
CSE 661 - Parallel and Vector Architectures Vector Computers – slide 1

Data-Level Parallelism
in Vector and GPU

Architectures
Muhamed Mudawar

Computer Engineering Department

King Fahd University of Petroleum and Minerals

CSE 661 - Parallel and Vector Architectures Vector Computers – slide 2

Introduction

� SIMD architectures can exploit significant data-
level parallelism for:
�matrix-oriented scientific computing
�media-oriented image and sound processors

� SIMD is more energy efficient than MIMD
�Only needs to fetch one instruction per data operat ion
�Makes SIMD attractive for personal mobile devices

� SIMD allows programmer to continue to think
sequentially

CSE 661 - Parallel and Vector Architectures Vector Computers – slide 3

SIMD Parallelism

� Vector architectures
� SIMD extensions
� Graphics Processor Units (GPUs)

� For x86 processors:
�Expect two additional cores per chip per year
�SIMD width to double every four years
�Potential speedup from SIMD to be twice that from

MIMD!

CSE 661 - Parallel and Vector Architectures Vector Computers – slide 4

Vector Architectures

� Basic idea:
�Read sets of data elements into “vector registers”
�Operate on those registers
�Disperse the results back into memory

� Registers are controlled by compiler
�Used to hide memory latency
�Leverage memory bandwidth

CSE 661 - Parallel and Vector Architectures Vector Computers – slide 5

+

r1 r2

r3

add r3, r1, r2

SCALAR
(1 operation)

v1 v2

v3

+

vector
length

addv v3, v1, v2

VECTOR
(N operations)

� Vector processors have high-level operations that
work on linear arrays of numbers: "vectors"

Vector Processing

CSE 661 - Parallel and Vector Architectures Vector Computers – slide 6

Vector Supercomputers

Idealized by Cray-1, 1976:

Scalar Unit + Vector Extensions
� Load/Store Architecture
� Vector Registers
� Vector Instructions
� Hardwired Control
� Highly Pipelined Functional Units
� Interleaved Memory System
� No Data Caches
� No Virtual Memory

CSE 661 - Parallel and Vector Architectures Vector Computers – slide 7

Cray-1 (1976)

memory bank cycle 50 ns processor cycle 12.5 ns (80MHz)

CSE 661 - Parallel and Vector Architectures Vector Computers – slide 8

Single Port
Memory

16 banks of
64-bit words

+
8-bit SECDED

80MW/sec data
load/store

320MW/sec
instruction
buffer refill

4 Instruction Buffers

64-bitx16 NIP

LIP

CIP

(A0)

((Ah) + j k m)

64
T Regs

(A0)

((Ah) + j k m)

64
B Regs

S0
S1
S2
S3
S4
S5
S6
S7

A0
A1
A2
A3
A4
A5
A6
A7

Si

Tjk

Ai

B jk

FP Add

FP Mul

FP Recip

Int Add

Int Logic

Int Shift

Pop Cnt

Sj

Si

Sk

Addr Add

Addr Mul

Aj

Ai

Ak

V0
V1
V2
V3
V4
V5
V6
V7

Vk

Vj

Vi V. Mask

V. Length64 Element
Vector Registers

Cray-1 (1976)

CSE 661 - Parallel and Vector Architectures Vector Computers – slide 9

Scalar Registers

r0

r15
Vector Registers

v0

v15

[0] [1] [2] [VLRMAX-1]

+ + + + + +

[0] [1] [VLR-1]

