
Perspective on ParallelPerspective on Parallel

Programming

Muhamed Mudawar

Computer Engineering Department

King Fahd University of Petroleum and Minerals

Outline of this Presentation

Motivating Problems

Wide range of applications

 Scientific, engineering, and commercial computing problems

Ocean Currents, Galaxy Evolution, Ray Tracing, and Data Mining

 The parallelization process

Decomposition, Assignment, Orchestration, and Mapping

 Si l l h P ll li i P

Perspective on Parallel Programming - 2 © Muhamed Mudawar, CSE 661

 Simple example on the Parallelization Process

Orchestration under three major parallel programming models

What primitives must a system support?

Why Bother with Parallel Programs?

 They are what runs on the parallel machines
Make better design decisions and system tradeoffs

 L d t th k d i i hit t Led to the key advances in uniprocessor architecture
Caches and instruction set design

More important in multiprocessors
New degrees of freedom, greater penalties for mismatch

 Algorithm designers
Design parallel algorithms that will run well on real systems

Perspective on Parallel Programming - 3 © Muhamed Mudawar, CSE 661

 Programmers
Understand optimization issues and obtain best performance

 Architects
Understand workloads which are valuable for design and evaluation

Simulating Ocean Currents

 Simulates the motion of water currents in the ocean
 Influence of atmospheric effects, wind, and friction with ocean floor and walls

Model as two dimensional cross section grids

(a) Cross sections (b) Spatial discretization of a cross section

Perspective on Parallel Programming - 4 © Muhamed Mudawar, CSE 661

Model as two-dimensional cross section grids
 Discretization in space (grid points) and time (finite time-steps)
 Finer spatial and temporal resolution => greater accuracy
 Equations of motion are setup and solved at all grid points in one time step
 Concurrency across and within grid computations

Simulating the Evolution of Galaxies

 Simulate the interactions of many stars evolving over time

 Computing forces on each star under the effect of all other stars
 E i O(2) b f h Expensive O(n2) brute force approach

Hierarchical Methods take advantage of force law
 Barnes-Hut algorithm O (n log n)

Star on which forces
are being computed

Large group far
enough away to
approximate

G m1 m2

r2

Perspective on Parallel Programming - 5 © Muhamed Mudawar, CSE 661

 Many time-steps, plenty of concurrency across stars

Star too close to
approximate

Small group far enough away to
approximate to center of mass

Rendering Scenes by Ray Tracing

 Scene is represented as a set of objects in 3D space

 Image being rendered is represented as 2D array of pixels

 Shoot rays from a specific viewpoint through image and into scene
Compute ray reflection, refraction, and lighting interactions

 They bounce around as they strike objects

 They generate new rays => ray tree per input ray

Perspective on Parallel Programming - 6 © Muhamed Mudawar, CSE 661

 Result is color, opacity, and brightness for each pixel

 Parallelism across rays

Creating a Parallel Program

 Assumption: sequential algorithm is given
 Sometimes we need a very different parallel algorithm

 Pieces of the job:
 Identify work that can be done in parallel

 Work includes computation, data access, and I/O

 Partition work and perhaps data among processes

Manage data access, communication and synchronization

Main goal: Speedup

Perspective on Parallel Programming - 7 © Muhamed Mudawar, CSE 661

g p p
Obtained with reasonable programming efforts and resource needs

Sequential execution time
Speedup(p) =

Parallel execution time (p)

Definitions
 Task:

Arbitrary piece of work in a parallel program

Unit of concurrency that a parallel program can exploitUnit of concurrency that a parallel program can exploit

 Executed sequentially; concurrency is only across tasks

Can be fine-grained or coarse-grained

 Example: a single ray or a ray group in Raytrace

 Process or thread:
Abstract entity that performs the assigned tasks

 Processes communicate and synchronize to perform their tasks

Perspective on Parallel Programming - 8 © Muhamed Mudawar, CSE 661

y p

 Processor:
 Physical engine on which process executes

 Processes virtualize machine to programmer
 Write program in terms of processes, then map to processors

