
26

Advances in semiconductor tech-
nology have let microprocessors integrate
more than a 100 million transistors on a sin-
gle chip. The Alpha 21364 microprocessor1,2

uses 152 million transistors to integrate an
Alpha 21264 processor core, a 1.75-Mbyte
second-level cache, cache coherence hard-
ware, two memory controllers, and a multi-
processor router on a single die, as Figure 1a
shows. In the 0.18-micron bulk CMOS
process, the 21364 will run at 1.2 GHz and
provide 12.8 Gbytes/s of local memory band-
width and 22.4 Gbytes/s of router band-
width, as Figure 2 shows.

The Alpha 21364’s tightly coupled multi-
processor network connects up to 128 such
processors in a 2D torus network; Figure 1b
shows a 12-processor configuration. A fully
configured, 128-processor, shared-memory
system can support up to 4 terabytes of Ram-
bus memory and hundreds of terabytes of disk
storage. We could also easily redesign the
21364 to support a much larger configuration.

This multiprocessor configuration supports
the massive computation and communication
requirements of various application domains,
such as high-performance technical comput-
ing, database servers, Web servers, and
telecommunications. We designed the Alpha
21364 network architecture to meet the com-

munication demands of these memory- and
I/O-intensive applications.

The novelty of the Alpha 21364’s router
architecture lies in its extremely low latency,
enormous bandwidth, and support for direc-
tory-based cache coherence. The router
offers extremely low latency because it oper-
ates at 1.2 GHz, the same clock speed as the
processor core. The pin-to-pin latency with-
in the router is 13 cycles or 10.8 ns. In com-
parison, the ASIC-based SGI Spider router
runs at 100 MHz and offers a 40-ns pin-to-
pin latency.3

Similarly, the Alpha 21364 offers an enor-
mous amount of peak and sustained band-
width. The 21364 router can sustain between
70 and 90 percent of its 22.4-Gbytes/s peak
bandwidth. The 21364’s router can offer such
enormous bandwidth because of aggressive
routing algorithms, carefully crafted distrib-
uted arbitration schemes, large amounts of
on-chip buffering, and a fully pipelined router
implementation.

Finally, the network and router architec-
tures have explicit support for directory-based
cache coherence, such as separate virtual chan-
nels for different coherence protocol packet
classes. This helps avoid deadlocks and
improves the performance of the 21364’s
coherence protocol.

Shubhendu S.
Mukherjee

Peter Bannon
Steven Lang
Aaron Spink
David Webb

Compaq Computer Corp.

THE ALPHA 21364 PROCESSOR PROVIDES A HIGH-PERFORMANCE, SCALABLE,

AND RELIABLE NETWORK ARCHITECTURE WITH A ROUTER THAT RUNS AT 1.2

GHZ AND HAS A PEAK BANDWIDTH OF 22.4 GBYTES/S. SUPPORTING

CONFIGURATIONS OF UP TO 128 PROCESSORS, THIS NETWORK ARCHITECTURE

IS WELL SUITED FOR COMMUNICATION-INTENSIVE SERVER APPLICATIONS.

0272-1732/02/$17.00 2002 IEEE

THE ALPHA 21364 NETWORK
ARCHITECTURE

Network packet classes
Network packets and flits are the basic units

of data transfer in the 21364’s network. A
packet is a message transported across the net-
work from one router to another; it consists of
one or more flits. A flit is a portion of a pack-
et transported in parallel on a single clock
edge. A flit is 39 bits—32 bits for payload, 7
bits for per-flit error correction code (ECC).
Thus, each of the incoming and outgoing
interprocessor ports shown in Figure 1b is 39
bits wide. The 21364 network supports pack-
et sizes of one, two, three, 18, and 19 flits. A
packet’s first one to three flits contain the
packet header. Additionally, the 18- or 19-flit
packets typically contain 64-byte (or 16-flit)
cache blocks or up to 64 bytes of I/O data.

The 21364 network supports seven packet
classes:

• Request (three flits). A processor or I/O
device uses a request packet to obtain
data in and/or ownership of a cache block
or up to 64 bytes of I/O data.