Vector Arithmetic
Instructions

ADDV v3, v1, v2
v3

v2
v1

VLRVector Length Register

v1
Vector Load and

Store Instructions
LV v1, r1, r2

Base, r1 Stride, r2
Memory

Vector Register

Vector Programming Model

CSE 661 - Parallel and Vector Architectures Vector Computers – slide 10

Instr. Operands Operation Comment

ADDV V1,V2,V3 V1=V2+V3 vector + vector

ADDSV V1,F0,V2 V1=F0+V2 scalar + vector

MULTV V1,V2,V3 V1=V2xV3 vector x vector

MULSV V1,F0,V2 V1=F0xV2 scalar x vector

LV V1,R1 V1=M[R1..R1+63] load, stride=1

LVWS V1,R1,R2 V1=M[R1..R1+63*R2] load, stride=R2

LVI V1,R1,V2 V1=M[R1+V2i,i=0..63] load, indexed

CeqV VM,V1,V2 VMASKi = (V1i=V2i)? comp. setmask

MOV VLR,R1 Vec. Len. Reg. = R1 set vector length

MOV VM,R1 Vec. Mask = R1 set vector mask

Vector Instructions

CSE 661 - Parallel and Vector Architectures Vector Computers – slide 11

� Each result independent of previous result

�Long pipeline, compiler ensures no dependencies

�High clock rate

� Vector instructions access memory with known patter n

�Highly interleaved memory

�Amortize memory latency of over 64 elements

�No (data) caches required! (Do use instruction cach e)

� Reduces branches and branch problems in pipelines

� Single vector instruction implies lots of work (loo p)

�Fewer instruction fetches

Properties of Vector Processors

CSE 661 - Parallel and Vector Architectures Vector Computers – slide 12

Scalar Code

LI R4, 64

loop:

L.D F0, 0(R1)

L.D F2, 0(R2)

ADD.D F4, F2, F0

S.D F4, 0(R3)

ADDIU R1, 8

ADDIU R2, 8

ADDIU R3, 8

SUBIU R4, 1

BNEZ R4, loop

Vector Code

LI VLR, 64

LV V1, R1

LV V2, R2

ADDV V3, V1, V2

SV V3, R3

C code

for (i=0; i<64; i++)

C[i] = A[i] + B[i];

Vector Code Example

CSE 661 - Parallel and Vector Architectures Vector Computers – slide 13

� Compact

�one short instruction encodes N operations

� Expressive, tells hardware that these N operations:

�Are independent

�Use the same functional unit

�Access disjoint registers

�Access registers in the same pattern as previous in structions

�Access a contiguous block of memory (unit-stride lo ad/store)

�Access memory in a known pattern (strided load/stor e)

� Scalable

�Can run same object code on more parallel pipelines or lanes

Vector Instruction Set Advantages

CSE 661 - Parallel and Vector Architectures Vector Computers – slide 14

Components of a Vector Processor

� Vector Register File
� Has at least 2 read and 1 write ports
� Typically 8-32 vector registers
� Each holding 64 (or more) 64-bit elements

� Vector Functional Units (FUs)
� Fully pipelined, start new operation every clock
� Typically 4 to 8 FUs: FP add, FP mult, FP reciproca l
� Integer add, logical, shift (multiple of same unit)

� Vector Load-Store Units (LSUs)
� Fully pipelined unit to load or store a vector
� May have multiple LSUs

� Scalar registers
� Single element for FP scalar or address

� Cross-bar to connect FUs , LSUs, registers

CSE 661 - Parallel and Vector Architectures Vector Computers – slide 15

Machine Year Clock Regs Elements F Us LSUs
Cray 1 1976 80 MHz 8 64 6 1
Cray XMP 1983 120 MHz 8 64 8 2L, 1S
Cray YMP 1988 166 MHz 8 64 8 2L, 1S
Cray C-90 1991 240 MHz 8 128 8 4
Cray T-90 1996 455 MHz 8 128 8 4
Conv. C-1 1984 10 MHz 8 128 4 1
Conv. C-4 1994 133 MHz 16 128 3 1
Fuj. VP200 1982 133 MHz 8-256 32-1024 3 2
Fuj. VP300 1996 100 MHz 8-256 32-1024 3 2
NEC SX/2 1984 160 MHz 8+8K 256+var 16 8
NEC SX/3 1995 400 MHz 8+8K 256+var 16 8

Examples of Vector Machines

CSE 661 - Parallel and Vector Architectures Vector Computers – slide 16

Vector Arithmetic Execution

� Use deep pipeline (=> fast clock)

to execute element operations

� Simplifies control of deep

pipeline because elements in

vector are independent

�No hazards!