4 Steps in Creating a Parallel Program
Partitioning

A
s

D
e

M
a

O
r

P0

Tasks Processes Processors

P1

P2 P3

p0 p1

p2 p3

p0 p1

p2 p3

Sequential
computation

Parallel
program

s
i
g
n
m
e
n
t

c
o
m
p
o
s
i
t
i
o
n

p
p
i
n
g

c
h
e
s
t
r
a
t
i
o
n

Perspective on Parallel Programming - 9 © Muhamed Mudawar, CSE 661

 Decomposition of computation into tasks
 Assignment of tasks to processes
 Orchestration of data access, communication, and synchronization
 Mapping processes to processors

Decomposition

 Break up computation into a collection of tasks

 Tasks may become available dynamically

Number of available tasks may vary with time

 Identify concurrency and decide level at which to exploit it

 Fine-grained versus course-grained tasks

 Goal

 Expose enough parallelism to keep processes busy

Perspective on Parallel Programming - 10 © Muhamed Mudawar, CSE 661

 Expose enough parallelism to keep processes busy

 Too much parallelism increases the overhead of task management

 Number of parallel tasks available at a time is an upper bound
on the achievable speedup

Limited Parallelism: Amdahl’s Law

Most fundamental limitation on parallel speedup

 If fraction s of execution time is serial then speedup < 1/s
Reasoning: inherently parallel code can be executed in “no time” but

inherently sequential code still needs fraction s of time

 Example: if s is 0.2 then speedup cannot exceed 1/0.2 = 5.

 Using p processors
1

Speedup =
s + (1-s)/p

Perspective on Parallel Programming - 11 © Muhamed Mudawar, CSE 661

 Total sequential execution time on a single processor is normalized to 1

 Serial code on p processors requires fraction s of time

 Parallel code on p processors requires fraction (1 – s)/p of time

Example on Amdahl’s Law

 Example: 2-phase calculation
 Sweep over n-by-n grid and do some independent computation
 Sweep again and add each value to global sum Sweep again and add each value to global sum

 Time for first phase on p parallel processors = n2/p
 Second phase serialized at global variable, so time = n2

 Speedup <= = or at most 2 for large p

 I t di id d h i t t

p

2n2

n2
+ n2

2p

p + 1

Perspective on Parallel Programming - 12 © Muhamed Mudawar, CSE 661

 Improvement: divide second phase into two
Accumulate p private sums during first sweep
Add per-process private sums into global sum

 Parallel time is n2/p + n2/p + p, and speedup <=
2n2p

2n2 + p2

Understanding Amdahl’s Law

1
(a)

p

1

n2/p

n2

w
or

k
do

ne
 c

on
cu

rr
en

tl
y

n2

n2

(b)

Perspective on Parallel Programming - 13 © Muhamed Mudawar, CSE 661

p

1

p
Time

n2/p n2/p

(c)

Concurrency Profile

 Depicts number of available concurrent operations at each cycle
Can be quite irregular, x-axis is time and y-axis is amount of concurrency

 I f ti f th bl i t i d d iti Is a function of the problem, input size, and decomposition
However, independent of number of processors (assuming unlimited)

Also independent of assignment and orchestration

rr
en

cy 800

1,000

1,200

1,400

Perspective on Parallel Programming - 14 © Muhamed Mudawar, CSE 661

C
on

cu
r

15
0

21
9

24
7

28
6

31
3

34
3

38
0

41
5

44
4

48
3

50
4

52
6

56
4

58
9

63
3

66
2

70
2

73
3

0

200

400

600

Clock cycle number

 Area under concurrency profile is total work done
 Equal to sequential execution time

Generalized Amdahl’s Law

 Horizontal extent is lower bound on time (infinite processors)