• Forward (three flits). A memory controller
(MC1 or MC2 in Figure 1a) uses a for-
ward packet to forward a request packet
to a cache block’s current owner or shar-
er (a processor or I/O device).

• Block response (18 or 19 flits). A proces-
sor or I/O device uses a block response
packet to return the data requested by a

request class packet or to send a modi-
fied cache block back to memory.

• Nonblock response (two or three flits). A
processor, memory controller, or I/O
device uses a nonblock response packet to
acknowledge coherence protocol actions,
such as a request for a cache block.

• Write I/O (19 flits). A processor or I/O
device generates a write I/O packet when

27JANUARY–FEBRUARY 2002

(b)(a)

L2
cache
data

L2
cache
data

Alpha
21264
core

Router

L2 cache
tags

MC1 MC2

21364 Rambus memory I/O

Figure 1. Alpha 21364 floor plan (a) and a 12-processor configuration of Alpha 21364s (b).

North

South

East

West

I/O

North

South

East

West

L1

L2

I/O

MC1

MC2

Cache
Output
ports

Input
ports

Router

Figure 2. Router ports. This figure shows the eight input ports and the seven
output ports of the 21364’s router. The north, south, east, and west inter-
processor ports correspond to off-chip connections to the 2D torus network.
MC1 and MC2 are the two on-chip memory controllers, shown in Figure 1a.
The cache input port corresponds to the on-chip second-level cache. The L1
output port connects to the first level cache as well as MC1. Similarly, the L2
output port connects to the first level cache and MC2. Finally, the I/O ports
connect to the I/O chip external to the 21364 processor. The total aggregate
bandwidth of the seven output ports is 22.4 Gbytes/s.

it stores data to I/O space.
• Read I/O (three flits). A processor gener-

ates read I/O packets to load data from
I/O space.

• Special (one or three flits). The network
and the coherence protocol use these
packets. The special class includes no-op
packets, which can carry buffer dealloca-
tion information between routers.

The packet header (one to three flits) iden-
tifies the packet’s class and function. The
header also contains routing information for
the packet and (optionally) the physical
address of the cache block or data block in I/O
space that corresponds to this packet. It can
also carry flow control information between
neighboring routers. Besides the header, block
response and write I/O packets also contain
16 flits or 64 bytes of data.

The 21364’s coherence protocol and I/O
devices use these packet classes to communi-
cate between processors, memory, and I/O
devices. Bannon et al. describes the 21364’s
directory-based coherence protocol.4

Network architecture
The 21364 network is a 2D torus, but it

can also support limited configurations of
imperfect tori, which lets the network take
faulty routers out of its topology. To imple-
ment the 2D torus, we carefully designed the
routing mechanisms and the corresponding
deadlock avoidance techniques.

Virtual cut-through routing
The 21364 uses virtual cut-through rout-

ing in which flits of a packet proceed through
multiple routers until a router blocks the
header flit. Then, the blocking router buffers
all the packet’s flits until the congestion clears.
Subsequently, the blocking router schedules
the packet for delivery to the next router, and
the same pattern repeats. To support virtual
cut-through routing, the 21364’s router pro-
vides buffer space for 316 packets.

Adaptive routing
The 21364’s network uses adaptive routing

to maximize the sustained bandwidth. How-
ever, the adaptive-routing algorithm is very
simple, enabling a simpler implementation of
the arbitration scheme compared to that of

more elaborate, fully adaptive-routing algo-
rithms. In the 21364 scheme, packets adap-
tively route within the minimum rectangle.
That is, given two points in a torus (in this
case, the current router and the destination
processor), you can draw four rectangles that
contain these two points as their diagonally
opposite vertices, as Figure 3a shows. The
minimum rectangle is the one with the min-
imum diagonal distance between the current
router and destination processor.

The adaptive-routing algorithm picks one
output port among a maximum of two output
ports that a packet can route in at any router.
Thus, each packet at the current router’s input
port and destined for a network output port
has only two choices: It can either continue in
the same dimension (such as north input to
south output) or turn (say from north input to
east output). This is because with every hop a
packet will reduce its Manhattan distance to its
destination. This shrinks the size of the mini-
mum rectangle in which the packet is routed.