V
1

V
2

V
3

V3 <- v1 * v2

Six stage multiply pipeline

CSE 661 - Parallel and Vector Architectures Vector Computers – slide 17

Vector Memory System

� Cray-1: 16 banks

�4 cycle bank busy time

� Bank busy time: Cycles between accesses to same bank

�12 cycle latency

+

Base Stride

0 1 2 3 4 5 6 7 8 9 A B C D E F

Vector Registers

Memory Banks

Address
Generator

CSE 661 - Parallel and Vector Architectures Vector Computers – slide 18

� Great for unit stride:
�Contiguous elements in different DRAMs

�Startup time for vector operation is latency of sin gle read

� What about non-unit stride?
�Above good for strides that are relatively prime to 8

�Bad for strides = 2, 4 and worse for strides = mult iple of 8

�Better: prime number of banks…!

U
npipe

line
d

D
R
A
M

U
npipe

line
d

D
R
A
M

U
npipe

line
d

D
R
A
M

U
npipe

line
d

D
R
A
M

U
npipe

line
d

D
R
A
M

U
npipe

line
d

D
R
A
M

U
npipe

line
d

D
R
A
M

U
npipe

line
d

D
R
A
M

Addr+0 Addr+1 Addr+2 Addr+4 Addr+5Addr+3 Addr+6 Addr+7

Interleaved Memory Layout

CSE 661 - Parallel and Vector Architectures Vector Computers – slide 19

ADDV C,A,B

C[1]

C[2]

C[0]

A[3] B[3]

A[4] B[4]

A[5] B[5]

A[6] B[6]

Execution using
one pipelined
functional unit

C[4]

C[8]

C[0]

A[12] B[12]

A[16] B[16]

A[20] B[20]

A[24] B[24]

C[5]

C[9]

C[1]

A[13] B[13]

A[17] B[17]

A[21] B[21]

A[25] B[25]

C[6]

C[10]

C[2]

A[14] B[14]

A[18] B[18]

A[22] B[22]

A[26] B[26]

C[7]

C[11]

C[3]

A[15] B[15]

A[19] B[19]

A[23] B[23]

A[27] B[27]

Execution using
four pipelined

functional units

Vector Instruction Execution

CSE 661 - Parallel and Vector Architectures Vector Computers – slide 20

Vector Unit Structure

Lane

Functional Unit

Vector
Registers

Memory Subsystem

Elements
0, 4, 8, …

Elements
1, 5, 9, …

Elements
2, 6, 10, …

Elements
3, 7, 11, …

CSE 661 - Parallel and Vector Architectures Vector Computers – slide 21 33

� Vector register file

�Each register is an array of elements

�Size of each register determines maximum
vector length

�Vector length register determines vector length for a
particular operation

� Multiple parallel execution units = “ lanes ”

�Sometimes called “ pipelines ” or “ pipes ”

Vector Unit Implementation

CSE 661 - Parallel and Vector Architectures Vector Computers – slide 22

LaneVector register
elements striped

over lanes

[0]
[8]

[16]
[24]

[1]
[9]
[17]
[25]

[2]
[10]
[18]
[26]

[3]
[11]
[19]
[27]

[4]
[12]
[20]
[28]

[5]
[13]
[21]
[29]

[6]
[14]
[22]
[30]

[7]
[15]
[23]
[31]

T0 Vector Microprocessor (1995)

See http://www.icsi.berkeley.edu/real/spert/t0-
intro.html

CSE 661 - Parallel and Vector Architectures Vector Computers – slide 23

for (i=0; i < N; i++) C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store

Iter. 1

Iter. 2

Scalar Sequential Code

Vectorization is a massive compile-time
reordering of operation sequencing

⇒⇒⇒⇒ requires extensive loop dependence analysis

Vector Instruction

load

load

add

store

load

load

add

store

Iter.
1

Iter.
2

Vectorized Code

T
im

e

Automatic Code Vectorization

CSE 661 - Parallel and Vector Architectures Vector Computers – slide 24

� Problem: Vector registers have fixed length

� What to do if Vector Length > Max Vector Length?