Speedup ≤

 Let fk be the number of x-axis points that have concurrency k

Area under Concurrency Profile

Horizontal Extent of Concurrency Profile

1,400

Perspective on Parallel Programming - 15 © Muhamed Mudawar, CSE 661

fk k

fk
k
p

k=1

k=1

Speedup(p) ≤
C

on
cu

rr
en

cy

15
0

21
9

24
7

28
6

31
3

34
3

38
0

41
5

44
4

48
3

50
4

52
6

56
4

58
9

63
3

66
2

70
2

73
3

0

200

400

600

800

1,000

1,200

Clock cycle number

Assignment
 Assign or distribute tasks among processes
 Primary performance goals

Balance workload among processes load balancingBalance workload among processes – load balancing
Reduce amount of inter-process communication
Reduce the run-time overhead of managing the assignment

 Static versus dynamic assignment
 Static is a predetermined assignment
Dynamic assignment is determined at runtime (reacts to load imbalance)

 Decomposition and assignment are sometimes combined

Perspective on Parallel Programming - 16 © Muhamed Mudawar, CSE 661

 Decomposition and assignment are sometimes combined
Called partitioning – As programmers we worry about partitioning first
Usually independent of architecture and programming model
Most programs lend themselves to structured approaches
But cost and complexity of using primitives may affect decisions

Orchestration

 Processes need mechanisms to …

Name and access data

 Exchange data with other processes

 Synchronize with other processes

 Architecture, programming model, and language play big role

 Performance Goals

Reduce cost of communication and synchronization

 P l lit f d t f

Perspective on Parallel Programming - 17 © Muhamed Mudawar, CSE 661

 Preserve locality of data reference

 Schedule tasks to satisfy dependences early

Reduce overhead of parallelism management

 Architects should provide appropriate and efficient primitives

Mapping

 Fairly specific to the system or programming environment

 Two aspects
Whi h hi h i l ?Which process runs on which particular processor?

Will multiple processes run on same processor?

 Space-sharing
Machine divided into subsets, only one application runs at a time

 Processes pinned to processors to preserve locality of communication

 Time-sharing among multiple applications

 i ll i

Perspective on Parallel Programming - 18 © Muhamed Mudawar, CSE 661

 Dynamic system allocation
OS dynamically controls which process runs where and when

 Processes may move around among processors as the scheduler dictates

 Real world falls somewhere in between

Partitioning Computation versus Data

 Typically we partition computation (decompose and assign)

 Partitioning data is often a natural choice too

Decomposing and assigning data to processes

 Decomposition of computation and data are strongly related

Difficult to distinguish in some applications like Ocean

 Process assigned portion of an array is responsible for its computation

 Know as owner computes arrangement

Perspective on Parallel Programming - 19 © Muhamed Mudawar, CSE 661

 Some programming languages like HPF

Allow programmers to specify the
decomposition and assignment
of data structures

Goals of the Parallelization Process

Table 2.1 Steps in the Parallelization Process and Their Goals

St
Architecture-
D d t? M j P f G lStep Dependent? Major Performance Goals

Decomposition Mostly no Expose enough concurr ency but not too much

Assignment Mostly no Balance workload
Reduce communication volume

Orchestration Yes Reduce noninherent communication via data
locality

Reduce communication and synchronization cost
as seen by the processor

Reduce serialization at shared r esources

Perspective on Parallel Programming - 20 © Muhamed Mudawar, CSE 661

Reduce serialization at shared r esources
Schedule tasks to satisfy dependences early

Mapping Yes Put r elated processes on the same pr ocessor if
necessary

Exploit locality in network topology

Example: Iterative Equation Solver

 Simplified version of a piece of Ocean simulation

 Gauss-Seidel (near-neighbor)
C t ti d b f tComputation proceeds over a number of sweeps to convergence
 Interior n-by-n points of (n+2)-by-(n+2) updated in each sweep
New values of points above and left and old values below and right
Difference from previous value computed
Accumulate partial differences at end of every sweep
Check if has converged within a tolerance parameter