If the adaptive algorithm has a choice
between both the available network output
ports (that is, neither output port is congest-
ed), then it gives preference to the route that
continues in the same dimension. This lets a
source-destination pair of processors maxi-
mize the bandwidth between them by letting
multiple packets travel on separate routes. Fig-
ures 3b and 3c show the implementation of
these preferences.

Deadlock avoidance rules
Both coherence and adaptive-routing pro-

tocols can introduce deadlocks in a network
because of cyclic dependences created by these
protocols.

Avoiding deadlocks in the coherence protocol.
The coherence protocol can introduce dead-
locks because of cyclic dependence between
different packet classes. For example, request
packets can fill up a network and prevent
block response packets from ever reaching
their destinations. The 21364 breaks this
cyclic dependence by creating virtual chan-
nels5 for each class of coherence packets and
assigning (by design) an ordering constraint
among these classes. By creating separate vir-
tual channels for each class of packet, the
21364’s router guarantees that it can route

28

NETWORK ARCHITECTURE

IEEE MICRO

each class independent of other classes. Thus,
a request packet can never block a block
response packet. The constraint orders the
packet types as follows, least dependent class-
es first: read I/O, write I/O, request, forward,
special, nonblock response, and block
response. Thus, a request can generate a block
response, but a block response cannot gener-
ate a request.

Additionally, the 21364 takes three mea-
sures for I/O traffic. First, the router uses only
deadlock-free virtual channels to force I/O
requests of the same class to follow the same
route and thereby arrive in order. Second, the
router has separate virtual channels for I/O
writes and reads (write I/O and read I/O),
which makes the implementation simpler
because I/O write and I/O read requests have
different packet sizes. Finally, I/O reads at a
router flush all prior outstanding I/O writes
to preserve the I/O ordering rules.

Avoiding deadlocks in adaptive routing. Adaptive
routing can generate two types of deadlocks:
intra- and interdimension. Figures 4a and 4b
show examples of these two types of deadlocks.
The 21364 breaks these two deadlocks using
Jose Duato’s theory, which states that adaptive
routing will not deadlock a network as long as
packets can drain via a deadlock-free path.6

In these figures, each arc represents a pack-
et; the labels indicate the packet’s source and
destination processor. Figure 4a shows a poten-
tial deadlock within a dimension (that is,
processors 0 to 3 are in the same dimension) of
the 2D torus network. The network is dead-
locked because each packet is waiting for a
buffer in the forward path to free up. Figure
4b shows a potential deadlock across dimen-
sions (with processors 0 and 1, 1 and 2, 2 and
3, and 3 and 0 in different dimensions). This
deadlock arises because each packet is waiting
for buffers in the next dimension to free up.

Figure 4c shows how the 21364 breaks the
intradimension deadlock by dividing up the
buffers into virtual channels VC0 and VC1.
Dividing the buffers into VC0 and VC1 breaks
the cyclic dependence between the packets. Fig-
ure 4d shows how the 21364 breaks the inter-
dimension deadlock. In the VC0 and VC1
channels, each packet first routes along the pri-
mary axis (horizontally) and then routes along
the secondary axis (vertically). When packets

29JANUARY–FEBRUARY 2002

Current router

Destination

Packet B’s route

Destination

Packet B’s route

Destination

(c) (d)

Torus
network

(b)(a)

Packet A’s route
Source

Packet A’s route

Source

Minimum rectangle
Rectangle two
Rectangle three
Rectangle fourMinimum rectangle

Figure 3. Adaptive routing in a torus network (a) must find the minimum rec-
tangle (b). A preference to turn (c)—for packet A’s route—makes the last
hop a bottleneck link. A preference to continue straight in the same dimen-
sion (b) maximizes bandwidth between a source and destination. Heavy
lines are potential routes; lightweight lines are network links.

