
56

Hyperthreading technology, which
brings the concept of simultaneous multi-
threading to the Intel architecture, was first
introduced on the Intel Xeon processor in
early 2002 for the server market. In Novem-
ber 2002, Intel launched the technology on
the Intel Pentium 4 at clock frequencies of
3.06 GHz and higher, making the technolo-
gy widely available to the consumer market.
This technology signals a new direction in
microarchitecture development and funda-
mentally changes the cost-benefit tradeoffs of
microarchitecture design choices.

This article describes how the technology
works, that is, how we make a single physical
processor appear as multiple logical proces-
sors to operating systems and software. We
highlight the additional structures and die area
needed to implement the technology and dis-
cuss the fundamental ideas behind the tech-
nology and why we can get a 25-percent boost
in performance from a technology that costs
less than 5 percent in added die area. We illus-
trate the importance of choosing the right
sharing policy for each shared resource by
describing, examining, and comparing three
different sharing policies: partitioned
resources, threshold sharing, and full sharing.
The choice of policy depends on the traffic
pattern, complexity and size of the resource,

potential deadlock/livelock scenarios, and
other considerations. Finally, we show how
this technology significantly improves per-
formance on several relevant workloads.

The die photos and descriptions in this arti-
cle illustrate the technology’s first implemen-
tations on Intel’s Xeon and Pentium 4
processor families. These first implementa-
tions emphasized cost containment. Future
implementations should provide even greater
performance benefits.

Background: Processor microarchitecture
Traditional approaches to processor design

have focused on higher clock speeds, instruc-
tion-level parallelism, and cache hierarchies.
An orthogonal set of techniques leverages the
thread-level parallelism to further improve
processor performance.

Higher clock speed
Techniques to achieve higher clock speeds

involve pipelining the microarchitecture to
finer granularities, also called superpipelining.
Higher clock frequencies can greatly improve
performance by increasing the number of
instructions executed each second. Because a
superpipelined microarchitecture has far more
instructions in flight, handling events that dis-
rupt the pipeline—for example, cache miss-

David Koufaty
Deborah T. Marr

Intel

BY USING EXISTING PROCESSOR RESOURCES MORE EFFICIENTLY,

HYPERTHREADING TECHNOLOGY IMPROVES PERFORMANCE AT LITTLE COST

AND INCREASES CHIP SIZE BY LESS THAN 5 PERCENT.

HYPERTHREADING TECHNOLOGY
IN THE NETBURST

MICROARCHITECTURE

Published by the IEEE Computer Society 0272-1732/03/$17.00 2003 IEEE

es, interrupts, and branch mispredictions—
can be costly.

Instruction-level parallelism
Instruction-level parallelism refers to tech-

niques to increase the number of instructions
executed each clock cycle. For example, a
superscalar processor has multiple parallel exe-
cution units that can process instructions
simultaneously, so that several instructions can
execute each clock cycle. However, with sim-
ple in-order execution, just having multiple
execution units isn’t enough; the challenge is
to find enough instructions to execute. One
technique is out-of-order execution, whereby
the processor evaluates a large window of
instructions simultaneously and sends them
to execution units on the basis of instruction
dependencies rather than program order.
With out-of-order execution, however,
instruction dependencies and cache misses
limit the number of instructions that can be
executed simultaneously.

Cache hierarchies
Cache hierarchies have traditionally served

to reduce the number of cycles processors
spend waiting for data from memory. Having
frequently used data on the processor caches
reduces the frequency of accesses to the slow-
er memory. Current microprocessors use mul-
tiple levels of caches, with smaller and faster
caches located closer to the processor. Cache
hierarchies, however, are limited by cache
latency and die area, because larger caches
have higher latencies and require a larger frac-
tion of the processor area.

Thread-level parallelism
Today’s software developers want to execute

an increasing number of different tasks simul-
taneously. These workloads can take the form
of multithreaded applications; for example,
online transaction processing and Web ser-
vices have an abundance of software threads
that can execute simultaneously. It can also
entail multiple applications, with users Web
browsing, listening to music, and encod-
ing/decoding video streams all at the same
time. Intel architects have been trying to lever-
age this so-called thread-level parallelism to
improve performance while controlling tran-
sistor count and power consumption.

