One Global Symbol Table for all Scopes

var a, b:int; < Scopeisrecorded in each symbol
function main () { * Distinguishes between symbols with same name
const a:real . ..

{ var a, b:char: < Scope table keeps track of open scopes

} scope

var b:real; — =
s 5 E g
y g3 8 & 3
_ _ V2| 2 c INT
function f (b:char):int { Scope |[Al1] 2 b | CHAR
{ var cint; Table 101 1 f INT
VIili| 1 b | REAL
*++ <= Reached Here level | 2 Vi2| 1 b | CHAR
} v]2]| 1 a__ | CHAR
var a:char; o] 1 Cl1] 1 a | REAL
[1] 2 F|1O 1 main | NULL
1 S 21 2 V|io| 1 b INT
B8]0 Vio| 1 a INT

Symbol Management, Scope, Processing Declarations, and Type Representation — 1 Compiler Design — © Muhammed Mudawwar

Scope and Scope Table

< Scope: recorded in every symbol and consists of
* Level: nested level of scope
#* Count: count of scope at agiven level

< Scope Table:

SCcope
#* Records scope counts at all levels | 2 §
. — =)
» \Which scopes are currently open o 2 % = o
o 9 O c 2
< Open scope: upon entry vIi2T 2 c T INT
* [ncrement level number Scope é é i ? C||_|\||ArR
Tabl

* |ncrement level count able v a b | REAL
_ level 2 V]2 1 b CHAR
< Close scope: upon exit Vviz| 1 a__| CHAR
o] 1 cli] 1 a | REAL
#* Decrement level number [1] | 2 F|{0| 1 | main | NULL
. 21| 2 v]io| 1 b INT
»* Do not modify level count k31 o viol 1 a INT

Symbol Management, Scope, Processing Declarations, and Type Representation — 2 Compiler Design — © Muhammed Mudawwar

Insert and Lookup a Symbol

< Insert:
#* Symbols are inserted in the order they appear in the source file

#* An inserted symbol is placed on top of the symbol stack
<> Symbol stack can be implementation using array or linked implementation

» Store current level and level count in symbol

scope
A
< Lookup: e 2
: O v
* Search atable for agiven name 23 8§ & £
<> Enough to compare name pointers Vi2| 2 C INT
If name has a unique pointer Scope é é i ? Cl"l\'IATR
* Must be in closest open scope Table Iy 1 b | REAL
level 2 V|2 1 b CHAR
<> Symbol level < current level v 12 1 2 | CHAR
<> Level count in symbol must 0] 1 Cl1]| 1 a | REAL
: [1] 2 F|1O 1 main | NULL
match th(? count in scope table 2] [2 viol 1 0 INT
#* Return a pointer to found symbol [3] | 0 Vio| 1 a INT

Symbol Management, Scope, Processing Declarations, and Type Representation — 3 Compiler Design — © Muhammed Mudawwar

Speeding-Up Lookup with a Hash Table

< Hash table: an array of pointersis added Scope

: C . Table
< A new field, hlist, is added to each symbol evel 2
#* To link symbols hashed to the same hash table index o [
< A name is hashed before insertion and before lookup [%] g
»* Enough to hash name pointer if name pointer is unique {3% 0
o . — =)
< Insert: hash & 5 £ d 2
* At front of hash list table 2L o c 2 <
. _ V2] 2 C INT
< Lookup: A[1] 2 b |CHAR| e—
- s FlO0] 1 f INT
» Traversg one hash list VAR T REAL .\>
* Return first match for a V2] 1 | b |[CHAR|
name in an open scope t "Vi2) 1 a__| CHAR | *—
_ cla]| 1 a | REAL | e—]
#* Bypass symbolsin closed o« Elol 1 | man | NULL
SCopeEs, or remove them Vo] 1 b INT
from their hash list only VIO] 1 a_ | INT

Symbol Management, Scope, Processing Declarations, and Type Representation — 4 Compiler Design — © Muhammed Mudawwar