(a) (b)

3 1

0 0

2 3

3 1

2

2

3

0

0 2

1 3

3 1 1 3

2 0

0 2
1

2

(c) (d)

3 1

0 0

2 3

VC1:3

VC1:2

VC0:0

VC0:0 2

VC0:1 3

VC1:2

VC1:3

VC0:1

1

2

1

1

φ
φ

Figure 4. Potential intradimension (a) and interdimension (b) deadlocks. The
21364 breaks the intradimension deadlock by dividing up the buffers into
virtual channels VC0 and VC1 (c). It goes through a similar process to break
the interdimension deadlock (d).

change dimensions, they recompute their vir-
tual channels in the new dimension. Thus,
packets in VC0 and VC1 along the primary
axis depend on packets in the secondary axis,
but packets in the secondary axis do not depend
on packets in the primary axis. This scheme
avoids the cyclic dependence across dimensions
and removes the interdimension deadlock.

The 21364 creates logically distinct adap-
tive and deadlock-free networks using virtual
channels. Each of the virtual channels corre-
sponding to a particular packet class—except
the one corresponding to the special class—is
further subdivided into three sets of virtual
channels: adaptive, VC0, and VC1. Thus, the
21364 has a total of 19 virtual channels (three
each for the six nonspecial classes and one for
the special class).

The adaptive virtual channels form the
adaptive network and have the bulk of a
router’s buffers associated with them. The
VC0 and VC1 combination creates a dead-
lock-free network, which provides a guaran-
teed deadlock-free path from any source to
any destination within the network. Thus,
packets blocked in the adaptive channel can
drain via VC0 and VC1.

The VC0 and VC1 virtual channels must
carefully map onto the physical links to create
the deadlock-free network. The 21364 has
separate rules to break deadlocks within a
dimension and across dimensions. Within a
dimension, the 21364 maps the VC0s and
VC1s so there is at least one processor not
crossed by dependence chains formed by
VC0s. The same applies to VC1 mappings.
This ensures that there is no cyclic depen-

dence in a virtual channel within a dimension.
The 21364 can choose among a variety of

such virtual-channel mappings because virtual-
channel assignments are programmable at boot
time. Perhaps the simplest scheme that satisfies
the mapping requirement just described comes
from Dally;5 this scheme calls for incremental-
ly numbering all processors in a dimension.
Then, for all source and destination processors,
we can make the following virtual-channel
assignments: If the source’s number is less than
the destination’s, assign that source-destination
pair VC0. If the source’s number is greater than
the destination’s, assign that pair VC1.

Unfortunately, in this scheme, the assign-
ments of virtual channels to physical links are
not well balanced, as Figure 5 shows. Such a sit-
uation can cause underutilization of network
link bandwidth under heavy load. In the 21364,
we search for an optimal virtual-channel-to-
physical-link assignment using a hill-climbing
algorithm. This scheme does not incur any over-
head, because we run the algorithm offline and
only once for a dimension with a specific size
(ranging from two to 16 processors).

Figure 4d shows how the 21364 breaks
interdimension deadlocks by designating one
of the two directions as the primary axis and
the other as the secondary axis. A packet can
always proceed along the primary axis in VC0,
VC1, or adaptive channels. However, along
the secondary axis, a packet can proceed only
via the adaptive channel, unless the secondary
axis row or column (in which the packet is
routing) also contains the destination 21364.
If the secondary axis contains the destination
21364, then the packet can route in VC0,
VC1, or adaptive channels.

The 21364’s deadlock-avoidance rules, how-
ever, do not prevent a packet in VC0 or VC1
from returning to the adaptive channel. Thus,
a packet blocked in the adaptive channel can
drop down to VC0 or VC1. However, in sub-
sequent routers along the packet’s path, the
packet can return to the adaptive channel, if the
adaptive channel is not congested. This works
for the 21364 because virtual cut-through rout-
ing stores entire packets at a router, even though
packets that are not blocked can span multiple
routers at the same time. The 21364’s ability to
buffer an entire packet at a router removes
dependence between consecutive routers, which
lets packets move from deadlock-free VC0 and

30

NETWORK ARCHITECTURE

IEEE MICRO

Processor 0Processor 0 Processor 1 Processor 2 Processor 3

Figure 5. VC0 and VC1 assignments within a dimension containing four
processors. The solid lines represent VC0s and dashed lines represent
VC1s. Because the 21364 routes only within the minimum rectangle, an
arrow does not span more than two hops in a dimension with four proces-
sors. We base the assignments in this figure on Dally’s scheme. For the
consecutive physical links, the VC0 to VC1 ratios are 2:1, 3:0, 2:1, and 0:3.

