CSCI 447 – Summer 2002 LL Parsing

Professor: Muhammed F. Mudawwar

Due Date: Sunday, July 7, 2002

1. For each of the following grammars, find the predict sets and state whether the grammar is LL(1) or not.

a.	S A B	ightarrow ightarrow	A B c a ε b ε
b.	S A B	ightarrow ightarrow	A b a B ε b ε
c.	S A B	ightarrow ightarrow	A B B A a ε b ε
d.	S B C	ightarrow ightarrow	a S e B b B e C c C e d

2. Given the following grammar

lexp	\rightarrow	(lexpseq) id num
lexpseq	\rightarrow	lexp lexptail
lexptail	\rightarrow	, lexp lexptail $\mid \epsilon$

- a. Find the First and Follow sets of all nonterminals
- **b.** Find the predict sets of all productions
- **c.** Construct the LL(1) parse table
- d. Show the parsing of ((${\bf id}$, ${\bf num}$) , ${\bf id}$) ${\bf \$}$ and (${\bf id}$, (${\bf id}$ ${\bf \$}$
- **3.** a) Show that an LL(1) grammar cannot be ambiguous.
 - **b**) Show that a left-recursive grammar cannot be LL(1).
- **4.** Transform the following grammar into LL(1)

DeclList	\rightarrow	DeclList ; Decl Decl
Decl	\rightarrow	IdList : Type
IdList	\rightarrow	IdList , $\mathbf{ID} \mid \mathbf{ID}$
Type	\rightarrow	ScalarType array (ScalarTypeList) of Type
ScalarTypeList	\rightarrow	ScalarTypeList , ScalarType ScalarType
ScalarType	\rightarrow	ID Bound Bound
Bound	\rightarrow	Sign INTLIT ID
Sign	\rightarrow	$+ - \epsilon$