Semantic Processing

< The Semantic Processing phase consists of
#* Checking the Static Semantics of the language
#* Generating an | nter mediate Representation of the program

< Checking the static semantics include:
»* Making sure that all identifiers used in a program are declared
» Making sure that all functions called are declared or defined
» Making sure that parameters are passed correctly
#* Checking the uses of operators and types of expressions
»* Entering identifiers in symbol tables

Semantic Routines

5 Static Semantics || Intermediate Code Code

Scanner Parser +—» !
! Checker Generator ; Generator

A 4
A 4

Attribute Grammars and Semantic Processing — 1 Compiler Design — © Muhammed Mudawwar

Attribute Grammars

< Provides a practical formalism for describing semantic processing
< Proposed by Knuth in 1968
< Each grammar symbol has an associated set of attributes

< An attribute can represent anything we choose
»* The value of an expression when literal constants are used
* The data type of a constant, variable, or expression
»* Thelocation (or offset) of avariable in memory
»* The trandlated code of an expression, statement, or function

< Anannotated or attributed parsetreeisa
»* Parse tree showing the values of attributes at each node

< Attributes may be evaluated on the fly as an input is parsed
< Alternatively, attributes may be also evaluated after parsing

Attribute Grammars and Semantic Processing — 2 Compiler Design — © Muhammed Mudawwar

Synthesized and Inherited Attributes

< The attributes are divided into two classes:

#* Synthesized Attributes
#* |nherited Attributes

< A synthesized attribute of aparse tree node is computed from
»* Attribute values of the children nodes

<+ Aninherited attribute of a parse tree node is computed from

»* Attribute values of the parent node
»* Attribute values of the sibling nodes

< Tokens may have only synthesized attributes
»* Token attributes are supplied by the scanner

< Nonterminals may have synthesized and/or inherited attributes

< Attributes are evaluated according to Semantic rules
»* Semantic rules are associated with production rules

Attribute Grammars and Semantic Processing — 3 Compiler Design — © Muhammed Mudawwar

S-Attributed Grammars

< S-Attributed grammars allow only synthesized attributes
< Synthesized attributes are evaluated bottom up
< S-Attributed grammars work perfectly with LR parsers

< Consider an S-Attributed grammar for constant expressions:
» Each nonterminal has a single synthetic attribute: val
»* The annotated parse treefor 5+ 2 * 3 isshown below

Production | Semantic Rules

E—>E2+T |E.va :=E2val + T.val

E—->T E.val :=T.val
T—>T2*F |T.val :=T2val * F.val
T—>F T.val := F.val
F—>(E) F.val := E.val

F —> num F.val := num.val

Eva =11
/ | \
E.val =5 + T.val =6
1 2N
T.wval =5 Tval=2 = F.val =3
I 1 1
F.val =5 F.val =2 num.val =3
I 1
num.val =5 num.val = 2

Attribute Grammars and Semantic Processing — 4

Compiler Design — © Muhammed Mudawwar

Constructing Syntax Trees for Expressions

< A syntax tree is a condensed form of a parse tree
< A syntax tree can be used as an intermediate representation
< Each node is a structure with several fields

< To construct a syntax tree, we need ...
» mknode(op, left, right) creates a new node for a binary operator
<> op isabinary operator
<> left and right are pointers to the left and right subtrees
» [dTable.lookup(name) searches the identifier table for a given name
<> Returns a pointer to the found identifier symbol
< Returns NULL if nameis not found

Attribute Grammars and Semantic Processing —5 Compiler Design — © Muhammed Mudawwar

S-Attributed Grammar for Syntax Trees

< An S-attributed grammar is used for constructing a syntax tree

< A synthetic attribute ptr isused with E, T, F and num
* ptr isapointer that points at the syntax generated for E, T,and F
* ptr isalso used to point at aliteral symbol for the token num

Production | Semantic Rules Y acc Notation
E—>E2+T | E.ptr := mknode('+', E2.ptr, T.ptr) | $$ = mknode('+’, $1, $3);
E—>E2-T | E.ptr := mknode('—, E2.ptr, T.ptr) | $$ = mknode('—, $1, $3);
E>T E.ptr .= T.ptr $$ = 91,