� Stripmining : generate code such that each vector
operation is done for a size ≤ MVL
�First loop iteration: do short piece (n mod MVL)

�Remaining iterations: VL = MVL

index = 0; /* start at index 0 */
VL = (n mod MVL) /* find the odd size piece */
while (n > 0) {

/* do vector instructions on VL elements */
n = n – VL;
index = index + VL;
VL = MVL /* reset the length to max */

}

Vector Stripmining

CSE 661 - Parallel and Vector Architectures Vector Computers – slide 25

ANDI R1, RN, 63 # N mod 64

MOV VLR, R1 # Do remainder

loop:

LV V1, RA

SLL R2, R1, 3 # Multiply by 8

ADDU RA, RA, R2 # Advance pointer

LV V2, RB

ADDU RB, RB, R2

ADDV V3, V1, V2

SV V3, RC

ADDU RC, RC, R2

SUBU RN, RN, R1 # Subtract elements

LI R1, 64

MOV VLR, R1 # Reset full length

BGTZ N, loop # Any more to do?

for (i=0; i<N; i++)

C[i] = A[i]+B[i];

+

+

+

A B C

64 elements

Remainder

Vector Stripmining Example

CSE 661 - Parallel and Vector Architectures Vector Computers – slide 26

� Vector version of register bypassing

� Introduced with Cray-1

Memory

V
1

Load
Unit

Mult.

V
2

V
3

Chain

Add

V
4

V
5

Chain

LV v1, r1

MULV v3,v1,v2

ADDV v5,v3,v4

Vector Chaining

CSE 661 - Parallel and Vector Architectures Vector Computers – slide 27

Vector Chaining Advantage

� With chaining, can start dependent instruction as s oon
as first result appears

Load

Mul

Add

Load

Mul

AddTime

� Without chaining, must wait for last element of res ult
to be written before starting dependent instruction

CSE 661 - Parallel and Vector Architectures Vector Computers – slide 28

Vector Instruction Parallelism

Can overlap execution of multiple vector instructio ns
Example: 32 elements per vector register and 8 lane s

load
Load Unit

mul
Multiply Unit

add
Add Unit

load

time

Instruction
issue Complete 24 operations/cycle while issuing

1 short instruction/cycle

mul

add

CSE 661 - Parallel and Vector Architectures Vector Computers – slide 29

� Vector Execution Time depends on:
�Vector length, data dependences, and structural haz ards

� Initiation rate
�Rate at which a vector unit consumes vector element s

�Typically, initiation rate = number of lanes

�Execution time of a vector instruction = VL / Initi ation Rate

� Convoy
�Set of vector instructions that can execute in same clock

�No structural or data hazards (similar to VLIW conc ept)

� Chime
�Execution time of one convoy

�m convoys take m chimes = approximately m x n cycles
� If each chime takes n cycles and no overlapping convoys

Vector Execution Time

CSE 661 - Parallel and Vector Architectures Vector Computers – slide 30

LV V1, Rx ; Load vector X
MULVS V2, V1, F0 ; vector-Scalar multiply
LV V3, Ry ; Load vector Y
ADDV V4, V2, V3 ; Add vectors
SV Ry, V4 ; Store result in vector Y

� 4 Convoys => 4 Chimes
1. LV
2. MULVS, LV
3. ADDV
4. SV

Suppose VL=64
For 1 Lane: Chime = 64 cycles
For 2 Lanes: Chime = 32 cycles
For 4 Lanes: Chime = 16 cycles

Example on Convoys and Chimes

CSE 661 - Parallel and Vector Architectures Vector Computers – slide 31

� Vector startup comes from pipeline latency

� Important source of overhead, so far ignored

� Startup time = depth of pipeline

� Increases the effective time to execute a convoy

� Time to complete a convoy depends
�Vector startup, vector length, number of lanes

Operation Start-up penalty (from CRAY-1)
Vector load/store 12 cycles
Vector multiply 7 cycles
Vector add 6 cycles

Startup penalty for load/store can be very high (10 0 cycles)

Vector Startup

CSE 661 - Parallel and Vector Architectures Vector Computers – slide 32

� Consider same example with 4 convoys

� Vector length = n

� Assume Convoys don’t overlays

� Show the time of each convoy assuming 1 lane

Convoy Start time First result Last result

1. LV 0 12 11 + n

2. MULVS, LV 12 + n 12 + n + 12 23 + 2n

3. ADDV 24 + 2n 24 + 2n + 6 29 + 3n

4. SV 30 + 3n 30 + 3n + 12 41 + 4n

Example on Vector Startup

�Total cycles = 42 + 4n (with extra 42 startup cycle s)

CSE 661 - Parallel and Vector Architectures Vector Computers – slide 33

� Suppose:
MULV V1, V2, V3
ADDV V4, V1, V5 ; RAW dependence

� Chaining : Allow a vector operation to start as
soon as the individual elements of the vector
source operands become available. Forward
individual elements of a vector register.

