays

� Addressing Modes

MIPS Instruction Set Architecture ICS 233 – Computer Architecture & Assembly Language  – KFUPM © Muhamed Mudawar – slide 6

Overview of the MIPS Architecture

Memory
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MIPS General-Purpose Registers

� 32 General Purpose Registers (GPRs)
� Assembler uses the dollar notation to name registers

� $0 is register 0, $1 is register 1, …, and $31 is register 31

� All registers are 32-bit wide in MIPS32

� Register $0 is always zero

� Any value written to $0 is discarded

� Software conventions
� There are many registers (32)

� Software defines names to all registers

� To standardize their use in programs 

� Example: $8 - $15 are called $t0 - $t7

� Used for temporary values

$0  = $zero

$1  = $at

$2  = $v0

$3  = $v1

$4  = $a0

$5  = $a1

$6  = $a2

$7  = $a3

$8  = $t0

$9  = $t1

$10 = $t2

$11 = $t3

$12 = $t4

$13 = $t5

$14 = $t6

$15 = $t7

$16 = $s0

$17 = $s1

$18 = $s2

$19 = $s3

$20 = $s4

$21 = $s5

$22 = $s6

$23 = $s7

$24 = $t8

$25 = $t9

$26 = $k0

$27 = $k1

$28 = $gp

$29 = $sp

$30 = $fp

$31 = $ra
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MIPS Register Conventions

Name Register Usage
$zero $0 Always 0 (forced by hardware)
$at $1 Reserved for assembler use
$v0 – $v1 $2 – $3 Result values of a function
$a0 – $a3 $4 – $7 Arguments of a function
$t0 – $t7 $8 – $15 Temporary Values
$s0 – $s7 $16 – $23 Saved registers (preserved across call)
$t8 – $t9 $24 – $25 More temporaries
$k0 – $k1 $26 – $27 Reserved for OS kernel
$gp $28 Global pointer (points to global data)

$sp $29 Stack pointer (points to top of stack)
$fp $30 Frame pointer (points to stack frame)
$ra $31 Return address (used by jal for function call)

� Assembler can refer to registers by name or by number
� It is easier for you to remember registers by name

� Assembler converts register name to its corresponding number



5

MIPS Instruction Set Architecture ICS 233 – Computer Architecture & Assembly Language  – KFUPM © Muhamed Mudawar – slide 9

Instruction Formats

� All instructions are 32-bit wide, Three instruction formats:

� Register (R-Type)
� Register-to-register instructions

� Op: operation code specifies the format of the instruction

� Immediate (I-Type)
� 16-bit immediate constant is part in the instruction

� Jump (J-Type)
� Used by jump instructions

Op6 Rs5 Rt5 Rd5 funct6sa5

Op6 Rs5 Rt5 immediate16

Op6 immediate26
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Instruction Categories

� Integer Arithmetic
� Arithmetic, logical, and shift instructions

� Data Transfer
� Load and store instructions that access memory

� Data movement and conversions

� Jump and Branch
� Flow-control instructions that alter the sequential sequence

� Floating Point Arithmetic
� Instructions that operate on floating-point registers

� Miscellaneous
� Instructions that transfer control to/from exception handlers

� Memory management instructions



6

MIPS Instruction Set Architecture ICS 233 – Computer Architecture & Assembly Language  – KFUPM © Muhamed Mudawar – slide 11

Layout of a Program in Memory

Stack Segment
0x7FFFFFFF

Dynamic Area

Static Area

Text Segment

Reserved

0x04000000

0x10000000

0

Data Segment

Memory
Addresses

in Hex

Stack Grows
Downwards
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MIPS Assembly Language Program
# Title: Filename:

# Author: Date:

# Description:

# Input:

# Output:

################# Data segment #################### #

.data

. . .