VC1 channels to the adaptive channel. Addi-
tionally, a 21364’s choice of direction and vir-
tual channel are independent of a packet’s prior
route in the network, which helps remove cyclic
dependences among routers.

Router architecture
The 21364’s router has nine pipeline types,

based on the input and output ports. There
are three types of input and output ports: local
(cache and memory controller), interproces-
sor (off-chip network), and I/O. Any type of
input port can route packets to any type of
output port, leading to nine types of pipelines.
Figure 6 shows two such pipeline types.

In addition to the pipeline latency, there is
a total of six cycles of delay, which includes
synchronization delay; pad receiver and dri-
ver delay; and transport delay from the pins
to the router and from the router back to the
pins. Thus, the on-chip pin-to-pin latency
from a network input to a network output is
13 cycles. At 1.2 GHz, this leads to a pin-to-
pin latency of 10.8 ns.

The network links that connect the differ-
ent 21364 chips run at 0.8 GHz, 33 percent
slower than the internal router clock. The
21364 chip runs synchronously with the out-
going links, but asynchronously with the
incoming links. The 21364 sends its clock
with the packet along the outgoing links. Such
clock forwarding provides rapid transport of
bits between connected 21364 chips and min-
imizes synchronization time between them.

Router table lookup and decode stages
The 21364’s router table consists of three

parts:

• a 128-entry configuration table with one
entry for each destination processor in
the network;

• a virtual channel table consisting of two
16-bit vectors, which contain the dead-
lock-free virtual channel assignments;
and

• an additional table to support broad-
casting invalidations to clusters of proces-
sors (as required by 21364’s coherence
protocol4).

As in the SGI Spider switch, software pro-
grams the 21364 router table at boot time.3

This capability gives software the flexibility to
optimize the desired routing for maximal per-
formance and to map out faulty nodes in the
network.

The first flit of a packet entering from a local
or I/O port accesses the configuration table and
sets up most of the 16-bit routing information
in a packet’s header. These 16 bits include

• two bits for the east-west and north-
south directions (positive or negative),

• eight bits for the destination coordinates
along the two dimensions,

• one bit (used by incomplete torus net-
works) to indicate if the packet can be
routed in the adaptive channel,

• one bit to indicate if the packet is an I/O
packet,

• two bits to encode the virtual channel
number (adaptive, VC0, and VC1), and

• two reserved bits.

Each configuration table entry contains 24
bits that include the header’s routing infor-
mation (except the two bits that encode the
virtual-channel number), six access control
bits, three bits to encode routing information

31JANUARY–FEBRUARY 2002

(a)

Nop

RT

Nop

Nop

First

Second

T

Nop

Nop

DW

WrQ

Nop

LA

W

WrQ

RE

RQ

W

GA

RQ

X

X

ECC

ECC

(b)

ECC
Nop

ECC

First

Second

DW

WrQ

Nop

LA

W

WrQ

RE

RQ

W

GA

RQ

X

X

ECC

ECC

DW
ECC

GA
LA

Nop
RE

Decode and write entry table
Error correction code
Global arbitration
Local arbitration
No operation
Read entry table and transport

RQ
RT

T
W

WrQ
X

Read input queue
Router table lookup
Transport (wire delay)
Wait
Write input queue
Crossbar

Figure 6. Two of the nine logical router pipelines in the 21364: the router
pipeline for a local input port (cache or memory controller) to an interprocessor
output port (a) and the router pipeline from an interprocessor (north, south,
east, or west) input port to an interprocessor output port (b). The first flit goes
through two pipelines, one for scheduling (upper pipeline) and another for data
(lower pipeline). Second and subsequent flits follow the data pipeline.

for incomplete tori networks (with mapped-
out nodes), and one parity bit.