� Dependent instructions can be placed in the
same convoy (if no structural hazard)

MULTV ADDV

Total = 141 cycles
128/141 = 0.91 Flops/cycle

7 64 646

Unchained = 2 convoys

Total = 77 cycles
1.66 Flops/cycleMULTV

ADDV

7 64

646

Chained = 1 convoy

Vector Chaining

CSE 661 - Parallel and Vector Architectures Vector Computers – slide 34

Vector Stride

� Adjacent elements are not sequential in memory

do 10 i = 1,100
do 10 j = 1,100

A(i,j) = 0.0
do 10 k = 1,100

10 A(i,j) = A(i,j) + B(i, k) * C(k,j)
� Either B or C accesses are not adjacent

�800 bytes between adjacent vector elements
� Stride : distance separating elements that are to

be merged into a single vector
�Caches do unit stride
�LVWS(load vector with stride) instruction

� Think of addresses per vector element

CSE 661 - Parallel and Vector Architectures Vector Computers – slide 35

Memory Addressing Modes

� Load/store operations move groups of data
between registers and memory

� Three types of vector addressing
� Unit stride

� Contiguous block of information in memory

� Fastest: always possible to optimize this

� Non-unit (constant) stride

� Harder to optimize memory system for all possible s trides

� Prime number of data banks makes it easier to suppo rt different
strides at full bandwidth

� Indexed (gather-scatter)

� Vector equivalent of register indirect

� Good for sparse arrays of data

� Increases number of programs that vectorize

CSE 661 - Parallel and Vector Architectures Vector Computers – slide 36

Vector Scatter/Gather

Want to vectorize loops with indirect accesses

for (i=0; i<N; i++)

A[i] = B[i] + C[D[i]]

Indexed load instruction (Gather)

LV vD, rD # Load D vector (indices)

LVI vC, rC, vD # Load C vector indexed

LV vB, rB # Load B vector

ADDV vA, vB, vC # Add Vectors

SV vA, rA # Store A vector

CSE 661 - Parallel and Vector Architectures Vector Computers – slide 37

Vector Scatter/Gather

Scatter example:

for (i=0; i<N; i++) A[B[i]]++;

Vector Translation:

LV vB, rB # Load B vector (indices)

LVI vA, rA, vB # Load A vector indexed

ADDV vA, vA, 1 # Increment

SVI vA, rA, vB # Store A vector indexed

Load Vector Indexed (Gather)

Store Vector Indexed (Scatter)

CSE 661 - Parallel and Vector Architectures Vector Computers – slide 38

Memory Banks

� Most vector processors support large number of
independent memory banks

� Memory banks are need for the following reasons

�Multiple Loads/Stores per cycle

�Memory bank cycle time > CPU cycle time

�Ability to load/store non-sequential elements

�Multiple processors sharing the same memory

�Each processor generates its stream of load/store
instructions

CSE 661 - Parallel and Vector Architectures Vector Computers – slide 39

Example on Memory Banks

� The Cray T90 has a CPU cycle = 2.167 ns
� The cycle of the SRAM in memory system = 15 ns
� Cray T90 can support 32 processors
� Each processor is capable of generating 4 loads

and 2 stores per CPU clock cycle
� What is the number of memory banks required to

allow all CPUs to run at full memory bandwidth
� Solution:

�Maximum number of memory references per cycle
32 CPUs x 6 references per cycle = 192

�Each SRAM busy is busy for 15 / 2.167 = 6.92 ≈ 7 cycles
�To handle 192 requests per cycle requires