################# Code segment #################### #

.text

.globl main

main: # main program entry

. . .

li $v0, 10 # Exit program

syscall
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.DATA, .TEXT, & .GLOBL Directives

� .DATA directive

� Defines the data segment of a program containing data

� The program's variables should be defined under this directive

� Assembler will allocate and initialize the storage of variables

� .TEXT directive

� Defines the code segment of a program containing instructions

� .GLOBL directive

� Declares a symbol as global

� Global symbols can be referenced from other files

� We use this directive to declare main procedure of a program
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R-Type Format

� Op: operation code (opcode)
� Specifies the operation of the instruction

� Also specifies the format of the instruction

� funct : function code – extends the opcode
� Up to 26 = 64 functions can be defined for the same opcode

� MIPS uses opcode 0 to define R-type instructions

� Three Register Operands (common to many instructions)
� Rs, Rt: first and second source operands

� Rd: destination operand

� sa: the shift amount used by shift instructions

Op6 Rs5 Rt5 Rd5 funct6sa5
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Integer Add /Subtract Instructions
Instruction Meaning R-Type Format
add $s1, $s2, $s3 $s1 = $s2 + $s3 op = 0 rs = $s2 rt = $s3 rd = $s1 sa = 0 f = 0x20
addu $s1, $s2, $s3 $s1 = $s2 + $s3 op = 0 rs = $s2 rt = $s3 rd = $s1 sa = 0 f = 0x21
sub $s1, $s2, $s3 $s1 = $s2 – $s3 op = 0 rs = $s2 rt = $s3 rd = $s1 sa = 0 f = 0x22
subu $s1, $s2, $s3 $s1 = $s2 – $s3 op = 0 rs = $s2 rt = $s3 rd = $s1 sa = 0 f = 0x23

� add & sub: overflow causes an arithmetic exception
� In case of overflow, result is not written to destination register

� addu & subu: same operation as add & sub
� However, no arithmetic exception can occur

� Overflow is ignored

� Many programming languages ignore overflow
� The + operator is translated into addu

� The – operator is translated into subu
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Addition/Subtraction Example

� Consider the translation of: f = (g+h) – (i+j)

� Compiler allocates registers to variables
� Assume that f, g, h, i, and j are allocated registers $s0 thru $s4

� Called the saved registers: $s0 = $16, $s1 = $17, …, $s7 = $23

� Translation of: f = (g+h) – (i+j)
addu $t0, $s1, $s2 # $t0 = g + h

addu $t1, $s3, $s4 # $t1 = i + j

subu $s0, $t0, $t1 # f = (g+h)–(i+j)

� Temporary results are stored in $t0 = $8 and $t1 = $9

� Translate: addu $t0,$s1,$s2 to binary code

� Solution: 000000

op

10001

rs = $s1

10010

rt = $s2

01000

rd = $t0

00000

sa

100001

func
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Logical Bitwise Operations

� Logical bitwise operations: and, or, xor, nor

� AND instruction is used to clear bits: x and 0 = 0

� OR instruction is used to set bits: x or 1 = 1

� XOR instruction is used to toggle bits: x xor 1 = not x

� NOR instruction can be used as a NOT, how?

� nor $s1,$s2,$s2 is equivalent to not $s1,$s2

x

0
0
1
1

y

0
1
0
1

x and y

0
0
0
1

x

0
0
1
1

y

0
1
0
1

x or y

0
1
1
1

x

0
0
1
1

y

0
1
0
1

x xor y

0
1
1
0

x

0
0
1
1

y

0
1
0
1

x nor y

1
0
0
0
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Logical Bitwise Instructions
Instruction Meaning R-Type Format
and $s1, $s2, $s3 $s1 = $s2 & $s3 op = 0 rs = $s2 rt = $s3 rd = $s1 sa = 0 f = 0x24
or $s1, $s2, $s3 $s1 = $s2 | $s3 op = 0 rs = $s2 rt = $s3 rd = $s1 sa = 0 f = 0x25
xor $s1, $s2, $s3 $s1 = $s2 ^ $s3 op = 0 rs = $s2 rt = $s3 rd = $s1 sa = 0 f = 0x26
nor $s1, $s2, $s3 $s1 = ~($s2|$s3) op = 0 rs = $s2 rt = $s3 rd = $s1 sa = 0 f = 0x27