In recent years, researchers have discussed
other techniques to further exploit thread-
level parallelism. One of these techniques is
chip multiprocessing (CMP), whereby two
processors, each with a full set of execution
and architectural resources, reside on a single
die.1,2 The processors might or might not
share a large on-chip cache. CMP is largely
orthogonal to conventional multiprocessor
systems because a multiprocessor configura-
tion can have multiple CMP processors.
Hewlett-Packard and IBM recently
announced products incorporating two
processors on each die.3,4 However, a CMP
chip is significantly larger than a single-core
chip and therefore more expensive to manu-
facture. Moreover, it doesn’t address die size
and power considerations.

Another approach is to let a single processor
execute multiple threads by switching between
them. With time-slice multithreading, the
processor switches between software threads
after a fixed time period.5-7 Although it can
result in wasted execution slots, time-slice mul-
tithreading can effectively minimize the effects
of long latencies to memory. Switch-on-event
multithreading switches threads on long-laten-
cy events such as cache misses.8 This approach
can work well for server applications that have
numerous cache misses and where the two
threads are executing similar tasks. However,
time-slice and switch-on-event multithread-
ing techniques both fail to achieve optimal
overlap of many sources of inefficient resource
usage, such as branch mispredictions and
instruction dependencies.

Finally, there is simultaneous multithread-
ing,9,10 whereby multiple threads execute on a
single processor without switching. Simulta-
neous execution of threads uses processor
resources most effectively, maximizing per-
formance relative to transistor count and
power consumption.

Hyperthreading technology brings the
simultaneous multithreading approach to the
Intel architecture. This article discusses the
architecture and the first implementation of
hyperthreading technology on the Netburst
microarchitecture.

Hyperthreading technology architecture
Hyperthreading technology makes a single

physical processor appear to be multiple log-

57MARCH–APRIL 2003

ical processors. There is one copy of the archi-
tectural state for each logical processor, and
these processors share a single set of physical
execution resources. From a software or archi-
tecture perspective, this means operating sys-
tems and user programs can schedule
processes or threads to logical processors as
they would on conventional physical proces-
sors in a multiprocessor system. From a
microarchitecture perspective, it means that
instructions from logical processors will per-
sist and execute simultaneously on shared exe-

cution resources. This can greatly improve
processor resource utilization.

The hyperthreading technology imple-
mentation on the Netburst microarchitecture
has two logical processors on each physical
processor. Figure 1 shows a conceptual view
of processors with hyperthreading technology
capability.

Each logical processor maintains a complete
set of the architectural state. The architectur-
al state consists of registers, including gener-
al-purpose registers, and those for control, the
advanced programmable interrupt controller
(APIC), and some for machine state. From a
software perspective, duplication of the archi-
tectural state makes each physical processor
appear to be two processors. Each logical
processor has its own interrupt controller, or
APIC, which handles just the interrupts sent
to its specific logical processor.

Hyperthreading technology is fully com-
patible with existing software and hardware.
However, software optimizations like those
described in the Intel Pentium 4 Processor Opti-
mization Reference Manual11 will result in bet-
ter performance. Newer operating systems,
such as Microsoft Windows XP, are already
optimized for the best performance.

Die size and complexity
The vast majority of techniques that

improve processor performance from one gen-
eration to the next are complex and often sig-
nificantly increase die size and power costs.
These techniques increase performance, but
not with 100-percent efficiency. Because of
limited parallelism in instruction flows, dou-
bling the number of execution units in a
processor doesn’t double the processor’s per-
formance. Similarly, simply doubling the
clock rate doesn’t double performance,
because a certain number of processor cycles
are lost to branch mispredictions. Assuming
the same process technology, processor die
area has grown at a rate three times that of
integer performance.12

Hyperthreading technology can deliver a
large performance improvement at minimal
cost because it entails only a small increase in
die size. Logical processors share nearly all
resources on the physical processor, including
caches, execution units, branch predictors,
control logic, and buses. The increase in die

58

HYPERTHREADING TECHNOLOGY

IEEE MICRO

Architectural
state

Architectural
state

Processor
execution resources

System bus

Figure 1. A physical processor capable of
hyperthreading technology has two copies
of the architectural state and thus appears
to have two logical processors.