192 x 7 = 1344 memory banks
�Cray T932 actually has 1024 memory banks

CSE 661 - Parallel and Vector Architectures Vector Computers – slide 40

Problem: Want to vectorize loops with conditional cod e:

for (i=0; i<N; i++)

if (A[i]>0) then A[i] = B[i]

Solution: Add vector mask registers
�Vector version of predicate registers, 1 bit per el ement

�Vector operation becomes NOP at elements where mask bit is 0

Code example:
CVM # Turn on all bits in Vector Mask

LV vA, rA # Load entire A vector

SGTV vA, 0 # Set bits in mask register where A>0

LV vA, rB # Load B vector into A under mask

SV vA, rA # Store A back to memory under mask

Vector Conditional Execution

CSE 661 - Parallel and Vector Architectures Vector Computers – slide 41

Vector Masks

� Vector masks have two important uses

�Conditional execution and arithmetic exceptions

� Alternative is conditional move/merge

� More efficient than conditional moves

�No need to perform extra instructions

�Avoid exceptions

� Downside is:

�Extra bits in instruction to specify the mask regis ter

� For multiple mask registers

�Extra interlock early in the pipeline for RAW hazar ds

CSE 661 - Parallel and Vector Architectures Vector Computers – slide 42

Masked Vector Instructions

C[4]

C[5]

C[1]

Write data port

A[7] B[7]

M[3]=0

M[4]=1

M[5]=1

M[6]=0

M[2]=0

M[1]=1

M[0]=0

M[7]=1

Density-Time Implementation
Scan mask vector and
Execute only elements
with Non-zero masks

C[1]

C[2]

C[0]

A[3] B[3]

A[4] B[4]

A[5] B[5]

A[6] B[6]

M[3]=0

M[4]=1

M[5]=1

M[6]=0

M[2]=0

M[1]=1

M[0]=0

Write data portWrite Enable

A[7] B[7]M[7]=1

Simple Implementation
Execute all N operations
Turn off result writeback
according to mask

CSE 661 - Parallel and Vector Architectures Vector Computers – slide 43

� Compress:
�Packs non-masked elements from one vector register

contiguously at start of destination vector registe r
�Population count of mask vector gives packed vector length
�Used for density-time conditionals and for general selection

� Expand: performs inverse operation

M[3]=0

M[4]=1

M[5]=1

M[6]=0

M[2]=0

M[1]=1

M[0]=0

M[7]=1

A[3]

A[4]

A[5]

A[6]

A[7]

A[0]

A[1]

A[2]

M[3]=0

M[4]=1

M[5]=1

M[6]=0

M[2]=0

M[1]=1

M[0]=0

M[7]=1

B[3]

A[4]

A[5]

B[6]

A[7]

B[0]

A[1]

B[2]

Expand

A[7]

A[1]

A[4]

A[5]

Compress

A[7]

A[1]

A[4]

A[5]

Compress/Expand Operations

CSE 661 - Parallel and Vector Architectures Vector Computers – slide 44

Problem: Loop-carried dependence on reduction varia bles
sum = 0;

for (i=0; i<N; i++)

sum += A[i]; # Loop-carried dependence on sum

Solution: Use binary tree to perform reduction
Rearrange as:

sum[0:VL-1] = 0 # Vector of VL partial sums

for(i=0; i<N; i+=VL) # Stripmine VL-sized chunks

sum[0:VL-1] += A[i:i+VL-1]; # Vector sum

Now have VL partial sums in one vector register

do {

VL = VL/2; # Halve vector length

sum[0:VL-1] += sum[VL:2*VL-1]

} while (VL>1)

Vector Reductions

CSE 661 - Parallel and Vector Architectures Vector Computers – slide 45

� “…media processing will become the dominant
force in computer architecture & microprocessor
design.”

� “... new media-rich applications... involve
significant real-time processing of continuous
media streams, and make heavy use of vectors of
packed 8-, 16-, and 32-bit integer and FP”

� Needs include high memory BW, high network
BW, continuous media data types, real-time
response, fine grain parallelism
� “How Multimedia Workloads Will Change Processor

Design”, Diefendorff & Dubey, IEEE Computer (9/97)

New Architecture Direction?