� Examples:

Assume $s1 = 0xabcd1234 and $s2 = 0xffff0000

and $s0,$s1,$s2 # $s0 = 0xabcd0000

or  $s0,$s1,$s2 # $s0 = 0xffff1234

xor $s0,$s1,$s2 # $s0 = 0x54321234

nor $s0,$s1,$s2 # $s0 = 0x0000edcb
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Shift Operations

� Shifting is to move all the bits in a register left or right

� Shifts by a constant amount: sll, srl, sra

� sll/srl mean shift left/right logical by a constant amount

� The 5-bit shift amount field is used by these instructions

� sra means shift right arithmetic by a constant amount

� The sign-bit (rather than 0) is shifted from the left

shift-in 0. . .shift-out MSB
sll 32-bit register

. . .shift-in 0 shift-out LSB
srl

. . .shift-in sign-bit shift-out LSB
sra
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$s1 = 0x0000abcd

$s1 = 0xcd123400

Shift Instructions
Instruction Meaning R-Type Format
sll $s1,$s2,10 $s1 = $s2 << 10 op = 0 rs = 0 rt = $s2 rd = $s1 sa = 10 f = 0
srl $s1,$s2,10 $s1 = $s2>>>10 op = 0 rs = 0 rt = $s2 rd = $s1 sa = 10 f = 2
sra $s1, $s2, 10 $s1 = $s2 >> 10 op = 0 rs = 0 rt = $s2 rd = $s1 sa = 10 f = 3
sllv $s1,$s2,$s3 $s1 = $s2 << $s3 op = 0 rs = $s3 rt = $s2 rd = $s1 sa = 0 f = 4
srlv $s1,$s2,$s3 $s1 = $s2>>>$s3 op = 0 rs = $s3 rt = $s2 rd = $s1 sa = 0 f = 6
srav $s1,$s2,$s3 $s1 = $s2 >> $s3 op = 0 rs = $s3 rt = $s2 rd = $s1 sa = 0 f = 7

� Shifts by a variable amount: sllv , srlv , srav

� Same as sll , srl , sra , but a register is used for shift amount

� Examples: assume that $s2 = 0xabcd1234, $s3 = 16
sll  $s1,$s2,8

sra  $s1,$s2,4 $s1 = 0xfabcd123

srlv $s1,$s2,$s3

rt=$s2=10010op=000000 rs=$s3=10011 rd=$s1=10001 sa=00000 f=000110

$s1 = $s2<<8

$s1 = $s2>>4

$s1 = $s2>>>$s3
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Binary Multiplication

� Shift-left (sll ) instruction can perform multiplication

� When the multiplier is a power of 2 

� You can factor any binary number into powers of 2 

� Example: multiply $s1 by 36

� Factor 36 into (4 + 32) and use distributive property of multiplication

� $s2 = $s1*36 = $s1*(4 + 32) = $s1*4 + $s1*32

sll  $t0, $s1, 2 ; $t0 = $s1 * 4

sll  $t1, $s1, 5 ; $t1 = $s1 * 32

addu $s2, $t0, $t1 ; $s2 = $s1 * 36
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Your Turn . . .

sll $t0, $s1, 1 ; $t0 = $s1 * 2

sll $t1, $s1, 3 ; $t1 = $s1 * 8

addu $s2, $t0, $t1 ; $s2 = $s1 * 10

sll $t0, $s1, 4 ; $t0 = $s1 * 16

addu $s2, $s2, $t0 ; $s2 = $s1 * 26

Multiply $s1 by 26, using shift and add instructions 

Hint: 26 = 2 + 8 + 16

Multiply $s1 by 31, Hint: 31 = 32 – 1

sll $s2, $s1, 5 ; $s2 = $s1 * 32

subu $s2, $s2, $s1 ; $s2 = $s1 * 31
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I-Type Format
� Constants are used quite frequently in programs

� The R-type shift instructions have a 5-bit shift amount constant

� What about other instructions that need a constant?

