
Attribute Grammars and Semantic Processing – 1 Compiler Design – © Muhammed Mudawwar

Semantic Processing
� The Semantic Processing phase consists of:

� Checking the Static Semantics of the language

� Generating an Intermediate Representation of the program

� Checking the static semantics include:
� Making sure that all identifiers used in a program are declared

� Making sure that all functions called are declared or defined

� Making sure that parameters are passed correctly

� Checking the uses of operators and types of expressions

� Entering identifiers in symbol tables

Scanner Parser Static Semantics
Checker

Intermediate Code
Generator

Code
Generator

Semantic Routines

Attribute Grammars and Semantic Processing – 2 Compiler Design – © Muhammed Mudawwar

Attribute Grammars

� Provides a practical formalism for describing semantic processing

� Proposed by Knuth in 1968

� Each grammar symbol has an associated set of attributes
� An attribute can represent anything we choose

� The value of an expression when literal constants are used

� The data type of a constant, variable, or expression

� The location (or offset) of a variable in memory

� The translated code of an expression, statement, or function

� An annotated or attributed parse tree is a
� Parse tree showing the values of attributes at each node

� Attributes may be evaluated on the fly as an input is parsed

� Alternatively, attributes may be also evaluated after parsing

Attribute Grammars and Semantic Processing – 3 Compiler Design – © Muhammed Mudawwar

Synthesized and Inherited Attributes
� The attributes are divided into two classes:

� Synthesized Attributes
� Inherited Attributes

� A synthesized attribute of a parse tree node is computed from
� Attribute values of the children nodes

� An inherited attribute of a parse tree node is computed from
� Attribute values of the parent node
� Attribute values of the sibling nodes

� Tokens may have only synthesized attributes
� Token attributes are supplied by the scanner

� Nonterminals may have synthesized and/or inherited attributes

� Attributes are evaluated according to Semantic rules
� Semantic rules are associated with production rules

Attribute Grammars and Semantic Processing – 4 Compiler Design – © Muhammed Mudawwar

S-Attributed Grammars
� S-Attributed grammars allow only synthesized attributes

� Synthesized attributes are evaluated bottom up

� S-Attributed grammars work perfectly with LR parsers

� Consider an S-Attributed grammar for constant expressions:
� Each nonterminal has a single synthetic attribute: val

� The annotated parse tree for 5 + 2 * 3 is shown below

E.val := E2.val + T.val
E.val := T.val
T.val := T2.val * F.val
T.val := F.val
F.val := E.val
F.val := num.val

E � E2 + T
E � T
T � T2 * F
T � F
F � (E)
F � num

Semantic RulesProduction E.val = 11

E.val = 5 T.val = 6+

T.val = 5

F.val = 5

num.val = 5

T.val = 2 F.val = 3

F.val = 2

num.val = 2

*

num.val = 3

Attribute Grammars and Semantic Processing – 5 Compiler Design – © Muhammed Mudawwar

Constructing Syntax Trees for Expressions

� A syntax tree is a condensed form of a parse tree

� A syntax tree can be used as an intermediate representation

� Each node is a structure with several fields

� To construct a syntax tree, we need …
� mknode(op, left, right) creates a new node for a binary operator

� op is a binary operator

� left and right are pointers to the left and right subtrees

� idTable.lookup(name) searches the identifier table for a given name
� Returns a pointer to the found identifier symbol

� Returns NULL if name is not found

Attribute Grammars and Semantic Processing – 6 Compiler Design – © Muhammed Mudawwar

S-Attributed Grammar for Syntax Trees
� An S-attributed grammar is used for constructing a syntax tree

� A synthetic attribute ptr is used with E, T, F and num
� ptr is a pointer that points at the syntax generated for E, T,and F

� ptr is also used to point at a literal symbol for the token num

$$ = mknode(’+’, $1, $3);
$$ = mknode(’–', $1, $3);
$$ = $1;
$$ = mknode('*', $1, $3);
$$ = mknode('/', $1, $3);
$$ = $1;
$$ = $2;
$$ = idTable.lookup($1);
$$ = $1;