CSE 661 - Parallel and Vector Architectures Vector Computers – slide 46

SIMD Extensions

� Media applications operate on data types

narrower than the native word size

�Example: disconnect carry chains to “partition” ad der

� Limitations, compared to vector instructions:

�Number of data operands encoded into op code

�No sophisticated addressing modes

� No strided, No scatter-gather memory access

�No mask registers

CSE 661 - Parallel and Vector Architectures Vector Computers – slide 47

SIMD Implementations

� Intel MMX (1996)

�Eight 8-bit integer ops or four 16-bit integer ops

� Streaming SIMD Extensions (SSE) (1999)

�Eight 16-bit integer ops

�Four 32-bit integer/fp ops or two 64-bit integer/fp o ps

� Advanced Vector Extensions (2010)
� Four 64-bit integer/fp ops

� Operands must be consecutive and aligned
memory locations

CSE 661 - Parallel and Vector Architectures Vector Computers – slide 48

Example SIMD Code

� Example DAXPY:
L.D F0,a ;load scalar a
MOV F1, F0 ;copy a into F1 for SIMD MUL
MOV F2, F0 ;copy a into F2 for SIMD MUL
MOV F3, F0 ;copy a into F3 for SIMD MUL
DADDIU R4,Rx,512 ;last address to load

Loop: L.4D F4,0[Rx] ;load X[i], X[i+1], X[i+2], X[i+3]
MUL.4D F4,F4,F0 ;a×X[i],a×X[i+1],a×X[i+2],a×X[i+3]
L.4D F8,0[Ry] ;load Y[i], Y[i+1], Y[i+2], Y[i+3]
ADD.4D F8,F8,F4 ;a×X[i]+Y[i], ..., a×X[i+3]+Y[i+3]
S.4D 0[Ry],F8 ;store into Y[i], Y[i+1], Y[i+2], Y[i+3]
DADDIU Rx,Rx,32 ;increment index to X
DADDIU Ry,Ry,32 ;increment index to Y
DSUBU R20,R4,Rx ;compute bound
BNEZ R20,Loop ;check if done

CSE 661 - Parallel and Vector Architectures Vector Computers – slide 49

Roofline Performance Model

� Basic idea:
�Plot peak floating-point throughput as a function o f

arithmetic intensity
�Ties together floating-point performance and memory

performance for a target machine

� Arithmetic intensity
�Floating-point operations per byte read

CSE 661 - Parallel and Vector Architectures Vector Computers – slide 50

Examples

� Attainable GFLOPs/sec Min = (Peak Memory BW
× Arithmetic Intensity, Peak Floating Point Perf.)

CSE 661 - Parallel and Vector Architectures Vector Computers – slide 51

GPU Architectures

�Processing is highly data-parallel
�GPUs are highly multithreaded

�Use thread switching to hide memory latency
� Less reliance on multi-level caches

�Graphics memory is wide and high-bandwidth

�Trend toward general purpose GPUs
�Heterogeneous CPU/GPU systems

�CPU for sequential code, GPU for parallel code

�Programming languages/APIs
�OpenGL

�Compute Unified Device Architecture (CUDA)

CSE 661 - Parallel and Vector Architectures Vector Computers – slide 52

NVIDIA GPU Architecture

� Similarities to vector machines:
�Works well with data-level parallel problems

�Scatter-gather transfers

�Mask registers

�Large register files

� Differences:
�No scalar processor

�Uses multithreading to hide memory latency

�Has many functional units, as opposed to a few deep ly
pipelined units like a vector processor

CSE 661 - Parallel and Vector Architectures Vector Computers – slide 53

Threads and Blocks

� A thread is associated with each data element

� Threads are organized into blocks

� Blocks are organized into a grid

� GPU hardware handles thread management, not

applications or OS

CSE 661 - Parallel and Vector Architectures Vector Computers – slide 54

Example: NVIDIA Fermi

� NVIDIA GPU has 32,768 registers

�Divided into lanes

�Each thread is limited to 64 registers

�Each thread has up to:

� 64 registers of 32 32-bit elements

� 32 registers of 32 64-bit elements

�Fermi has 16 physical lanes, each containing 2048
registers

CSE 661 - Parallel and Vector Architectures Vector Computers – slide 55

Fermi Streaming Multiprocessor

CSE 661 - Parallel and Vector Architectures Vector Computers – slide 56

Fermi Architecture Innovations

� Each streaming multiprocessor has
�Two SIMD thread schedulers, two instruction dispatc h

units
�16 SIMD lanes (SIMD width=32, chime=2 cycles), 16

load-store units, 4 special function units
�Thus, two threads of SIMD instructions are schedule d

every two clock cycles

� Fast double precision
� Caches for GPU memory
� 64-bit addressing and unified address space
� Error correcting codes
� Faster context switching
� Faster atomic instructions

CSE 661 - Parallel and Vector Architectures Vector Computers – slide 57

NVIDIA Instruction Set Arch.

ISA is an abstraction of the hardware instruction s et
� “Parallel Thread Execution (PTX)”

�Uses virtual registers

�Translation to machine code is performed in softwar e

�Example:

shl.s32 R8, blockIdx, 9 ; Thread Block ID * Block siz e (512)

add.s32 R8, R8, threadIdx ; R8 = i = my CUDA thread I D

ld.global.f64 RD0, [X+R8] ; RD0 = X[i]

ld.global.f64 RD2, [Y+R8] ; RD2 = Y[i]

mul.f64 R0D, RD0, RD4 ; Product in RD0 = RD0 * RD4 (scalar a)

add.f64 R0D, RD0, RD2 ; Sum in RD0 = RD0 + RD2 (Y[i])

st.global.f64 [Y+R8], RD0 ; Y[i] = sum (X[i]*a + Y[i])

CSE 661 - Parallel and Vector Architectures Vector Computers – slide 58

Conditional Branching

� Like vector architectures, GPU branch hardware
uses internal masks

� Also uses
�Branch synchronization stack

� Entries consist of masks for each SIMD lane
� I.e. which threads commit their results (all thread s

execute)

� Instruction markers to manage when a branch diverge s
into multiple execution paths
� Push on divergent branch

�…and when paths converge
� Act as barriers
� Pops stack

� Per-thread-lane 1-bit predicate register, specified
by programmer

CSE 661 - Parallel and Vector Architectures Vector Computers – slide 59

Example
if (X[i] != 0)

X[i] = X[i] – Y[i];
else X[i] = Z[i];

ld.global.f64 RD0, [X+R8] ; RD0 = X[i]
setp.neq.s32 P1, RD0, #0 ; P1 is predicate register 1
@!P1, bra ELSE1, *Push ; Push old mask, set new mask bits

; if P1 false, go to ELSE1
ld.global.f64 RD2, [Y+R8] ; RD2 = Y[i]
sub.f64 RD0, RD0, RD2 ; Difference in RD0
st.global.f64 [X+R8], RD0 ; X[i] = RD0
@P1, bra ENDIF1, *Comp ; complement mask bits

; if P1 true, go to ENDIF1
ELSE1: ld.global.f64 RD0, [Z+R8] ; RD0 = Z[i]

st.global.f64 [X+R8], RD0 ; X[i] = RD0
ENDIF1: <next instruction>, *Pop ; pop to restore old mask

CSE 661 - Parallel and Vector Architectures Vector Computers – slide 60

NVIDIA GPU Memory Structures

� Each SIMD Lane has private section of off-chip
DRAM
� “Private memory”
�Contains stack frame, spilling registers, and priva te

variables

� Each multithreaded SIMD processor also has
local memory
�Shared by SIMD lanes / threads within a block

� Memory shared by SIMD processors is GPU
Memory
�Host can read and write GPU memory

CSE 661 - Parallel and Vector Architectures Vector Computers – slide 61

Summary

� Vector is a model for exploiting Data Parallelism

� If code is vectorizable, then simpler hardware,
more energy efficient, and better real-time model
than Out-of-order machines

� Design issues include number of lanes, number of
functional units, number of vector registers, lengt h
of vector registers, exception handling, and
conditional operations

� Fundamental design issue is memory bandwidth
�With virtual address translation and caching