The decode stage identifies the packet class,
determines the virtual channel (by accessing the
virtual channel table), computes the output
port, and figures out the deadlock-free direc-
tion. The decode phase also prepares the pack-
et for subsequent operations in the pipeline.

Error correction code manipulation
Each 32-bit flit of a 21364 network packet

is protected by 7-bit ECC. The router checks
ECC for every flit of a packet arriving through
an interprocessor or I/O port. The router
regenerates ECC for every flit of a packet leav-
ing through an interprocessor or I/O output
port, as Figure 6 shows. ECC regeneration is
particularly necessary for the packet’s first flit
because the router pipeline can modify the
header before forwarding the packet.

If the router pipeline detects a single-bit
error, it corrects the error and reports it back
to the operating system via an interrupt; it
does not correct double-bit errors. Instead,
the 21364 alerts every reachable 21364 to the
occurrence of such an error and enters an error
recovery mode.

Input buffering
The 21364 router provides buffering only at

each of the input ports. Table 1 shows the dis-
tribution of input buffers at each input port.
Each input buffer can hold a complete packet
of the specific packet class, except for local
ports—one cache, two memory controllers, and
one I/O—for which packet payloads reside in
the 21364’s internal buffers. The design subdi-
vides interprocessor ports into adaptive and
deadlock-free channels, whereas the local ports
have a single monolithic buffer space and do

not need virtual channels. The write I/O and
read I/O classes use a special adaptive channel
for their first hop in a faulty network. Subse-
quent hops for write I/O and read I/O traffic
are always in order and strictly follow the VC0
and VC1 channels. There are also six other spe-
cial buffers, not shown in the table. The router
has a total of 316 packet buffers.

Each input port has an entry table that
holds the in-flight status for each packet and
input buffers that hold the packets. A pack-
et’s first flit writes the corresponding entry
table entry during the decode and write stage
shown in Figure 6. An entry table entry con-
tains bits for

• validation (this is a single bit);
• the target output ports;
• indicating whether the packet can adapt

and/or route in the adaptive channels;
• supporting the antistarvation algorithm,

which detects starved packets and drains
them via the output ports (in rare cases,
the distributed and speculative nature of
21364’s arbitration mechanism can cause
starvation of packets residing at the input
buffers); and

• other miscellaneous information.

Readiness tests use this information in the
local arbitration phase and read it in the read-
entry-table-and-transport phase to determine
the routing path of each packet. The 21364
router writes flits to and reads flits from the
packet buffers in the write input queue and read
input queue stages after the scheduling pipeline
has made the routing decision for the first flit.

Either the previous 21364 router in a pack-
et’s path or the cache, memory controller, or
I/O chip where the packet originated controls

32

NETWORK ARCHITECTURE

IEEE MICRO

Table 1. No. of input buffers in the 21364 router.

 Interprocessor

Class Adaptive VC0 or VC1 Cache Memory controller I/O

Request 8 1 8 0 8
Forward 8 1 0 8 0
Block response 3 1 6 4 5
Nonblock response 8 1 8 9 9
Write I/O 1 2 4 0 2
Read I/O 1 2 4 0 2
Special 8 0 0 0 0

the allocation of input buffers at a router.
Thus, each resource delivering a packet to the
router knows the number of occupied packet
buffers in the next hop. When a router deal-
locates a packet buffer, it sends the dealloca-
tion information to the previous router or I/O
chip via no-op packets or by piggybacking the
deallocation information on packets routed
for the previous router or I/O port.

Arbitration
The 21364 router’s most challenging com-

ponent is the arbitration mechanism that
schedules the dispatch of packets arriving at
its input ports. To avoid making the arbitra-
tion mechanism a central bottleneck, the
21364 breaks the arbitration logic into local
and global arbitration, as Figure 7 shows.
There are 16 local arbiters, two for each input
port. There are seven global arbiters, one for
each output port. In each cycle, a local arbiter
may speculatively schedule a packet for dis-
patch to an output port. One cycle after the

completion of the local arbitration (as Figure
6 shows), each global arbiter selects one out
of up to seven packets speculatively scheduled
for dispatch through the output port. Once
the global arbitration makes such a selection,
all flits in the crossbar stage follow the input
port to the output port connection.