Next-instruction
pointer

Instruction
streaming

buffers

Instruction translation
look-aside buffer

Return stack predictor

Trace-cache
next-instruction pointer

Trace-cache fill buffers

Advanced programmable
interrupt controller

Register alias tables

Figure 2. Intel Pentium 4 and the visible processor resources duplicated to
support hyperthreading technology. Hyperthreading requires duplication of
additional miscellaneous pointers and control logic, but these are too small
to point out.

size is due to a second architectural state, addi-
tional control logic, and replication of a few
key processor resources. This limited replica-
tion of processor resources, as Figure 2 shows,
accounts for most of the die size increase. The
transistors required for the extra architectur-
al state and the additional control logic con-
sume an extremely small amount of die space.

The duplicated structures indicated in Fig-
ure 2 reduce complexity and improve perfor-
mance. The register alias tables map the
architectural registers to physical rename reg-
isters. The architectural registers must be
tracked independently for each logical proces-
sor, requiring a separate table for each logical
processor.

Duplicating the next-instruction pointer and
associated control logic permits independent
tracking of program progress for each logical
processor. There are two sets of next-instruc-
tion pointer logic: one at the trace cache,
which serves as the first-level instruction cache
and stores decoded instructions; and the other
set at the instruction decoder logic for use in
the case of a trace-cache miss.

The return stack predictor is duplicated for
accurate tracking of call/return pairs. This
allows for improved call/return prediction.
Instruction streaming buffers and trace-cache fill
buffers are front-end buffers duplicated for
effective instruction prefetch.

Designers duplicated the instruction trans-
lation look-aside buffer because there was
enough room and its small size made replica-
tion simpler than sharing. Duplicating the
APIC registers allows interrupts to go to each
logical processor independently.

Even though the die area increase was small,
the increase in design complexity was sub-
stantial. Hyperthreading technology chal-
lenged many basic assumptions about
single-threaded out-of-order design.

First, designers had to devise many new
algorithms to let both logical processors share
the logic, and they had to revisit other algo-
rithms to prioritize microoperations, or
micro-ops, from different logical processors.
For example, algorithms that depend on the
age of a micro-op became much more com-
plicated because it was not clear how to
determine the age and priority of instructions
from two different logical processors. Also,
designers paid special attention to addressing

potential livelock scenarios in which one log-
ical processor blocks the other. Designers
devised algorithms that inherently avoided
livelocks, but also added fallback algorithms
just in case.

Second, logic complexity was high because
of pointer manipulation, additional multi-
plexers, duplicated state, and new boundary
conditions. The x86 architecture was already
complex enough, but hyperthreading adds two
logical processors that can operate in any com-
bination of x86 operating modes and events.

Finally, hyperthreading technology opens
up a whole new space of validation. Increased
complexity dramatically increases the valida-
tion effort. To validate that two logical proces-
sors could operate as if they were two physical
processors, engineers had to validate every
combination of major operating mode and
event. Two logical processors have many more
interactions than two physical processors in a
conventional multiprocessor system, because
they share the same physical resources. On the
platform side, designers had to carefully
review and optimize chipset, BIOS, operat-
ing systems, and applications.

Microarchitecture choices and tradeoffs
The current hyperthreading technology

implementation required some microarchi-
tecture choices and tradeoffs. The choice of a
resource sharing policy for each shared
resource is important because it can dramati-
cally impact performance. In determining
how to share resources, we chose among pos-
sible sharing schemes that included

• partition, dedicating equal resources to
each logical processor;

• threshold, flexible resource sharing with a
limit on maximum resource usage; and

• full sharing, flexible resource sharing with
no limit on the maximum resource usage.

The choice required us to consider through-
put versus fairness and potential livelock sce-
narios, as well as die size and complexity.

Partition
In a partitioned resource, each logical proces-

sor can use only half the entries. Clearly,
resource partitioning has the advantage of sim-
plicity and low complexity. It is a good choice

59MARCH–APRIL 2003

for resources when you expect the structure’s
utilization to be generally high and somewhat
unpredictable. For example, partitioning is a
good choice for major pipeline queues, which
provide buffering to avoid pipeline stalls and,
ideally, remain full most of the time. However,
because software thread execution speeds differ
at any instant in time, the rate at which the
queues fill and empty is unpredictable. By par-
titioning these queues, we can allow slip
between a fast and a slow software thread, pre-
venting a slow thread from blocking or slow-
ing down the faster thread and thereby making
the best use of each pipeline stage.

Figure 3 shows how this works. At the start,
in Figure 3a, both the shared queue and the par-
titioned queue have two light-shaded and two
dark-shaded micro-ops. Both the light micro-
ops and the dark micro-ops are labeled 1 and 0.