T—>T2*F | T.ptr := mknode("*', T2.ptr, F.ptr) | $$ = mknode('*', $1, $3);
T>T2/F T.ptr := mknode('/', T2.ptr, F.ptr) | $$ = mknode('/', $1, $3);
T>F T.ptr := F.ptr $$ =91,

F—>(E) F.ptr := E.ptr $% = $2;

F—id F.ptr :=idTable.lookup(id.name) | $$ = idTable.lookup($1);
F — num F.ptr ;= num.ptr $$ = 91,

Attribute Grammars and Semantic Processing — 6

Compiler Design — © Muhammed Mudawwar

Generation of a Syntax Tree by an LR Parser

< Synthesized attributes can be easily computed by an LR parser
* An LR parser will have avalue stack for storing synthesized attributes
#* The value stack is manipulated in parallel with the parsing stack

< Consider the generation of the syntax treeof: (a+ 3) * b

Parsing Stack Input Action Semantic Action Value Stack
(a+3)*b$ shift (
(a+3)*b$ shiftid ?
(id +3)*b$ reduce F — id F.nptr := lookup(a) ?a
(F +3)*b$ reduceT — F T.nptr := F.nptr ?P1 PSl
(T +3)*b$ reduceE > T E.nptr := T.nptr ?P1 N
(E +3)*b$ shift + ?2P1
(E+ 3)*b$ shift num ?2P1L? L &
(E+num)*b$ reduce F — num F.nptr := num.ptr ?P1?P2 P3 P4
(E+F)*b$ reduce T — F T.nptr := F.nptr ?P1?P2
(E+T)*b$ reduce E — E2 +T E.nptr:= mknode(‘ +, E2.nptr, T.nptr) ?P1?P2
(E)*b$ shift) 2P3 + symbol b
(E) *b$ reduce F — (E) F.nptr := E.nptr ?2P3? L
F *b$ reduce T — F T.nptr := F.nptr P3 P1 P2
T *b$ shift * P3
T* b$ shiftid P3?
T*id $ reduce F — id F.nptr := lookup(b) P32b symbol a| | NUM 3
T*F $ reduce T — T2 *F T.nptr := mknode(**’, T™.nptr, F.nptr) P3?P4
T $ reduceE —> T E.nptr := T.nptr P5
E $ Accept P5

Attribute Grammars and Semantic Processing — 7 Compiler Design — © Muhammed Mudawwar

L-Attributed Grammars

» Consider atypical production of theform: A - X1 X2. .. Xn

» An attribute grammar is L-attributed if and only if:

#* Each inherited attribute of aright-hand-side symbol X; depends only on
inherited attributes of A and arbitrary attributes of the symbols Xy, ... , X1

»* Each synthetic attribute of A depends only on itsinherited attributes and
arbitrary attributes of the right-hand side symbols: X1 Xz . . . Xn

< When Evauating the attributes of an L-attributed production:
»* Evaluate the inherited attributes of A (left-hand-side)
» Evaluate the inherited then the synthesized attributes of X; from left to right
» Evauate the synthesized attribute of A

» If the underlying CFG is LL and L-attributed, we can evaluate the
attributes in one pass by an LL Parser

» Every S-attributed grammar is also L-attributed

Attribute Grammars and Semantic Processing — 8 Compiler Design — © Muhammed Mudawwar

L-Attributed Grammar Evaluation

< L-attributed grammars are well-suited for L L-based evaluation

< Consider the prediction of production: A —»> XY
» Evaluate and Push Inherited attributes of A: ... Inh(A)
» Evaluate and Push Inherited attributes of X: ... Inh(A) Inh(X)
» Evaluate and Push Synthetic attributes of X after parsing X:
... Inh(A) Inh(X) Syn(X)
» Evaluate and Push Inherited attributes of Y:
... Inh(A) Inh(X) Syn(X) Inh(Y)
» Evaluate and Push Synthetic attributes of Y after parsing :
... Inh(A) Inh(X) Syn(X) Inh(Y) Syn(Y)
»* Pop attributes of X and Y and push Synthetic attributes of A:
... Inh(A) Syn(A)
< Attribute values are at known locations relative to stacktop