� I-Type: Instructions with Immediate Operands

� 16-bit immediate constant is stored inside the instruction
� Rs is the source register number

� Rt is now the destination register number (for R-type it was Rd)

� Examples of I-Type ALU Instructions:
� Add immediate: addi $s1, $s2, 5 # $s1 = $s2 + 5

� OR immediate: ori  $s1, $s2, 5 # $s1 = $s2 | 5

Op6 Rs5 Rt5 immediate16
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I-Type ALU Instructions
Instruction Meaning I-Type Format
addi $s1, $s2, 10 $s1 = $s2 + 10 op = 0x8 rs = $s2 rt = $s1 imm16 = 10
addiu $s1, $s2, 10 $s1 = $s2 + 10 op = 0x9 rs = $s2 rt = $s1 imm16 = 10
andi $s1, $s2, 10 $s1 = $s2 & 10 op = 0xc rs = $s2 rt = $s1 imm16 = 10
ori $s1, $s2, 10 $s1 = $s2 | 10 op = 0xd rs = $s2 rt = $s1 imm16 = 10
xori $s1, $s2, 10 $s1 = $s2 ^ 10 op = 0xe rs = $s2 rt = $s1 imm16 = 10
lui $s1, 10 $s1 = 10 << 16 op = 0xf 0 rt = $s1 imm16 = 10

� addi: overflow causes an arithmetic exception

� In case of overflow, result is not written to destination register

� addiu: same operation as addi but overflow is ignored

� Immediate constant for addi and addiu is signed

� No need for subi or subiu instructions

� Immediate constant for andi, ori, xori is unsigned



14

MIPS Instruction Set Architecture ICS 233 – Computer Architecture & Assembly Language  – KFUPM © Muhamed Mudawar – slide 27

� Examples: assume A, B, C are allocated $s0, $s1, $s2

� No need for subi , because addi has signed immediate

� Register 0 ($zero ) has always the value 0

Examples: I-Type ALU Instructions

A = B+5; translated as

C = B–1; translated as

addiu $s0,$s1,5

addiu $s2,$s1,-1

A = B&0xf; translated as

C = B|0xf; translated as

andi  $s0,$s1,0xf

ori   $s2,$s1,0xf

C = 5; translated as

A = B; translated as

ori   $s2,$zero,5

ori   $s0,$s1,0

rt=$s2=10010op=001001 rs=$s1=10001 imm = -1 = 1111111111111111
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� I-Type instructions can have only 16-bit constants

� What if we want to load a 32-bit constant into a register?

� Can’t have a 32-bit constant in I-Type instructions �

� We have already fixed the sizes of all instructions to 32 bits

� Solution: use two instructions instead of one ☺

� Suppose we want: $s1=0xAC5165D9 (32-bit constant)

� lui : load upper immediate

32-bit Constants

Op6 Rs5 Rt5 immediate16

lui $s1,0xAC51

ori $s1,$s1,0x65D9 0xAC51 0x65D9$s1=$17

0xAC51 0x0000$s1=$17

clear lower
16 bits

load upper
16 bits
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J-Type Format

� J-type format is used for unconditional jump instruction:

j   label # jump to label
. . .

label:

� 26-bit immediate value is stored in the instruction
� Immediate constant specifies address of target instruction

� Program Counter (PC) is modified as follows:

� Next PC =

� Upper 4 most significant bits of PC are unchanged

Op6 immediate26

immediate26PC4 00
least-significant 

2 bits are 00
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� MIPS compare and branch instructions:

beq Rs,Rt,label branch to label if (Rs == Rt )

bne Rs,Rt,label branch to label if (Rs != Rt )

� MIPS compare to zero & branch instructions

Compare to zero is used frequently and implemented efficiently

bltz Rs,label branch to label if (Rs < 0 )

bgtz Rs,label branch to label if (Rs > 0 )

blez Rs,label branch to label if (Rs <= 0 )

bgez Rs,label branch to label if (Rs >= 0 )

� No need for beqz and bnez instructions. Why?