Local arbiters perform various readiness
tests to determine if a packet can be specula-
tively scheduled for dispatch via the router.
These tests ensure that

• the nominated packet is valid at the input
buffer and has not yet been dispatched,

• the necessary dispatch path from the
input buffer to the output port is free,

• the router dispatches the packet in only
one of the routes allowed,

• the target router, I/O chip, or local
resource (in the next hop) has a free input
buffer in the specific virtual channel,

• the target output port is free,
• the antistarvation mechanism is not

33JANUARY–FEBRUARY 2002

L1SouthNorth

G G G

G G G

L L L L L L L L

L L L L L L L L

G

Output ports

East West I/O L0

Input ports

North South
Cache

MC1

East West
I/O

MC0

GL Local arbiter Global arbiter

Figure 7. Connections between local and global arbiters.

blocking the packet, and
• a read I/O packet does not pass a write

I/O packet.

A global arbiter selects packets speculative-
ly scheduled for dispatch through its output
port. In subsequent cycles, local arbiters spec-
ulatively schedule packets not selected by any
global arbiter.

To ensure fairness, the local and global
arbiters use a least recently selected scheme to
select a packet. Each local arbiter uses the LRS
scheme to select both a class (from among the
several packet classes) and a virtual channel
(VC0, VC1, or adaptive) within the class. Sim-
ilarly, the global arbiter uses the LRS policy to
select an input port (from among the several
input ports that each output port can use).

Additionally, the 21364 provides two spe-
cial modes—rotary rule and coherence depen-
dence priority (CDP) rule—which prioritize
packets according to their packet class and the
input port they arrive from. The rotary rule
gives priority to packets arriving from an inter-
processor port; doing so lets older packets
residing in the network move sooner than
younger packets generated from the local or
I/O ports. The CDP rule prioritizes the pack-
ets according to their class ordering, discussed
earlier. Thus, the CDP rule gives block
response packets priority over request packets.

The rotary and CDP rules let the 21364
network avoid network saturation. However,
these rules or heuristics are not always suc-
cessful in the more general case for networks
that accept significantly greater number of
requests and have significantly greater num-
ber of buffers in the routers compared to the
21364 router. Thottethodi, Lebeck, and
Mukherjee demonstrated that a network
could avoid saturation in a more general way
by using the network’s global knowledge.7

With the advent of systems-on-a-chip in
the mainline processor market, we

expect 21364-like on-chip networks to
become more common. However, the router
pipeline will face challenges similar to that
faced by a microprocessor pipeline today.
Specifically, architects will have to carefully
design the data and control paths to avoid wire
delays on long global wires. Additionally, as
the technology shrinks, architects will need to

scale the arbitration, saturation, and routing
algorithms to match the technology. MICRO

Acknowledgments
Many engineers have made the Alpha

21364 network architecture possible. Richard
Kessler was one of the most important con-
tributors toward the design of the 21364’s net-
work architecture. Jim Burnette provided
valuable feedback during the design’s initial
stages. Zarka Cvetanovic and Simon Steely
provided valuable performance simulation
and feedback. Joel Emer, Keith Farkas, Geoff
Lowney, Paul Rubinfeld, Simon Steely, and
David Wood provided helpful feedback on
different drafts of this article.

References
1. P. Bannon, “Alpha 21364: A Scalable Single-

Chip SMP,” Eleventh Ann. Microprocessor
Forum, MicroDesign Resources, Sebastopol,
Calif., 1998.

2. A. Jain et al., “A 1.2 GHz Alpha Micro-
processor with 44.8 GB/sec of Chip Pin
Bandwidth,” 2001 IEEE Int’l Solid-State Cir-
cuits Conf. (ISSCC 01), IEEE Press, Piscat-
away, N.J., 2001, p. 240.