E.ptr := mknode('+', E2.ptr, T.ptr)
E.ptr := mknode('–', E2.ptr, T.ptr)
E.ptr := T.ptr
T.ptr := mknode('*', T2.ptr, F.ptr)
T.ptr := mknode('/', T2.ptr, F.ptr)
T.ptr := F.ptr
F.ptr := E.ptr
F.ptr := idTable.lookup(id.name)
F.ptr := num.ptr

E � E2 + T
E � E2 – T
E � T
T � T2 * F
T � T2 / F
T � F
F � (E)
F � id
F � num

Yacc NotationSemantic RulesProduction

Attribute Grammars and Semantic Processing – 7 Compiler Design – © Muhammed Mudawwar

Generation of a Syntax Tree by an LR Parser
� Synthesized attributes can be easily computed by an LR parser

� An LR parser will have a value stack for storing synthesized attributes

� The value stack is manipulated in parallel with the parsing stack

� Consider the generation of the syntax tree of: (a + 3) * b

Parsing Stack Input Action Semantic Action Value Stack

(a + 3) * b $ shift (
(a + 3) * b $ shift id ?
(id + 3) * b $ reduce F � id F.nptr := lookup(a) ? a
(F + 3) * b $ reduce T � F T.nptr := F.nptr ? P1
(T + 3) * b $ reduce E � T E.nptr := T.nptr ? P1
(E + 3) * b $ shift + ? P1
(E + 3) * b $ shift num ? P1 ?
(E + num) * b $ reduce F � num F.nptr := num.ptr ? P1 ? P2
(E + F) * b $ reduce T � F T.nptr := F.nptr ? P1 ? P2
(E + T) * b $ reduce E � E2 + T E.nptr := mknode(‘+’, E2.nptr, T.nptr) ? P1 ? P2
(E) * b $ shift) ? P3
(E) * b $ reduce F � (E) F.nptr := E.nptr ? P3 ?
F * b $ reduce T � F T.nptr := F.nptr P3
T * b $ shift * P3
T * b $ shift id P3 ?
T * id $ reduce F � id F.nptr := lookup(b) P3 ? b
T * F $ reduce T � T2 * F T.nptr := mknode(‘*’, T2.nptr, F.nptr) P3 ? P4
T $ reduce E � T E.nptr := T.nptr P5
E $ Accept P5

NUM 3

+ symbol b

symbol a

*

P1 P2

P3 P4

P5

Attribute Grammars and Semantic Processing – 8 Compiler Design – © Muhammed Mudawwar

L-Attributed Grammars

� Consider a typical production of the form: A � X1 X2 . . . Xn

� An attribute grammar is L-attributed if and only if:
� Each inherited attribute of a right-hand-side symbol Xj depends only on

inherited attributes of A and arbitrary attributes of the symbols X1, … , Xj-1

� Each synthetic attribute of A depends only on its inherited attributes and
arbitrary attributes of the right-hand side symbols: X1 X2 . . . Xn

� When Evaluating the attributes of an L-attributed production:
� Evaluate the inherited attributes of A (left-hand-side)

� Evaluate the inherited then the synthesized attributes of Xj from left to right

� Evaluate the synthesized attribute of A

� If the underlying CFG is LL and L-attributed, we can evaluate the
attributes in one pass by an LL Parser

� Every S-attributed grammar is also L-attributed

Attribute Grammars and Semantic Processing – 9 Compiler Design – © Muhammed Mudawwar

L-Attributed Grammar Evaluation
� L-attributed grammars are well-suited for LL-based evaluation

� Consider the prediction of production: A � X Y
� Evaluate and Push Inherited attributes of A: … Inh(A)

� Evaluate and Push Inherited attributes of X: … Inh(A) Inh(X)

� Evaluate and Push Synthetic attributes of X after parsing X:

… Inh(A) Inh(X) Syn(X)

� Evaluate and Push Inherited attributes of Y:

… Inh(A) Inh(X) Syn(X) Inh(Y)

� Evaluate and Push Synthetic attributes of Y after parsing Y:

… Inh(A) Inh(X) Syn(X) Inh(Y) Syn(Y)