Conditional Branch Instructions
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Set on Less Than Instructions

� MIPS also provides set on less than instructions

slt   rd,rs,rt if (rs < rt) rd = 1 else rd = 0

sltu  rd,rs,rt unsigned <

slti  rt,rs,im 16 if (rs < im16) rt = 1 else rt = 0

sltiu rt,rs,im 16 unsigned <

� Signed / Unsigned Comparisons

Can produce different results

Assume $s0 = 1 and $s1 = -1 = 0xffffffff

slt  $t0,$s0,$s1 results in $t0 = 0

stlu $t0,$s0,$s1 results in $t0 = 1
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More on Branch Instructions

� MIPS hardware does NOT provide instructions for …

blt, bltu branch if less than (signed/unsigned)

ble, bleu branch if less or equal (signed/unsigned)

bgt, bgtu branch if greater than (signed/unsigned)

bge, bgeu branch if greater or equal (signed/unsigned)

Can be achieved with a sequence of 2 instructions

� How to implement: blt $s0,$s1,label
� Solution: slt $at,$s0,$s1

bne $at,$zero,label

� How to implement: ble $s2,$s3,label
� Solution: slt $at,$s3,$s2

beq $at,$zero,label
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Pseudo-Instructions

� Introduced by assembler as if they were real instructions

� To facilitate assembly language programming

� Assembler reserves $at = $1 for its own use

� $at is called the assembler temporary register

ori   $s1, $zero, 0xabcdli   $s1, 0xabcd

slt   $s1, $s3, $s2sgt  $s1, $s2, $s3

nor   $s1, $s2, $s2not  $s1, $s2

slt   $at, $s1, $s2
bne   $at, $zero, label

blt  $s1, $s2, label

lui   $s1, 0xabcd
ori   $s1, $s1, 0x1234

li   $s1, 0xabcd1234

addu  Ss1, $s2, $zeromove $s1, $s2
Conversion to Real InstructionsPseudo-Instructions
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Jump, Branch, and SLT Instructions
Instruction Meaning Format
j label jump to label op6 = 2 imm26

beq rs, rt, label branch if (rs == rt) op6 = 4 rs5 rt5 imm16

bne rs, rt, label branch if (rs != rt) op6 = 5 rs5 rt5 imm16

blez rs, label branch if (rs<=0) op6 = 6 rs5 0 imm16

bgtz rs, label branch if (rs > 0) op6 = 7 rs5 0 imm16

bltz rs, label branch if (rs < 0) op6 = 1 rs5 0 imm16

bgez rs, label branch if (rs>=0) op6 = 1 rs5 1 imm16

Instruction Meaning Format
slt rd, rs, rt rd=(rs<rt?1:0) op6 = 0 rs5 rt5 rd5 0 0x2a
sltu rd, rs, rt rd=(rs<rt?1:0) op6 = 0 rs5 rt5 rd5 0 0x2b
slti rt, rs, imm16 rt=(rs<imm?1:0) 0xa rs5 rt5 imm16

sltiu rt, rs, imm16 rt=(rs<imm?1:0) 0xb rs5 rt5 imm16
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Translating an IF Statement

� Consider the following IF statement:

if (a == b) c = d + e; else c = d – e;

Assume that a, b, c, d, e are in $s0, …, $s4 respectively

� How to translate the above IF statement?