In cycle 1, Figure 3b, both the shared and
partitioned queues send light micro-op 0
down to the next pipeline stage. In the shared
queue, the previous pipeline stage sends dark
micro-op 2, but in the partitioned queue,
because the dark thread is already occupying
its maximum number of entries, the previous
pipeline stage sends a light micro-op instead

(light micro-op 2). At the end of cycle 1, the
shared queue has one light micro-op and three
dark micro-ops. The partitioned queue has
two micro-ops of each shade.

In cycle 2, Figure 3c, both the shared and
partitioned queues send a light micro-op to
the next pipeline stage, and the previous
pipeline stage delivers a light micro-op in both
cases. The shared queue gets a light micro-op
in this cycle because in the previous cycle it
sent a dark micro-op. In general, in-order
pipeline stages will alternate between light and
dark micro-ops unless the staging queue after
the pipeline stage is full or the previous staging
queue has no micro-ops available to work on.

In cycle 3, Figure 3d, both queues again send
a light micro-op to the next pipeline stage. The
previous pipeline stage sends a dark micro-op
in the case of the shared queue and a light
micro-op in the case of the partitioned queue.
At the end of cycle 3, the shared queue has four
dark micro-ops and no light micro-ops, while
the partitioned queue still has two of each.

In Figure 3e, the shared queue is now blocked
because it has no light micro-ops, and the dark
thread has a downstream stall. The partitioned
queue can continue to issue light micro-ops.

60

HYPERTHREADING TECHNOLOGY

IEEE MICRO

1 0 1 0 1 0 1 0Cycle 0

(a)

1 1 0 1 1 0Cycle 1

(b)

0 0

1 1 0 1 1 0Cycle 1
2 2

1 1 0 1 12 2 0Cycle 1

1 0 1 0Cycle 2

(c)

1 1

1

2

2 0 1 0Cycle 2

2 3

2 1 0 3 12 2 0Cycle 2

2

2

1 0 3 1 0Cycle 3

(d)

2 2

1

2

2 0 3 1 0Cycle 3
3 4

3 1 0 3 12 4 0Cycle 3

(e)

3 1 0 3 12 4 0Cycle 4

Shared
queue

Partitioned
queue

Light thread
is blocked

Figure 3. Comparison of a shared and a partitioned queue. The slower (dark) thread has a downstream stall, such as a data-
cache miss. In this situation, the queues will not send any slower micro-ops to the next pipeline stage. The figure shows how
the queues will progress through cycles 0 (a), 1 (b), 2 (c), and 3 (d). Eventually, in cycle 4 (e) the shared queue lets a slower
thread block the progress of the faster (light) thread.

Figure 4 shows a basic execution pipeline
of the Netburst microarchitecture. The
microarchitecture, detailed in the literature,13

works on micro-ops and decodes each x86
instruction into one or more micro-ops. As
the figure shows, micro-ops are first fetched
from the trace cache; then they’re renamed,
scheduled, executed, and finally retired. At a
very high level, there is an in-order front-end
pipeline, an out-of-order execution pipeline,
and in-order retirement. In the out-of-order
pipeline, instruction dependency chains deter-
mine execution resource utilization more than
any arbitration schemes.

It’s especially important to guarantee fair-
ness and progress for the pipeline’s in-order
parts. Therefore, a partitioned scheme works
best for the major pipeline queues in the in-
order pipeline. If there is a front-end stall (say,
because of a trace-cache miss), the back end
can continue to take micro-ops from the
micro-ops queue. If there is a back-end stall
(say, because of a data cache miss), the front
end can continue to fill the queue. Large
queues can keep both the front end and the
back end mostly busy when one end is tem-
porarily stalled for one logical processor.

As Figure 3 shows, if the two logical proces-
sors fully shared these queues, a slow thread
could gain an unfair share of the resources and
prevent a fast thread from making progress.

Because the slow thread is often stalled, its
micro-ops start to pile up in the queues. In
time, the slow thread will collect more and
more entries, because it competitively shares
entries with the fast thread. Eventually, the
slow thread will get most, if not all, of the
queue, thereby slowing the fast thread’s
progress. A partitioned queue, however, lets
the fast thread always have half of the entries
and advance at its own pace.

Partitioning resources is simple, entails little
implementation complexity, and ensures fair-
ness and progress for both logical processors.