 Standard sequential language augmented with primitives for parallelism

Perspective on Parallel Programming - 21 © Muhamed Mudawar, CSE 661

 State of most real parallel programming today

Expression for updating each interior point:

A[i , j] = 0.2 × (A[i , j] + A[i , j – 1] + A[i – 1 , j] + A[i , j + 1] + A[i + 1 , j])

1 . i n t n ; /* s iz e o f m a tr ix : (n + 2 -b y -n + 2) e le m e n ts* /
2 . f l o a t * * A , d i f f = 0 ;

3 . m a i n ()
4 . b e g i n
5 r e a d (n) ; /* re a d in p u t p a ra m e te r : m a tr ix s iz e * /

Sequential Equation Solver Kernel

5 . r e a d (n) ; / re a d in p u t p a ra m e te r : m a tr ix s iz e /
6 . A m a l l o c (a 2 - d a r r a y o f s i z e n + 2 b y n + 2 d o u b l e s) ;
7 . i n i t i a l i z e (A) ; /* in it ia liz e th e m a tr ix A so m e h o w * /
8 . S o l v e (A) ; /* c a ll th e ro u tin e to so lv e e q u a tio n * /
9 . e n d m a i n

1 0 . p r o c e d u r e S o l v e (A) /* so lv e th e e q u a tio n sy s te m * /
1 1 . f l o a t * * A ; /* A is a n (n + 2)-b y - (n + 2) a rra y * /
1 2 . b e g i n
1 3 . i n t i , j , d o n e = 0 ;
1 4 . f l o a t d i f f = 0 , t e m p ;
1 5 . w h i l e (! d o n e) d o /* o u te rm o s t lo o p o v e r sw e e p s* /
1 6 . d i f f = 0 ; /* in it ia liz e m a x im u m d if fe re n c e to 0 * /
1 7 . f o r i 1 t o n d o /* sw e e p o v e r n o n b o rd er p o in ts o f g r id * /
1 8 f o r j 1 t o n d o

Perspective on Parallel Programming - 22 © Muhamed Mudawar, CSE 661

1 8 . f o r j 1 t o n d o
1 9 . t e m p = A [i , j] ; /* sa v e o ld v a lu e o f e le m en t* /
2 0 . A [i , j] 0 . 2 * (A [i , j] + A [i , j - 1] + A [i - 1 , j] +
2 1 . A [i , j + 1] + A [i + 1 , j]) ; /* c o m p u te av e ra g e* /
2 2 . d i f f + = a b s (A [i , j] - t e m p) ;
2 3 . e n d f o r
2 4 . e n d f o r
2 5 . i f (d i f f / (n * n) < T O L) t h e n d o n e = 1 ;
2 6 . e n d w h i l e
2 7 . e n d p r o c e d u r e

Decomposition

 Simple way to identify concurrency is to look at loop iterations
Dependence analysis; if not enough concurrency, then look further

 N t h h t l l l (ll l ti l) Not much concurrency here at loop level (all loops sequential)
 Examine fundamental dependences

 Concurrency O(n) along anti-diagonals

 Serialization O(n) along diagonals

 Approach 1: Retain loop structure
Use point-to-point synchronization

Perspective on Parallel Programming - 23 © Muhamed Mudawar, CSE 661

 Problem: Too much synchronization

 Approach 2: Restructure loops
Use global synchronization

 Imbalance and too much synchronization

Exploit Application Knowledge
 Gauss-Seidel method is not an exact solution method

Results are not exact but within a tolerance value

 S ti l l ith i t i t t ll li Sequential algorithm is not convenient to parallelize
Common sequential traversal (left to right and top to bottom)