Attribute Grammars and Semantic Processing —9 Compiler Design — © Muhammed Mudawwar

Example of an L-Attributed Grammar

< A C-like declaration generated by the non-terminal D consists of
» Keyword int or float, followed by alist of identifiers

< Thenon-terminal T hasasynthesized attribute type
< Thenon-terminal L hasan inherited attribute type
< The function enter creates anew symbol entry in a symbol table

Production Semantic Rules //E\)\\\
D—>Tid L ; |enter(id.name, T.type) T.type=float —id; L.type=floa)

| L.type := T.type flc‘)at / liLzL\.t}aE float
T—int T.type:=INT_TYPE ’ P N
T — float T.type := FLOAT_TYPE ;1% Lupesiloa
L—, id L2 enter(id.name, L.type) £

L2.type := L.type Parsetreefor: float id , id , id ;

L—>e¢

Attribute Grammars and Semantic Processing — 10 Compiler Design — © Muhammed Mudawwar

Inheriting Attributes During LR Parsing

< Some L-attributed grammars can be used with LR parsers

< Consider the L-attributed grammar for C-like declarations:
#* The grammar is LR(1) but not LL (1) because of |eft-recursion.
»* The non-terminal L has an inherited attribute type defined by L.type := T.type

»* The attribute T.type will be on the value stack when reduction to L takes place

* The synthetic attribute T.type can be used anywhere L.type is accessed

Production Semantic Rules

D—->TL; L.type := T.type

T—int T.type :=int

T — float T.type := float

L—>L2,id enter(id.name, L.type)

L —id L2.type := L.type
enter(id.name, L.type)

Parsetreefor: float id , id , id ;

Attribute Grammars and Semantic Processing — 11

Compiler Design — © Muhammed Mudawwar

Inherited Attributes in Yacc: $0, $-1, $-2, ...

< Yacc allows the inheritance of previously computed attributes:
* Access to inherited attributes is done via $0, $-1, $-2, etc.
#* These attributes are stacked below the attributes of the current production.
»* |nherited attributes can be very useful, but can also be a source of bugs.

* |n the example shown below, $0 refersto the attribute of T stacked below
the attributes of the symbols of the L production.

* |f the first production of L isright-recursive, the use of $0 will not work.

Production Yacc Actions Sack Input Action Semantic Action Value Stack
inta,b;$ shiftint

D->TL , int a,b;$ rengeT—>int $%$=1 ?

T —int $6=1;/*int*/ Ld %?? ?;fJ;SL Sid enter($1, $0) 1a

Tofloat | $$=2/floea*/ 1. b i e

L >L,id enter($3, $O), Pl:,id 2 ;E(i:lfl:(jeL—)L,id enter($3, $0) 1’:’;?b

L —»id enter($1, $0) EL; i LGS:;D%TL: '.1>??

Attribute Grammars and Semantic Processing — 12 Compiler Design — © Muhammed Mudawwar

Replacing Inherited Attributes by Synthesized Ones

< It 1ssometimes possible to avoid the use of inherited attributes
< Thisrequires changing the underlying grammar
< Consider a Pascal-like declaration:

»* Thefirst grammar uses an inherited attribute type for L
* However, the first grammar isNOT L-attributed because L.type inherits

the attribute of aright-sibling T

#* The second grammar is S-attributed. It uses synthetic attributes only.

Production Semantic Rules

D>L:T; L.type = T.type

L > L?%,id enter(id.name, L .type)
L%type:= L.type

L —»id enter(id.name, L.type)

T - integer T.type := integer

T >real T.type :=red

Attribute Grammars and Semantic Processing — 13

Production Semantic Rules

D->idL enter(id.name, L.type)

L > ,idL? enter(id.name, L°.type)
L.type := L%type

L—>:T; L.type = T.type

T - integer T.type := integer

T > real T.type :=redl

Compiler Design — © Muhammed Mudawwar