Threshold
Another way of sharing resources is to limit

the maximum resource usage. This scheme,
instead of partitioning the resource, puts a
threshold on the number of resource entries
a logical processor can have.

This approach is ideally suited for small
structures where the resource utilization is
bursty, and the length of time a micro-op
stays in the structure is short, fairly uniform,
and predictable. Processor schedulers are a
good example of where threshold sharing is
the best choice. Scheduler throughput is high
because the schedulers assume that load
instructions will hit in the cache, so micro-
ops don’t linger in the schedulers (a separate
reissue mechanism would resubmit micro-

61MARCH–APRIL 2003

Register
rename

Allocate

IP

In-orderOut-of-order pipelineIn-order pipeline

I-fetch

Trace
cache

Fetch
queue Rename Micro-op

queue Scheduler Register
read

Registers

D-cache

L1
D-cache

Store
buffer

Register
write

Registers

Retire
queue

Reorder
buffer

Execute

Major pipeline queues

Figure 4. In this view of a Netburst microarchitecture’s execution pipeline, the light and dark areas indicate the resource uti-
lization of the two software threads running on the two logical processors.

ops to execution units in the event of a cache
miss). Also, the schedulers are very small, to
enable speed. They run at twice the clock fre-
quency, so a 3-GHz processor has schedulers
running at 6 GHz.

The allocation of micro-ops to these sched-
ulers is round-robin until a logical processor
reaches its threshold number of entries. At
that point, it cannot allocate more micro-ops
until it dispatches some of its current entries.

Figure 5 shows scheduler occupancy over a
number of processor clock cycles. Although
average scheduler utilization is low, the activ-
ity can be bursty. A threshold limiting the
maximum number of entries each logical
processor can use prevents one logical proces-
sor from blocking the other’s access to the
scheduler. The threshold lets the scheduler
look for maximum parallelism among micro-
ops across both threads, thereby improving
execution resource utilization.

Full sharing
Fully shared resources, the most flexible

mechanism for resource sharing, do not limit
the maximum resource usage for a logical
processor. In general, fully shared resources
are good for large structures in which work-
ing-set sizes are variable, and one logical
processor cannot starve the other.

Processor caches are a good example of struc-
tures best suited to the full-sharing policy. In
the Netburst microarchitecture, all processor

caches are shared. First, this
allows for better overall per-
formance than with a parti-
tioned or threshold cache
because cache interference is
usually modest. Second, some
applications benefit from a
shared cache because they
share code and data, minimiz-
ing redundant data in the
caches. Finally, high set asso-
ciativity minimizes conflict
misses between logical proces-
sors. The second- and third-
level caches (if present) are
eight-way set associative.

Because hyperthreading
technology is a new architec-
tural field, we implemented
multiple resource manage-

ment algorithms in some areas of the proces-
sor. This includes the cache-sharing policy.
This feature lets us experiment with various
cache management policies on real systems.
Figure 6 shows results for some of those exper-
iments and the advantage of using a shared
cache. The figure compares the results of run-
ning multiple workloads on two cache con-
figurations: fully shared and partitioned. For
each workload, the figure shows the cache hit
rate and performance impact of a fully shared
cache normalized to those of a partitioned
cache. We collected cache miss statistics using
the Intel Pentium 4 event-monitoring coun-
ters,14 specifically the second-level cache’s load-
misses-retired event. The workload consisted
of running two copies of the same application.
This scenario highlights the modest cache
interference in a shared cache.

Performance
Hyperthreading technology improves over-

all performance in two ways. First, it speeds
up applications that are already multithread-
ed. In this case, each logical processor will run
software threads from the same application.
Second, it speeds up a workload consisting of
multiple applications by multitasking. In this
case, each logical processor will likely run
threads from different applications.

Figure 7 shows the hyperthreading tech-
nology performance boost on current popu-
lar software packages. The technology delivers

62

HYPERTHREADING TECHNOLOGY

IEEE MICRO

Time (clock cycles)

Logical processor 0
Logical processor 1

O
cc

up
an

cy
 (

no
. o

f e
nt

rie
s)

9

8

7

6

5

4

3

2

1

Figure 5. Snapshot of scheduler occupancy on a transaction processing workload over a
short period of time. Each data point is the instantaneous scheduler occupancy for its
respective logical processor, measured by the number of entries occupied by each thread.

a 15 to 26 percent performance boost on these
multithreaded applications.