bne   $s0, $s1, else

addu  $s2, $s3, $s4

j     exit

else: subu  $s2, $s3, $s4

exit: . . .
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Compound Expression with AND

� Programming languages use short-circuit evaluation

� If first expression is false, second expression is skipped

if (($s1 > 0) && ($s2 < 0)) {$s3++;}

# One Possible Implementation ...

bgtz $s1, L1 # first expression

j next # skip if false

L1: bltz $s2, L2 # second expression

j next # skip if false

L2: addiu $s3,$s3,1 # both are true

next:
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Better Implementation for AND

The following implementation uses less code

Reverse the relational operator

Allow the program to fall through to the second expression

Number of instructions is reduced from 5 to 3

if (($s1 > 0) && ($s2 < 0)) {$s3++;}

# Better Implementation ...

blez $s1, next # skip if false

bgez $s2, next # skip if false

addiu $s3,$s3,1 # both are true

next:
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Compound Expression with OR

� Short-circuit evaluation for logical OR

� If first expression is true, second expression is skipped

� Use fall-through to keep the code as short as possible

� bgt , ble , and li are pseudo-instructions

� Translated by the assembler to real instructions

if (($sl > $s2) || ($s2 > $s3)) {$s4 = 1;}

bgt $s1, $s2, L1 # yes, execute if part

ble $s2, $s3, next # no: skip if part

L1: li  $s4, 1 # set $s4 to 1

next:
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Your Turn . . .

� Translate the IF statement to assembly language

� $s1 and $s2 values are unsigned

� $s3, $s4, and $s5 values are signed

bgtu $s1, $s2, next

move $s3, $s4

next:

if( $s1 <= $s2 ) {

$s3 = $s4

}

if (($s3 <= $s4) && 

($s4 >  $s5)) {

$s3 = $s4 + $s5

}

bgt  $s3, $s4, next

ble  $s4, $s5, next

addu $s3, $s4, $s5

next:
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Next . . .

� Instruction Set Architecture

� Overview of the MIPS Architecture

� R-Type Arithmetic, Logical, and Shift Instructions

� I-Type Format and Immediate Constants

� Jump and Branch Instructions

� Translating If Statements and Boolean Expressions

� Load and Store Instructions

� Translating Loops and Traversing Arrays

� Addressing Modes
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Load and Store Instructions

� Instructions that transfer data between memory & registers

� Programs include variables such as arrays and objects

� Such variables are stored in memory

� Load Instruction:

� Transfers data from memory to a register

� Store Instruction:

� Transfers data from a register to memory

� Memory address must be specified by load and store 

MemoryRegisters

load

store
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� Load Word Instruction (Word = 4 bytes in MIPS)

lw Rt, imm 16(Rs)  # Rt ���� MEMORY[Rs+imm16]

� Store Word Instruction

sw Rt, imm 16(Rs)  # Rt ���� MEMORY[Rs+imm16]

� Base or Displacement addressing is used

� Memory Address = Rs (base) + Immediate16 (displacement)

� Immediate16 is sign-extended to have a signed displacement

Load and Store Word

Op6 Rs5 Rt5 immediate16

Base or Displacement Addressing

Memory Word

Base address

+
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Example on Load & Store

� Translate  A[1] = A[2] + 5   (A is an array of words)

� Assume that address of array A is stored in register $s0

lw $s1, 8($s0) # $s1 = A[2] 

addiu $s2, $s1, 5 # $s2 = A[2] + 5

sw $s2, 4($s0) # A[1] = $s2

� Index of a[2] and a[1] should be multiplied by 4. Why?

sw

Memory

A[1]

A[0]

A[2]

A[3]

. . .

. . .

A+12

A+8

A+4

A

Registers

address of A$s0 = $16

value of A[2]$s1 = $17

A[2] + 5$s2 = $18

. . .

