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Uniprocessor Memory Consistency
 Simple and intuitive sequential-memory semantics

Presented by most high-level programming languages

All memory operations assumed to execute in program orderAll memory operations assumed to execute in program order

 Each read must return the last write to the same address

 Sequential execution can be supported efficiently, while
Ensuring data dependences 

 When two memory operations access the same memory location

Ensuring control dependences

 When one operation controls the execution of another

 Compiler or hardware can reorder unrelated operations
Enabling several compiler optimizations

Allowing a wide range of efficient processor designs
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Shared Memory Consistency
 In a shared memory multiprocessor …

Multiple processors can read and write shared memory

Shared memory might be cached in more than one processorShared memory might be cached in more than one processor

Cache coherence ensures same view by all processors

 But cache coherence does not address the problem of
How Consistent the view of shared memory must be?

 When should processors see a value that has been updated?

 Is reordering of reads/writes to different locations allowed?
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 In a uniprocessor, it is allowed and not considered an issue

 But in a multiprocessor, it is considered an issue

 Memory consistency specifies constraints on the …
Order in which memory operations can appear to execute



Shared Memory Consistency: Example
 Consider the code fragments executed by P1 & P2

P1: A = 0; P2: B = 0;
... ...
A 1 B 1A = 1; B = 1;

L1: if (B == 0) ... L2: if (A == 0) ...

 Can both if statements L1 & L2 be true?
 Intuition says NO, it can't be

 At least A or B must have been assigned 1 before if

 But reading of B and A might take place before writing 1
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 Reading of B in P1 is independent of writing A = 1

Read hit on B might take place before Bus Upgrade on writing A

 Same thing might happen when reading A in P2

 Should this behavior be allowed?

Another Example
 Initial values of A and flag are assumed to be 0

P1 P2

A = 1; while (flag == 0); /*spin*/

 Programmer Intuition
 Flag is set to 1 after writing A in P1, so P2 should print 1

 However, memory coherence does not guarantee it!
Coherence says nothing about the order in which

 Writes to A and flag (different memory locations) become visible

flag = 1; print A;
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 Writes to A and flag (different memory locations) become visible

A = 1 may take place after flag = 1, not in program order!

 Coherence only guarantees that …
New value of A will eventually become visible to P2

 But not necessarily before the new value of flag is observed



Shared Memory Consistency Model
 Specifies constraints on order of memory operations

Which memory operation orders are preserved?

Enables programmers to reason about correctness and resultsEnables programmers to reason about correctness and results

 Is an interface between the programmer and the system
 Interface at the high-level language

 Which optimizations can the compiler exploit?

 Interface at the machine-code

 Which optimizations can the processor exploit?
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 Influences many aspects of parallel system design
Affects hardware, operating system, and  parallel applications

 Affects performance, programmability, and portability
 Lack of consensus on a single model

Sequential Consistency
“A multiprocessor is sequentially consistent if the result of any 
execution is the same as if the operations of all the processors 
were executed in some sequential order and the operations ofwere executed in some sequential order, and the operations of 
each individual processor occur in this sequence in the order 
specified by its program” (Lamport 1979)

P1 P2 PnProgrammer Abstraction 
of the Memory System
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Memory

Processors issuing 
memory references 

as per program order

Switch is randomly 
set after each 

memory reference

Model completely hides 
underlying concurrency in 
memory system hardware



Lamport’s Requirements for SC
1. Each processor issues memory requests in the …

 Order specified by its program  Program Order

2. Memory requests issued from all processors are

 Executed in some sequential order

 As if serviced from a single FIFO queue

 Assumes memory operations execute atomically

 With respect to all processors
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 Each memory operation completes before next one is issued

 Total order on interleaved memory accesses

 As if there were no caches, and a single shared memory module

Dubois Requirements for SC
1. Each processor issues memory requests in …

 The order specified by the program  Program Order

2. After a store operation is issued …

 Issuing processor should wait for the store to complete

 Before issuing its next memory operation

3. After a load operation is issued …

 Issuing processor should wait for the load to complete
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 Before issuing its next memory operation