Figure 8 shows the performance benefits
that hyperthreading technology delivers for
several multitasking workloads. The perfor-
mance boost, 15 to 27 percent, resembles that
of the multithreaded case. The “Test system
configuration” sidebar describes the system
used for these performance tests.

With a resource sharing policy matched
to the traffic and performance require-

ments of each resource, hyperthreading tech-
nology can increase resource utilization and
improve performance. Intel is committed to
this new and challenging microarchitecture
direction. More than two and a half years of

63MARCH–APRIL 2003

0.8

1.0

1.2

1.4

1.6

1.8

2.0

16
4.

gz
ip

17
5.

vp
r

17
6.

gc
c

18
1.

m
cf

18
6.

cr
af

ty

19
7.

pa
rs

er

25
2.

eo
n

25
3.

pe
rlb

m
k

25
4.

ga
p

25
5.

vo
rt

ex

25
6.

bz
ip

2

30
0.

tw
ol

f

16
8.

w
up

w
is

e

17
1.

sw
im

17
2.

m
gr

id

17
3.

ap
pl

u

17
7.

m
es

a

17
8.

ga
lg

el

17
9.

ar
t

18
3.

eq
ua

ke

18
7.

fa
ce

re
c

18
8.

am
m

p

18
9.

lu
ca

s

19
1.

fm
a3

d

20
0.

si
xt

ra
ck

30
1.

ap
si

A
ve

ra
ge

S
ha

re
d-

ca
ch

e
im

pr
ov

em
en

t
ov

er
 p

ar
tit

io
ne

d
ca

ch
e

Application workload

Cache hit rate
Performance

2.2

3.1

Figure 6. Cache hit rate and overall performance impact for a fully shared cache normalized against values for a partitioned
cache. On average, the shared cache had a 40-percent better cache hit rate and 12-percent better performance. Notice that
no single application workload lost performance because of the shared cache.

Video 26%XMPEG
with DivX

Imaging 25%Adobe
Photoshop

Audio 24%Magix MP3
Maker

Video 15%Adobe
After Effects

Figure 7. Hyperthreading technology performance gains on
several popular multithreaded software packages.

27%Word, Acrobat,
and Virus Scan

20%
PowerPoint,

Acrobat,
and Virus Scan

18%
Windows Movie

Maker and Magix
MP3 Maker

15%
Magix

MP3 Maker
and Virus Scan

Figure 8. Hyperthreading technology performance boost on
multitasking workloads.

system experimentation has provided enor-
mous insight and helped direct future imple-
mentation choices. We expect to continuously
improve hyperthreading technology for years
to come. MICRO

Acknowledgments
Many architects, design engineers, and soft-

ware engineers made significant contributions
to the architecture and microarchitecture
design choices. Glenn Hinton first proposed
and then championed the idea of adding
hyperthreading technology to the Netburst
microarchitecture. Key architects who worked
with design engineers and helped define
microarchitecture algorithms include Darrell
Boggs, Doug Carmean, Per Hammarlund,
David Hill, Alan Kyker, David Sager, and
Mike Upton. David Burns coordinated the
enormous validation effort. Bryant Bigbee,
Shiv Kaushik, and Jim Crossland made fun-
damental contributions by providing key
insights from the operating system and soft-
ware perspective.

References
1. L.A. Barroso et al., “Piranha: A Scalable

Architecture Based on Single-Chip Multi-
processing,” Proc. 27th Ann. Int’l Symp.
Computer Architecture (ISCA 00), IEEE CS
Press, 2000, pp. 282-293.

2. L. Hammond, B. Nayfeh, and K. Olukotun,
“A Single-Chip Multiprocessor,” Computer,
vol. 30, no. 9, Sept. 1997, pp. 79-85.

3. D.J.C. Johnson, “HP’s Mako Processor,”

Microprocessor Forum, Oct. 2001, http://
www.cpus.hp.com/technical_references/
mpf_2001.pdf.

4. J.M. Tendler, S. Dodson, and S. Fields,
“POWER4 System Microarchitecture,” tech.
white paper, IBM Server Group, Oct. 2001.

5. R. Alverson et al., “The TERA Computer Sys-
tem,” Proc. Int’l Supercomputing Conf.,
IEEE CS Press, 1990, pp. 1-6.

6. M. Fillo et al., “The M-Machine Multicom-
puter,” Proc. 28th Ann. Int’l Symp. Microar-
chitecture (Micro-28), IEEE CS Press, Nov.
1995, pp. 146-156.