Different parallel traversals are possible

 Reorder grid traversal: red-black
Red/black sweeps are each fully parallel

Different ordering of updates
Red point

Black point

Perspective on Parallel Programming - 24 © Muhamed Mudawar, CSE 661

May converge quicker or slower

Global synchronization between sweeps

 Conservative but convenient

 Longer kernel code

Fully Parallel Sweep Approach
 Ignore dependences among grid points within a sweep

 Simpler than red-black ordering – no ordering
 Convert nested sequential loops into parallel loops - nondeterministic Convert nested sequential loops into parallel loops nondeterministic

 Decomposition into elements: degree of concurrency is n2

15. while (!done) do /*a sequential loop*/
16. diff = 0;
17. for_all i 1 to n do /*a parallel loop nest*/
18. for_all j 1 to n do
19. temp = A[i,j];
20. A[i,j] 0.2 * (A[i,j] + A[i,j-1] + A[i-1,j] +
21. A[i,j+1] + A[i+1,j]);
22. diff += abs(A[i,j] - temp);
23. end for_all

d f ll

Perspective on Parallel Programming - 25 © Muhamed Mudawar, CSE 661

 Can also decompose into rows
 Make inner loop (line 18) a sequential loop

 Degree of concurrency reduced from n2 to n

24. end for all
25. if (diff/(n*n) < TOL) then done = 1;
26. end while

Assignment
 For_all decomposes iterations into parallel tasks

 Leaves assignment to be specified later

 Static assignment: decomposition into rows Static assignment: decomposition into rows
 Block assignment of rows: Row i is assigned to process i / b

 b = block size = n / p (for n rows and p processes)

 Cyclic assignment of rows: process i is assigned rows i, i+p, ...

 Concurrency is reduced from n to p
 Communication-to-Computation is reduced

P0

Perspective on Parallel Programming - 26 © Muhamed Mudawar, CSE 661

 Ratio is O(p/n)

 Dynamic assignment
 Get a row index, work on row

 Get a new row, ... etc.

P1

P2

P4

Orchestration under Data Parallel Model
 Single thread of control operating on large data structures
 Needs primitives to partition computation and data
 G MALLOC G_MALLOC

Global malloc: allocates data in a shared region of the heap storage

 DECOMP
Assigns iterations to processes (task assignment)
 [BLOCK, *, nprocs] means that first dimension (rows) is partitioned

 Second dimension (cols) is not partitioned at all
 [CYCLIC, *, nprocs] means cyclic partitioning of rows among nprocs
 [BLOCK, BLOCK, nprocs] means 2D block partitioning among nprocs
 [* CYCLIC nprocs] means cyclic partitioning of cols among nprocs

Perspective on Parallel Programming - 27 © Muhamed Mudawar, CSE 661

 [*, CYCLIC, nprocs] means cyclic partitioning of cols among nprocs
Also specifies how matrix data should be distributed

 REDUCE
 Implements a reduction operation such as ADD, MAX, etc.
 Typically implemented as a library function call

Data Parallel Equation Solver
1. int n, nprocs ; /*grid size (n + 2-by-n + 2) and number of processes*/
2. float **A, diff = 0;

3. main()
4. begin
5. read(n); read(nprocs); ; /*read input grid size and number of processes*/

 (d f i b d bl)6. A G MALLOC (a 2-d array of size n+2 by n+2 doubles);
7. initialize(A); /*initialize the matrix A somehow*/
8. Solve (A); /*call the routine to solve equation*/
9. end main

10. procedure Solve(A) /*solve the equation system*/
11. float **A; /*A is an (n + 2-by-n + 2) array*/
12. begin
13. int i, j, done = 0;
14. float mydiff = 0, temp;
14a. DECOMP A[BLOCK,*, nprocs];
15. while (!done) do /*outermost loop over sweeps*/
16. mydiff = 0; /*initialize maximum difference to 0 */
17. for_all i 1 to n do /*sweep over non-border points of grid*/
18. for all j 1 to n do