3. M. Galles, “Spider: A High-Speed Network
Interconnect,” IEEE Micro, vol. 17, no. 1,
Jan.-Feb. 1997, pp. 34-39.

4. P. Bannon et al., “Alpha 21364: A Single-Chip
Shared Memory Multiprocessor,” Govern-
ment Microcircuits Applications Conf. 2001
Digest of Papers (Gomac), 2001, Defense
Technical Information Center, Belvoir, Va., pp
334-337; http://www.dtic.mil.

5. W.J. Dally, “Virtual Channel Flow Control,”
17th Ann. Int’l Symp. Computer Architecture
(ISCA 90), IEEE CS Press, Los Alamitos,
Calif., 1990, pp. 60-68.

6. J. Duato, “A New Theory of Deadlock-Free
Adaptive Routing in Wormhole Networks,”
IEEE Trans. Parallel and Distributed Systems,
vol. 4, no. 12, Dec. 1993, pp. 1320-1331.

7. M. Thottethodi, A. Lebeck, and S.S. Mukher-
jee, “Self-Tuned Congestion Control for Mul-
tiprocessor Networks,” Proc. Seventh Int’l
Conf. High-Performance Computer Archi-
tecture (HPCA), IEEE CS Press, Los Alami-
tos, Calif., 2001, pp. 107-120.

Shubhendu S. Mukherjee is a senior hardware
engineer in Intel’s VSSAD group and partic-

34

NETWORK ARCHITECTURE

IEEE MICRO

ipated in the Alpha 21364 development in a
previous position at Compaq Computer
Corp. His research interests include multi-
processor networks, fault-tolerant processors,
and performance modeling. Mukherjee has a
PhD in computer science and engineering
from the University of Wisconsin-Madison.
He is a member of the IEEE and ACM.

Peter Bannon is a principal member of the
technical staff in the Alpha Development
Group at Compaq Computer Corp and cur-
rently coarchitect of the Alpha 21364 design.
His previous experience includes the design
and verification of several microprocessor
chips, including the Alpha 21164 and Alpha
21164PC. Bannon has a BS in computer
system design from the University of
Massachusetts.

Steve Lang is an IC design engineer at Com-
paq Computer Corp. His previous experience
includes work on the architecture and imple-
mentation of microprocessors, core-logic
chipsets, and peripheral chips. Lang has an SB
in electrical engineering and an SM in elec-
trical engineering and computer science, both
from MIT.

Aaron Spink is a senior hardware engineer at
Intel, currently involved in the definition and
design of future system interfaces for the Ita-
nium processor family. He participated in
Alpha 21364 development in a previous posi-
tion at Compaq Computer Corp. His previ-
ous experience includes work on StrongARM
microprocessors for Digital Equipment Corp.
Spink has a BSE in electrical engineering from
the University of Michigan.

David Webb is a senior member of the tech-
nical staff at Compaq Computer Corp. and
the architecture lead for the Alpha 21364
router. His previous experience includes work
on the VAX 9000 and the 21264 memory sys-
tem, for which he was the lead architect.
Webb has a BS in electrical engineering from
the Worcester Polytechnic Institute.

Direct questions and comments to Shub-
hendu S. Mukherjee, 334 South Street,
SHR1-T25, Shrewsbury, MA 01545; shubu.
mukherjee@intel.com.

35JANUARY–FEBRUARY 2002

MOBILE AND UBIQUITOUS SYSTEMS

NEW FOR 2002,
the IEEE Computer
and Communications
Societies present

IEEE
Pervasive
Computing
This new quarterly magazine aims

to advance pervasive computing

by bringing together its various

disciplines, including

• hardware technology

• software infrastructure

• real-world sensing and

interaction

• human–computer interaction

• systems considerations such as

scalability, security, and privacy.

Led by Editor in Chief

M. Satyanarayanan, the founding

editorial board features leading

experts from UC Berkeley,

Stanford, Sun Microsystems,

and Intel.

Don’t miss the

premier issue —

subscribe now!

http://computer.org/pervasive