7. B.J. Smith, “Architecture and Applications
of the HEP Multiprocessor Computer Sys-
tem,” Proc. SPIE Real Time Signal Process-
ing IV, 1981, pp. 241-248.

8. A. Agarwal et al., “APRIL: A Processor Archi-
tecture for Multiprocessing,” Proc. 17th Ann.
Int’l Symp. Computer Architecture (ISCA 90),
IEEE CS Press, 1990, pp. 104-114.

9. D. Tullsen, S. Eggers, and H. Levy, “Simul-
taneous Multithreading: Maximizing On-Chip
Parallelism,” Proc. 22nd Ann. Int’l Symp.
Computer Architecture (ISCA 95), ACM,
1995. pp. 392-403.

10. D. Tullsen et al., “Exploiting Choice: Instruc-
tion Fetch and Issue on an Implementable
Simultaneous Multithreading Processor,”
Proc. 23rd Ann. Int’l Symp. Computer Archi-
tecture (ISCA 96), ACM, 1996, pp. 191-202.

11. Intel Pentium 4 Processor Optimization Ref-
erence Manual, Intel Corp., order no.
248966, http://developer.intel.com/design/
pentium4/manuals.

12. D.T. Marr et al., “Hyperthreading Technolo-
gy Architecture and Microarchitecture,” Intel
Technology J., vol. 6, no. 1, Feb. 2002,
http://www.intel.com/technology/itj/2002/
volume06issue01/.

13. G. Hinton et al., “The Microarchitecture of
the Pentium 4 Processor,” Intel Technology
J., 1st quarter 2001, http://www.intel.com/
technology/itj/q12001.htm.

14. IA-32 Intel Architecture Software Develop-
er’s Manual, Vol. 3: System Programming
Guide, Intel Corp., 2001, order no. 244472,
h t tp : / /deve loper . in te l . com/des ign /
pentium4/manuals.

David Koufaty is a CPU architect with Intel’s
Desktop Products Group and is responsible
for hyperthreading technology performance.

64

HYPERTHREADING TECHNOLOGY

IEEE MICRO

Test system configuration
Hyperthreading technology requires a computer system with an Intel Pentium 4 proces-

sor running at 3.06 GHz or higher, a chipset and BIOS that utilize this technology, and an
operating system that includes optimizations for the technology.

The system used to obtain the performance increases shown in Figures 7 and 8 consists
of a 3.06-GHz Intel Pentium 4 processor with hyperthreading technology (enabled/disabled),
an Intel Desktop Board D850EMV2, a 256-Mbyte PC1066 RDRAM, all platform configuration
Leadtek WinFast A250 Ultra TD GeForce 4/ nVidia GeForce 4 4x AGP graphics, an nVidia Det-
onator 4 reference driver 28.32, an Intel Application Accelerator v2.2.2128, the Intel Chipset
Software Installation Utility v4.00.1009, an IBM 80-Gbyte 120GXP IC35L080AVVA07-0 ATA-
100 hard drive, Intel C and Fortran compilers 5.01 for SPEC, DirectX 8.1, Windows XP (build
2600), and a 100-Mbps Intel Pro/100+ Management PCI LAN card.

Performance tests and ratings reflect the approximate performance of Intel products as
measured by those tests. Any difference in system hardware or software design or configu-
ration might affect actual performance.

His main research interests are processor
microarchitecture and performance. He has
BS and MS degrees from Simón Bolívar Uni-
versity, Venezuela, and a PhD in computer sci-
ence from the University of Illinois at
Urbana-Champaign.

Deborah T. Marr is one of the CPU archi-
tects in the Intel Desktop Products Group
responsible for hyperthreading technology.
Her research interests include high-perfor-
mance microarchitecture and performance
analysis. She has a BS in electrical engineer-
ing and computer science from the Universi-

ty of California, Berkeley, and an MS in elec-
trical and computer engineering from Cornell
University.

Direct questions and comments about this
article to David Koufaty, Intel Corp., JF4-
354, 2111 NE 25th Ave., Hillsboro, OR
97124-5961; dkoufaty@ichips.intel.com.

For further information on this or any other
computing topic, please visit our Digital
Library at http://computer.org/publications/
dlib.