Perspective on Parallel Programming - 28 © Muhamed Mudawar, CSE 661

18. for all j 1 to n do
19. temp = A[i,j]; /*save old value of element*/
20. A[i,j] 0.2 * (A[i,j] + A[i,j-1] + A[i-1,j] +
21. A[i,j+1] + A[i+1,j]); /*compute average*/
22. mydiff = abs(A[i,j] - temp);
23. end for_all
24. end for_all
24a. REDUCE (mydiff, diff, ADD);
25. if (diff/(n*n) < TOL) then done = 1;
26. end while
27. end procedure

Orchestration under Shared Memory
 Need primitives to create processes, synchronize them … etc.

 G_MALLOC(size)
Allocate shared memory of size bytes on the heap storageAllocate shared memory of size bytes on the heap storage

 CREATE(p, proc, args)
Create p processes that start at procedure proc with arguments args

 LOCK(name), UNLOCK(name)
Acquire and release name for exclusive access to shared variables

 BARRIER(name, number)

Perspective on Parallel Programming - 29 © Muhamed Mudawar, CSE 661

Global synchronization among number of processes

WAIT_FOR_END(number)
Wait for number of processes to terminate

WAIT(flag), SIGNAL(flag) for event synchronization

Generating Threads
1. int n, nprocs; /*matrix dimension and number of processors to be used*/
2a. float **A, diff; /*A is global (shared) array representing the grid*/

/*diff is global (shared) maximum difference in current sweep*/
2b. LOCKDEC(diff_lock); /*declaration of lock to enforce mutual exclusion*/
2c. BARDEC (bar1); /*barrier declaration for global synchronization between sweeps*/

3. main()
4. begin
5. read(n); read(nprocs); /*read input matrix size and number of processes*/

6. A G_MALLOC (a two-dimensional array of size n+2 by n+2 doubles);

7. initialize(A); /*initialize A in an unspecified way*/
8a. CREATE (nprocs-1, Solve, A);
8. Solve(A); /*main process becomes a worker too*/
8b. WAIT_FOR_END (nprocs-1); /*wait for all child processes created to terminate*/
9 d i

Perspective on Parallel Programming - 30 © Muhamed Mudawar, CSE 661

9. end main

10. procedure Solve(A)
11. float **A; /*A is entire n+2-by-n+2 shared array,

as in the sequential program*/
12. begin
13. ----
27. end procedure

Equation Solver with Shared Memory
10. procedure Solve(A)
11. float **A; /*A is entire n+2-by-n+2 shared array,

 as in the sequential program*/
12. begin
13. int i,j, pid, done = 0;
14. float temp, mydiff = 0; /*private variables*/p, y ; p
14a. int mymin = 1 + (pid * n/nprocs); /*assume that n is exactly divisible by*/
14b. int mymax = mymin + n/nprocs - 1 /*nprocs for simplicity here*/

15. while (!done) do /*outer loop sweeps*/
16. mydiff = diff = 0; /*set global diff to 0 (okay for all to do it)*/
16a. BARRIER(bar1, nprocs); /*ensure all reach here before anyone modifies diff*/
17. for i mymin to mymax do /*for each of my rows*/
18. for j 1 to n do /*for all nonborder elements in that row*/
19. temp = A[i,j];
20. A[i,j] = 0.2 * (A[i,j] + A[i,j-1] + A[i-1,j] +
21. A[i,j+1] + A[i+1,j]);
22. mydiff += abs(A[i,j] - temp);
23. endfor
24 endfor

Perspective on Parallel Programming - 31 © Muhamed Mudawar, CSE 661

24. endfor
25a. LOCK(diff_lock); /*update global diff if necessary*/
25b. diff += mydiff;
25c. UNLOCK(diff_lock);
25d. BARRIER(bar1, nprocs); /*ensure all reach here before checking if done*/
25e. if (diff/(n*n) < TOL) then done = 1; /*check convergence; all get

same answer*/
25f. BARRIER(bar1, nprocs);
26. endwhile
27. end procedure

Notes on the Parallel Program

 Single Program Multiple Data (SPMD)
Not lockstep or even necessarily exact same instructions as in SIMD
May follow different control paths through the codeMay follow different control paths through the code