. . .

lw
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0 0

s s s

s s

0 0

s

bu

b

h

hu

sign – extend

zero – extend

sign – extend

zero – extend

32-bit Register

� The MIPS processor supports the following data formats:
� Byte = 8 bits, Halfword = 16 bits, Word = 32 bits

� Load & store instructions for bytes and halfwords
� lb = load byte, lbu = load byte unsigned, sb = store byte

� lh = load half, lhu = load half unsigned, sh = store halfword

� Load expands a memory data to fit into a 32-bit register

� Store reduces a 32-bit register to fit in memory

Load and Store Byte and Halfword
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Load and Store Instructions
Instruction Meaning I-Type Format
lb rt, imm16(rs) rt = MEM[rs+imm16] 0x20 rs5 rt5 imm16

lh rt, imm16(rs) rt = MEM[rs+imm16] 0x21 rs5 rt5 imm16

lw rt, imm16(rs) rt = MEM[rs+imm16] 0x23 rs5 rt5 imm16

lbu rt, imm16(rs) rt = MEM[rs+imm16] 0x24 rs5 rt5 imm16

lhu rt, imm16(rs) rt = MEM[rs+imm16] 0x25 rs5 rt5 imm16

sb rt, imm16(rs) MEM[rs+imm16] = rt 0x28 rs5 rt5 imm16

sh rt, imm16(rs) MEM[rs+imm16] = rt 0x29 rs5 rt5 imm16

sw rt, imm16(rs) MEM[rs+imm16] = rt 0x2b rs5 rt5 imm16

� Base or Displacement Addressing is used
� Memory Address = Rs (base) + Immediate16 (displacement)

� Two variations on base addressing
� If Rs = $zero = 0 then Address = Immediate16 (absolute)

� If Immediate16 = 0 then Address = Rs (register indirect)
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Next . . .

� Instruction Set Architecture

� Overview of the MIPS Architecture

� R-Type Arithmetic, Logical, and Shift Instructions

� I-Type Format and Immediate Constants

� Jump and Branch Instructions

� Translating If Statements and Boolean Expressions

� Load and Store Instructions

� Translating Loops and Traversing Arrays

� Addressing Modes
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Translating a WHILE Loop

� Consider the following WHILE statement:

i = 0; while (A[i] != k) i = i+1;

Where A is an array of integers (4 bytes per element)

Assume address A, i, k in $s0, $s1, $s2, respectively

� How to translate above WHILE statement?
xor $s1, $s1, $s1 # i = 0
move $t0, $s0 # $t0 = address A

loop: lw $t1, 0($t0) # $t1 = A[i]
beq $t1, $s2, exit # exit if (A[i]== k)
addiu $s1, $s1, 1 # i = i+1
sll $t0, $s1, 2 # $t0 = 4*i
addu $t0, $s0, $t0 # $t0 = address A[i]
j loop

exit: . . .

Memory

A[2]

A[i]

A[1]

A[0]

. . .

. . .

A

A+4

A+8

A+4×i

. . .
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Using Pointers to Traverse Arrays

� Consider the same WHILE loop:

i = 0; while (A[i] != k) i = i+1;

Where address of A, i, k are in $s0, $s1, $s2, respectively

� We can use a pointer to traverse array A
Pointer is incremented by 4 (faster than indexing)

move $t0, $s0 # $t0 = $s0 = addr A

j cond # test condition

loop: addiu $s1, $s1, 1 # i = i+1

addiu $t0, $t0, 4 # point to next

cond: lw $t1, 0($t0) # $t1 = A[i]

bne $t1, $s2, loop # loop if A[i]!= k

� Only 4 instructions (rather than 6) in loop body
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Copying a String

move $t0, $s0 # $t0 = pointer to source

move $t1, $s1 # $t1 = pointer to target

L1: lb $t2, 0($t0) # load  byte into $t2

sb $t2, 0($t1) # store byte into target

addiu $t0, $t0, 1 # increment source pointer

addiu $t1, $t1, 1 # increment target pointer

bne $t2, $zero, L1 # loop until NULL char

The following code copies source string to target string

Address of source in $s0 and address of target in $s1

Strings are terminated with a null character (C strings)

