
Symbol Management, Scope, Processing Declarations, and Type Representation – 1 Compiler Design – © Muhammed Mudawwar

One Global Symbol Table for all Scopes
var a, b:int;

function main () {
const a:real . . .
{ var a, b:char;

. . .
}
var b:real;
. . .

}

function f (b:char):int {
{ var c:int;

. . .
}
var a:char;
. . .

}

� Scope is recorded in each symbol
� Distinguishes between symbols with same name

� Scope table keeps track of open scopes

a0 INTV 1

co
un

t

b0 INTV 1
main0 NULLF 1

a1 REALC 1
a2 CHARV 1
b2 CHARV 1
b1 REALV 1
f0 INTF 1
b1 CHARA 2
c2 INTV 2

na
m

e

ty
pe

le
ve

l

op

Scope
Table

2level

1
2
2

[0]
[1]
[2]

0[3]

scope

Reached Here

Symbol Management, Scope, Processing Declarations, and Type Representation – 2 Compiler Design – © Muhammed Mudawwar

Scope and Scope Table
� Scope: recorded in every symbol and consists of

� Level: nested level of scope

� Count: count of scope at a given level

� Scope Table:
� Records scope counts at all levels

� Which scopes are currently open

� Open scope: upon entry
� Increment level number

� Increment level count

� Close scope: upon exit
� Decrement level number

� Do not modify level count a0 INTV 1

co
un

t

b0 INTV 1
main0 NULLF 1

a1 REALC 1
a2 CHARV 1
b2 CHARV 1
b1 REALV 1
f0 INTF 1
b1 CHARA 2
c2 INTV 2

na
m

e

ty
pe

le
ve

l

op

Scope
Table

2level

1
2
2

[0]
[1]
[2]

0[3]

scope

Symbol Management, Scope, Processing Declarations, and Type Representation – 3 Compiler Design – © Muhammed Mudawwar

Insert and Lookup a Symbol
� Insert:

� Symbols are inserted in the order they appear in the source file

� An inserted symbol is placed on top of the symbol stack
� Symbol stack can be implementation using array or linked implementation

� Store current level and level count in symbol

� Lookup:
� Search a table for a given name

� Enough to compare name pointers
if name has a unique pointer

� Must be in closest open scope

� Symbol level � current level

� Level count in symbol must
match the count in scope table

� Return a pointer to found symbol a0 INTV 1

co
un

t

b0 INTV 1
main0 NULLF 1

a1 REALC 1
a2 CHARV 1
b2 CHARV 1
b1 REALV 1
f0 INTF 1
b1 CHARA 2
c2 INTV 2

na
m

e

ty
pe

le
ve

l

op

Scope
Table

2level

1
2
2

[0]
[1]
[2]

0[3]

scope

Symbol Management, Scope, Processing Declarations, and Type Representation – 4 Compiler Design – © Muhammed Mudawwar

� Hash table: an array of pointers is added

� A new field, hlist, is added to each symbol
� To link symbols hashed to the same hash table index

� A name is hashed before insertion and before lookup
� Enough to hash name pointer if name pointer is unique

� Insert:
� At front of hash list

� Lookup:
� Traverse one hash list

� Return first match for a
name in an open scope

� Bypass symbols in closed
scopes, or remove them
from their hash list only

Scope
Table

2level

1
2
2

[0]
[1]
[2]

0[3]

Speeding-Up Lookup with a Hash Table

hash
table hl

is
t

a0 INTV 1

co
un

t

b0 INTV 1
main0 NULLF 1

a1 REALC 1
a2 CHARV 1
b2 CHARV 1
b1 REALV 1
f0 INTF 1
b1 CHARA 2
c2 INTV 2

na
m

e

ty
pe

le
ve

l

op