 Last 2 points ensure atomicity of all memory operations

 With respect to all processors



What Really is Program Order?
 Intuitively, order of memory operations in source code

As seen by the programmer

 Straightforward translation of source code to assembly

Order in assembly/machine code is same as in source code

 However, optimizing compiler might reorder operations

Uniprocessors care only about dependences to same location 

 Independent memory operations might be reordered
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 Independent memory operations might be reordered

 Loop transformations, register allocation

Compiler tries to improve performance on uniprocessors

So compiler optimization must be taken into consideration

SC is Different from Cache Coherence
 Requirements for cache coherence

Write propagation

 A it t t ll b d i ibl t ll A write must eventually be made visible to all processors

 Either by invalidation or updating each copy

Write serialization

 Writes to the same location

 Appear in the same order to all processors

 Cache coherence is only part of Sequential Consistency
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 Cache coherence is only part of Sequential Consistency

 The above conditions are not sufficient to satisfy SC

Program order on memory operations is not specified

Whether memory operations execute atomically is not specified



Some Optimizations that Violate SC
Write Buffers with Read Bypassing

Processor inserts a write into a write buffer and proceeds

 Without waiting for the write to complete Without waiting for the write to complete

Subsequent unrelated reads can bypass the write in buffer

Optimization gives priority to reads to reduce their latency

 Non-Blocking Reads
Recent processors can proceed past a read miss

Subsequent unrelated memory operation can bypass read miss
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Using a non-blocking cache and dynamic scheduling

 Out-of-Order Writes
Multiple writes may be serviced concurrently

Writes may complete out of program order

Write Buffers with Read Bypassing
 Following example shows importance of …

Maintaining order between a write and a following read

Even when there is no data or control dependence between themEven when there is no data or control dependence between them

P1

Flag1 = 1
if (Flag2 == 0) {
Critical Section

}

P2r’
s 

A
lg

or
ith

m
m

ut
ua

l e
xc

lu
si

on

P1

Flag1 = 1

Write 
Buffer

Read
Flag2

Flag1 : 0

Flag2 : 0

S

S

D-Cache

P2

Flag2 = 1

Write 
Buffer

Read
Flag1

Flag1 : 0

Flag2 : 0

S

S

D-Cache
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P2

Flag2 = 1
if (Flag1 == 0) {
Critical Section

}

D
ec

ke
r

fo
r 

en
su

rin
g 

Shared 
Memory

Shared Bus

Flag2 : 0S Flag2 : 0S

Waiting for bus



Non-Blocking Reads
 Following example shows importance of …

Maintaining order between a read and a following operation

Even when there is no data or control dependence between themEven when there is no data or control dependence between them

P1

A = 1
B = 1
. . .

P2

u = B
v = A
. . .

A and B are initially 0

Shared B s

P1

BusUpgr A = 1

D-Cache

P2

BusRd B

Miss
on B

Hit
on A

D-Cache

BusRdX B = 1 A : 0S

. . ..

A : 0S

. . ..
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 Possible values for (u,v) pair can be: (0,0), (0,1), or (1,1)

 However, (u,v) cannot be (1,0) under Sequential Consistency

 With a non-blocking cache read, (u,v) = (1,0) is possible

 Read hit on A bypasses a read miss on B

 The two write transactions in P1 might take place before BusRd B

Shared Bus

Out-of-Order Writes
Writes to the same block are sometimes combined

A common optimization to reduce bus transactions

Merged writes might complete out of orderMerged writes might complete out-of-order

P1

A = new value
B = new value
Flag = 1

P2yn
ch

ro
ni

za
tio

n

Shared B s

P1

A = new, Flag = 1

D-Cache

P2

D-Cache

B = new A : 0 , Flag : 0S

B : 0 , . . .S

A : 0 , Flag : 0S

B : 0 , . . .S
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 A and Flag might reside in same block

Writes to A and Flag might be combined

Write to Flag might occur before write to B

 Processor P2 might see old value of B

P2

while (Flag == 0) {}
Use A
Use B

E
ve

nt
 S

y Shared Bus



Out-of-Order Writes – cont’d
 Consider a distributed shared memory multiprocessor

Writes are issued in-order, but might complete out-of-order

 F ll i l h i t f it l ti Following example shows importance of write completion

 To maintaining program order between two writes

P1

A = new value
Flag = 1
. . .hr

on
iz

at
io

n

P1

Memory

P2

Memory
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P2

while (Flag == 0) {}
Use A
. . .