i = 0;

do {target[i]=source[i]; i++;} while (source[i]!=0) ;
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Summing an Integer Array

move $t0, $s0 # $t0 = address A[i]

xor $t1, $t1, $t1 # $t1 = i = 0

xor $s2, $s2, $s2 # $s2 = sum = 0

L1: lw $t2, 0($t0) # $t2 = A[i]

addu $s2, $s2, $t2 # sum = sum + A[i]

addiu $t0, $t0, 4 # point to next A[i]

addiu $t1, $t1, 1 # i++

bne $t1, $s1, L1 # loop if (i != n)

Assume $s0 = array address, $s1 = array length = n

sum = 0;

for (i=0; i<n; i++) sum = sum + A[i];
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Next . . .

� Instruction Set Architecture

� Overview of the MIPS Architecture

� R-Type Arithmetic, Logical, and Shift Instructions

� I-Type Format and Immediate Constants

� Jump and Branch Instructions

� Translating If Statements and Boolean Expressions

� Load and Store Instructions

� Translating Loops and Traversing Arrays

� Addressing Modes
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Addressing Modes

Op6 Rs5 Rt5 immediate16

Base or Displacement Addressing

Word

Operand is in memory (load/store)

Register = Base address

+ HalfwordByte

Op6 Rs5 Rt5 immediate16

Immediate Addressing

Operand is a constant

Op6 Rs5 Rt5 Rd5 funct6sa5

Register Addressing

Register

Operand is in a register

� Where are the operands?

� How memory addresses are computed?
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Branch / Jump Addressing Modes

Used for branching (beq, bne, …)

Word = Target Instruction

Op6 Rs5 Rt5 immediate16

PC-Relative Addressing

PC30 00

+1

Target Instruction Address
PC = PC + 4 × (1 + immediate16)

PC30 + immediate16 + 1 00

immediate26PC4 00Target Instruction Address

Word = Target Instruction

immediate26Op6

Pseudo-direct Addressing

PC26

:
00

Used by jump instruction

PC4
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Jump and Branch Limits

� Jump Address Boundary = 226 instructions = 256 MB

� Text segment cannot exceed 226 instructions or 256 MB

� Upper 4 bits of PC are unchanged

� Branch Address Boundary

� Branch instructions use I-Type format (16-bit immediate constant)

� PC-relative addressing:

� Target instruction address = PC + 4×(1 + immediate16)

� Count number of instructions to branch from next instruction

� Positive constant => Forward Branch, Negative => Backward branch

� At most ±215 instructions to branch (most branches are near)

immediate26PC4 00Target Instruction Address

PC30 + immediate16 + 1 00



29

MIPS Instruction Set Architecture ICS 233 – Computer Architecture & Assembly Language  – KFUPM © Muhamed Mudawar – slide 57

Summary of RISC Design

� All instructions are typically of one size

� Few instruction formats

� All operations on data are register to register

� Operands are read from registers

� Result is stored in a register

� General purpose integer and floating point registers

� Typically, 32 integer and 32 floating-point registers

� Memory access only via load and store instructions

� Load and store: bytes, half words, words, and double words 

� Few simple addressing modes

MIPS Instruction Set Architecture ICS 233 – Computer Architecture & Assembly Language  – KFUPM © Muhamed Mudawar – slide 58

Four Design Principles

1. Simplicity favors regularity
� Fix the size of instructions (simplifies fetching & decoding)

� Fix the number of operands per instruction

� Three operands is the natural number for a typical instruction 

2. Smaller is faster
� Limit the number of registers for faster access (typically 32)

3. Make the common case fast
� Include constants inside instructions (faster than loading them)

� Design most instructions to be register-to-register

4. Good design demands good compromises
� Fixed-size instructions compromise the size of constants