� Pop attributes of X and Y and push Synthetic attributes of A:

… Inh(A) Syn(A)

� Attribute values are at known locations relative to stacktop

Attribute Grammars and Semantic Processing – 10 Compiler Design – © Muhammed Mudawwar

Example of an L-Attributed Grammar

� A C-like declaration generated by the non-terminal D consists of
� Keyword int or float, followed by a list of identifiers

� The non-terminal T has a synthesized attribute type

� The non-terminal L has an inherited attribute type

� The function enter creates a new symbol entry in a symbol table

D

T.type = float L.type = float

float ,

id1

Parse tree for: float id , id , id ;

id2 L.type = float

id3 L.type = float

�

;

,

enter(id.name, T.type)
L.type := T.type
T.type := INT_TYPE
T.type := FLOAT_TYPE
enter(id.name, L.type)
L2.type := L.type

D � T id L ;

T � int
T � float
L � , id L2

L � �

Semantic RulesProduction

Attribute Grammars and Semantic Processing – 11 Compiler Design – © Muhammed Mudawwar

Inheriting Attributes During LR Parsing

� Some L-attributed grammars can be used with LR parsers

� Consider the L-attributed grammar for C-like declarations:
� The grammar is LR(1) but not LL(1) because of left-recursion.

� The non-terminal L has an inherited attribute type defined by L.type := T.type

� The attribute T.type will be on the value stack when reduction to L takes place

� The synthetic attribute T.type can be used anywhere L.type is accessed

D

T.type L.type

float

id1

Parse tree for: float id , id , id ;

id3

;

,L.type

L.type id2,

L.type := T.type
T.type := int
T.type := float
enter(id.name, L.type)
L2.type := L.type
enter(id.name, L.type)

D � T L ;
T � int
T � float
L � L2 , id
L � id

Semantic RulesProduction

Attribute Grammars and Semantic Processing – 12 Compiler Design – © Muhammed Mudawwar

Inherited Attributes in Yacc: $0, $-1, $-2, …
� Yacc allows the inheritance of previously computed attributes:

� Access to inherited attributes is done via $0, $-1, $-2, etc.

� These attributes are stacked below the attributes of the current production.

� Inherited attributes can be very useful, but can also be a source of bugs.

� In the example shown below, $0 refers to the attribute of T stacked below
the attributes of the symbols of the L production.

� If the first production of L is right-recursive, the use of $0 will not work.

Production Yacc Actions

D � T L ;

T � int

T � float

L � L , id

L � id

$$ = 1; /* int */

$$ = 2; /* float */

enter($3, $0);

enter($1, $0)

Stack Input Action Semantic Action Value Stack

int a , b ; $ shift int
int a , b ; $ reduce T � int $$ = 1 ?
T a , b ; $ shift id 1
T id , b ; $ reduce L � id enter($1, $0) 1 a
T L , b ; $ shift , 1 ?
T L , b ; $ shift id 1 ? ?
T L , id ; $ reduce L � L , id enter($3, $0) 1 ? ? b
T L ; $ shift ; 1 ?
T L ; $ reduce D � T L ; 1 ? ?
D $ Accept ?

Attribute Grammars and Semantic Processing – 13 Compiler Design – © Muhammed Mudawwar

Replacing Inherited Attributes by Synthesized Ones

� It is sometimes possible to avoid the use of inherited attributes

� This requires changing the underlying grammar

� Consider a Pascal-like declaration:
� The first grammar uses an inherited attribute type for L

� However, the first grammar is NOT L-attributed because L.type inherits
the attribute of a right-sibling T

� The second grammar is S-attributed. It uses synthetic attributes only.

Production Semantic Rules

D � L : T ;

L � L2 , id

L � id

T � integer

T � real

L.type := T.type

enter(id.name, L.type)
L2.type := L.type

enter(id.name, L.type)

T.type := integer

T.type := real

Production Semantic Rules

D � id L

L � , id L2

L � : T ;

T � integer

T � real

enter(id.name, L.type)

enter(id.name, L2.type)
L.type := L2.type

L.type := T.type

T.type := integer

T.type := real