E
ve

nt
 S

yn
ch

Interconnection Network

Flag : 1 A : 0

write A = new value
delayed in network

Write Atomicity
 Sequential Consistency requires that all memory ops …

Execute atomically with respect to all processors

 In addition to program order within a process

Write atomicity is an important issue

Writes to all locations must appear to all processors in same order

 Extends write serialization of cache coherence

Write serialization requires that …
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 Writes to same location only appear in same order

But write atomicity requires that for all memory locations



Violation of Write Atomicity
 Consider a distributed shared memory multiprocessor

Write atomicity can be easily violated if a write is made visible to 
some processors before making it visible to others

 Importance of write atomicity to SC is shown below

P1

A = 1
. . .

P2

while (A == 0) {}
B = 1
. . .

P3

while (B == 0) {}
use A
. . .P2 P3

A 0

P1

A 0 1
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Scalable
Interconnection
Network

Mem

write A = 1 delayed

write A = 1 write B = 1

$

Mem

$
A: 0
B: 0 → 1

Mem

$ A: 0 → 1
A: 0 → 1
B: 0 → 1

Implementing Sequential Consistency
1. Every process issues memory operations in program order

 Even when memory operations address different memory locations

2 Wait for a write to complete before next memory operation2. Wait for a write to complete before next memory operation
 In a bus-based system, write completes as soon as bus is acquired

 Bus Read Exclusive, Bus Upgrade, Bus Update

 In a scalable multiprocessor, with a scalable interconnect
 A write requires explicit acknowledgements if multiple copies exist

 Each processor acknowledges an invalidate or update on receipt

3. Maintain write atomicity
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3 a ta te ato c ty
 Wait for a write to complete with respect to all processors

 No processor can use new value until it is visible to all processors

 Challenging with update protocol and scalable non-bus network

 Conditions are very restrictive for performance



Compilers
 Compilers that reorder shared memory operations …

Cause sequential consistency violations

Similar to hardware generated reorderingSimilar to hardware generated reordering

 Compiler must preserve program order …
Among shared memory operations

But this prohibits compiler optimizations

 Simple optimizations that violate SC include 
Register allocation to eliminate memory access
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g y

Eliminating common sub-expressions

 Sophisticated optimizations that violate SC include
 Instruction reordering

Software pipelining

Example on Register Allocation
 Register allocation can violate sequential consistency

 Can cause the elimination of shared memory access

 In the following example …

Compiler might easily allocates r1 to B in P1 and r2 to A in P2

P1 P2 P1 P2

B=0 A=0 r1=0 r2=0
A=1 B=1 B=r1 A=r2
u=B v=A A=1 B=1
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 Unfortunately, programming languages and compilers 
are largely oblivious to memory consistency models

u=r1 v=r2

(u,v) ≠ (0,0) under SC (u,v) = (0,0) occurs here



Summary of Sequential Consistency
 Maintain order between shared access in each process

Reads or writes wait for previous reads or writes to complete

 Total order on all accesses to shared memory

 Does SC eliminate synchronization?

READ WRITE WRITEREAD

READ WRITE READ WRITE
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 Does SC eliminate synchronization?