65MARCH–APRIL 2003

EXECUTIVE STAFF
Executive Director: DAVID W. HENNAGE
Assoc. Executive Director:
ANNE MARIE KELLY
Publisher: ANGELA BURGESS
Assistant Publisher: DICK PRICE
Director, Administration: VIOLET S. DOAN
Director, Information Technology & Services:
ROBERT CARE
Manager, Research & Planning: JOHN C. KEATON

COMPUTER SOCIETY OFFICES
Headquarters Office
1730 Massachusetts Ave. NW

Washington, DC 20036-1992

Phone: +1 202 371 0101 • Fax: +1 202 728 9614

E-mail: hq.ofc@computer.org

Publications Office
10662 Los Vaqueros Cir., PO Box 3014

Los Alamitos, CA 90720-1314

Phone:+1 714 8218380

E-mail: help@computer.org

Membership and Publication Orders:

Phone: +1 800 272 6657 Fax: +1 714 821 4641

E-mail: help@computer.org

Asia/Pacific Office
Watanabe Building

1-4-2 Minami-Aoyama,Minato-ku,

Tokyo107-0062, Japan

Phone: +81 3 3408 3118 • Fax: +81 3 3408 3553

E-mail: tokyo.ofc@computer.org

PURPOSE The IEEE Computer Society is the
world’s largest association of computing profes-
sionals, and is the leading provider of technical
information in the field.

MEMBERSHIP Members receive the month-
ly magazine COMPUTER, discounts, and oppor-
tunities to serve (all activities are led by volunteer
members). Membership is open to all IEEE mem-
bers, affiliate society members, and others inter-
ested in the computer field.

BOARD OF GOVERNORS
Term Expiring 2003: Fiorenza C. Albert-
Howard, Manfred Broy, Alan Clements, Richard A.
Kemmerer, Susan A. Mengel, James W. Moore,
Christina M. Schober
Term Expiring 2004: Jean M. Bacon, Ricardo
Baeza-Yates, Deborah M. Cooper, George V.
Cybenko, Haruhisha Ichikawa, Lowell G. Johnson,
Thomas W. Williams
Term Expiring 2005: Oscar N. Garcia, Mark A
Grant, Michel Israel, Stephen B. Seidman, Kathleen
M. Swigger, Makoto Takizawa, Michael R. Williams

Next Board Meeting: 10 May 2003, Vancouver, BC

IEEE OFFICERS
President: MICHAEL S. ADLER
President-Elect: ARTHUR W. WINSTON
Past President: RAYMOND D. FINDLAY
Executive Director: DANIEL J. SENESE
Secretary: LEVENT ONURAL
Treasurer: PEDRO A. RAY
VP, Educational Activities: JAMES M. TIEN
VP, Publications Activities:MICHAEL R. LIGHTNER
VP, Regional Activities: W. CLEON ANDERSON
VP, Standards Association: GERALD H. PETERSON
VP, Technical Activities: RALPH W. WYNDRUM JR.
IEEE Division VIII Director JAMES D. ISAAK
President, IEEE-USA: JAMES V. LEONARD

EXECUTIVE COMMITTEE
President:
STEPHEN L. DIAMOND*
Picosoft, Inc.
P.O.Box 5032
San Mateo, CA 94402
Phone: +1 650 570 6060
Fax: +1 650 345 1254
s.diamond@computer.org

President-Elect: CARL K. CHANG*
Past President: WILLIS. K. KING*
VP, Educational Activities: DEBORAH K. SCHERRER
(1ST VP)*
VP, Conferences and Tutorials: CHRISTINA
SCHOBER*
VP, Chapters Activities: MURALI VARANASI†
VP, Publications: RANGACHAR KASTURI †
VP, Standards Activities: JAMES W. MOORE†
VP, Technical Activities: YERVANT ZORIAN†
Secretary: OSCAR N. GARCIA*
Treasurer:WOLFGANG K. GILOI* (2ND VP)
2002–2003 IEEE Division VIII Director: JAMES D.
ISAAK†
2003–2004 IEEE Division V Director: GUYLAINE M.
POLLOCK†
Computer Editor in Chief: DORIS L. CARVER†
Executive Director: DAVID W. HENNAGE†

* voting member of the Board of Governors
† nonvoting member of the Board of Governors

COMPUTER SOCIETY WEB SITE
The IEEE Computer Society’s Web site, at
http://computer.org, offers information and
samples from the society’s publications and con-
ferences, as well as a broad range of information
about technical committees, standards, student
activities, and more.