No, still needs critical sections, barriers, and events

 SC only ensures interleaving semantics

Of individual memory operations

Relaxed Memory Models
 Sequential consistency is an intuitive programming model

However, disallows many hardware and compiler optimizations

 Many relaxed memory models have been proposed Many relaxed memory models have been proposed

 PC: Processor Consistency (Goodman 89)

 TSO: Total Store Ordering (Sindhu 90)
Relaxing the Write-to-Read Program Order

 PSO: Partial Store Ordering (Sindhu 91)
Relaxing the Write-to-Read and Write-to-Write Program Orders
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WO: Weak Ordering (Dubois 86)

 RC: Release Consistency (Charachorloo 1990)

 RMO: Relaxed Memory Ordering (Weaver 1994)
Relaxing all program orders for non-synchronization memory ops



PC and TSO : Relaxing Write-to-Read
 Allow a read to bypass an earlier incomplete write

 Motivation: hide latency of write operations

While a write-miss is placed in write buffer and not visible yet

 Later reads that hit in the cache can bypass the write

 Most early multiprocessors supported PC or TSO 

Sequent Balance, Encore Multimax, Vax 8800

SparcCenter 1000/2000, SGI Challenge, Pentium Pro quad
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 Difference between PC and TSO is that …

 TSO ensures write atomicity, while PC does not ensure it

 Many SC example codes still work under PC and TSO

Correctness of Results
P1 P2

A = 1; while (Flag == 0)  { }
Flag = 1; Read A;

P1 P2

A = 1; Read B;
B = 1; Read A;

(a) and (b): Same for SC, TSO, and PC

( ) PC ll A t b d 0 it t i it

(a) (b)

P1 P2 P3

A = 1; while (A == 0)  { } while (B == 0) { }
B = 1; Read A;

(c)

P1 P2

A = 1; B = 1;
read B; Read A;

(d)
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(c) PC allows A to be read as 0 --- no write atomicity

(d) TSO and PC allow A and B to be read as (0,0)

 Sequential Consistency can be ensured using
Special memory barrier or fence instructions – discussed later



PSO: Partial Store Ordering
 Processor relaxes write-to-read & write-to-write orderings

When addressing different memory locations

 H d O ti i ti Hardware Optimizations

Write-buffer merging

Enables multiple write misses to be fully overlapped

Retires writes out of program order

 But, even the simple use of flags breaks under this model

Violates our intuitive sequential consistency semantics
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Violates our intuitive sequential consistency semantics

 PSO model is supported only by Sun Sparc (Sindhu 1991)

 Sparc V8 provides STBAR (store barrier) instruction

 To enforce ordering between two store instructions

Weak Ordering
 Relaxes all orderings on non-synchronization operations

 That address different memory locations

Retains only control and data dependences within each threadRetains only control and data dependences within each thread

 Motivation
Parallel programs use synchronization operations
 To coordinate access to shared data

Synchronization operations await …
 All previous memory operations to complete

Order of memory access need not be preserved

Read / Write

° ° °
Read / Write

Sync

1

2
Read / Write

° ° °
Read / Write
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Order of memory access need not be preserved
 Between synchronization operations

 Matches dynamically scheduled processors
Multiple read misses can be outstanding

Enable compiler optimizations

3

Read / Write

Sync

Read / Write

° ° °
Read / Write



Alpha and PowerPC
 Processor relaxes all orderings on memory operations

When addressing different memory locations

 H S ifi i t ti f d i However, Specific instructions enforce ordering
Called memory barriers or fences

 Alpha architecture: two kinds of fences (Sites 1992)
Memory Barrier (MB)

 Wait for all previously issued memory operations to complete

Write Memory Barrier (WMB)

Shared Memory Consistency © Muhamed Mudawar, COE 502 Slide 29

 Imposes program order only between writes (like STBAR in PSO)

 However, a read issued after WMB can still bypass

 IBM PowerPC provides only a single fence (May 1994)
SYNC equivalent to Alpha’s MB, but writes are not atomic

Sparc V9 RMO Model
 RMO: Relaxed Memory Order (Weaver 1994)

Processor relaxes all orderings on memory operations

When addressing different memory locationsWhen addressing different memory locations

 Provides a memory barrier instruction called MEMBAR
Similar to Alpha and PowerPC but with different flavors

 Sparc V9 MEMBAR has 4 flavor bits
Each bit indicates a particular type of ordering to be enforced

 LoadLoad bit enforces read-to-read ordering
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g

 LoadStore bit enforces read-to-write ordering

StoreLoad bit enforces write-to-read ordering

StoreStore bit enforces write-to-write ordering

Any combination of these 4 bits can be set



Examples on Memory Barriers
 Sparc V9 MEMBAR is used in the following examples

P1 P1

A = new value
membar #StoreStore
Flag = 1

P2

while (Flag == 0) {}
membar #LoadLoadE

ve
nt

 S
yn

ch
ro

ni
za

tio
n

Flag1 = 1
membar #StoreLoad
if (Flag2 == 0) {
Critical Section

}

P2

Flag2 = 1ck
er

’s
 A

lg
or

ith
m

rin
g 

m
ut

ua
l e

xc
lu

si
on
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Use A Flag2 = 1
membar #StoreLoad
if (Flag1 == 0) {
Critical Section

}
D

e
fo

r 
en

su

Release Consistency
 Extends weak ordering model

Distinguishes among types of synchronization operations

 Further relaxing ordering constraints Further relaxing ordering constraints

 Acquire: read or read-modify-write operation
Gain access to a set of operations on shared variables

Delay memory accesses that follow until acquire completes

Has nothing to do with memory accesses that precede it

 Release: write operation
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Grant access to another processor to the …

 New set of data values that are modified before in program order

Release must wait for preceding memory accesses to complete

Has nothing to do with memory accesses that follow it



Release Consistency – cont’d
 In the example shown below …

Block 1 precedes acquire and block 3 follows release

Acquire can be reordered with respect to accesses in block 1Acquire can be reordered with respect to accesses in block 1

Release can be reordered with respect to accesses in block 3

Blocks 1 and 2 have to complete before release

Blocks 2 and 3 cannot begin until acquire completes

Read / Write

° ° °
Read / Write

Acquire1
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2

3

Read / Write

° ° °
Read / Write

Release
Read / Write

° ° °
Read / Write

Examples on Acquire and Release
P1 , P2 , … , Pn

. . .
Lock(TaskQ);
newTask->next = Head;

P1

TOP: while(flag2==0);
A = 1;
u = B;

P2

TOP: while(flag1==0);
x = A;
y = D;

 Examples on acquire
 Lock(TaskQ) in the first example

newTask >next = Head;
if (Head != NULL)

Head->prev = newTask;
Head = newTask;
Unlock(TaskQ);
. . .

u = B;
v = C;
D = B * C;
flag2 = 0;
flag1 = 1;
goto TOP;

y = D;
B = 3;
C = D / B;
flag1 = 0;
flag2 = 1;
goto TOP;
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Reading of flag1 and flag2 within the while loop conditions

 Examples on release
Unlock(TaskQ) in the first example

Setting of flag1 and flag2 to 1 in the second example



Summary of Various Models
W→R W→W R→RW Read Other’s Read Own Ordering

Model Reorder Reorder Reorder Write Early Write Early Operations

SC yes

TSO yes yes membar, rmw

PC yes yes yes membar, rmw

PSO yes yes yes stbar, rmw

WO yes yes yes yes sync

RC yes yes yes yes yes acq, rel, rmw

RMO yes yes yes yes membar #

Alpha es es es es mb mb
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Alpha yes yes yes yes mb, wmb

PowerPC yes yes yes yes yes sync

 RMW are read-modify-write operations

 ACQ and REL are the acquire and release operations

 MEMBAR # is the memory barrier with various flavors

Summary of Various Models – cont’d
 Read Own Write Early relaxation

Processor is allowed to read its own previous write …

 Before the write completes

 Write can be still waiting in write buffer

Optimization can be used with SC and other models …

 Without violating their semantics

 Read Other’s Write Early relaxation
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 This is the non-atomic write

Processor is allowed to read result of another processor write

 Before the write completes globally with respect to all processors