Processes

Solve Solve Solve Solve

 Unique pid per process
Numbered as 0, 1, …, p-1
Assignment of iterations to processes is

controlled by loop bounds

 Barrier Synchronization
 To separate distinct phases of computation

Perspective on Parallel Programming - 32 © Muhamed Mudawar, CSE 661

Sweep

Test Convergence

Mutual Exclusion
 To accumulate sums into shared diff

 Done condition
 Evaluated redundantly by all

Mutual Exclusion

 Race Conditions
P1 P2

1 diff {P1 t diff i it 1}r1 diff {P1 gets diff in its r1}
r1 diff {P2 also gets diff in its r1}

r1 r1+mydiff
r1 r1+mydiff

diff r1 {race conditions}
diff r1 {sum is Not accumulated}

 LOCK-UNLOCK around critical section
 Ensure exclusive access to shared data

Perspective on Parallel Programming - 33 © Muhamed Mudawar, CSE 661

 Ensure exclusive access to shared data
 Implementation of LOCK/UNLOCK must be atomic

 Locks are expensive
Cause contention and serialization
Associating different names with locks reduces contention/serialization

Event Synchronization

 Global Event Sychronization
BARRIER(name, nprocs)
 Wait on barrier name until a total of nprocs processes have reached this barrier Wait on barrier name until a total of nprocs processes have reached this barrier

 Built using lower level primitives

 Often used to separate phases of computation

 Conservative form of preserving dependences, but easy to use

WAIT_FOR_END (nprocs-1)
 Wait for nprocs-1 processes to terminate execution

 Point-to-Point Event Synchronization

Perspective on Parallel Programming - 34 © Muhamed Mudawar, CSE 661

o o o ve Sy c o o
One process notifies another of an event so it can proceed
 Common example: produce-consumer

WAIT(sem) and SIGNAL(sem) on a semaphore sem with blocking

Use of ordinary shared variables as flags with busy-waiting or spinning

Orchestration Under Message-Passing

 Cannot declare A to be a global shared array
Compose it logically from per-process private arrays

U ll ll d i d i h h i f kUsually allocated in accordance with the assignment of work

 Process assigned a set of rows allocates them locally

 Transfers of entire rows between traversals

 Structured similar to SPMD in Shared Address Space

 Orchestration different
Data structures and data access/naming

Perspective on Parallel Programming - 35 © Muhamed Mudawar, CSE 661

Data structures and data access/naming

Communication

 Synchronization

 Ghost rows

Basic Message-Passing Primitives

 CREATE(procedure)

Create process that starts at procedure

 SEND(addr, size, dest, tag), RECEIVE(addr, size, src, tag)

 Send size bytes starting at addr to dest process with tag identifier

Receive a message with tag identifier from src process and put size
bytes of it into buffer starting at addr

 SEND_PROBE(tag, dest), RECEIVE_PROBE(tag, src)

 Send probe checks if message with tag has been sent to process dest

Perspective on Parallel Programming - 36 © Muhamed Mudawar, CSE 661

 Send_probe checks if message with tag has been sent to process dest

Receive_probe checks if message with tag has been received from src

 BARRIER(name, number)

WAIT_FOR_END(number)

Data Layout and Orchestration

P0

P0

P1

P2

P3

P2

P1

Data partition allocated per processor

Perspective on Parallel Programming - 37 © Muhamed Mudawar, CSE 661

P3

Add ghost rows to hold boundary data

Send edges to neighbors

Receive into ghost rows

Compute as in sequential program

10. procedure Solve()

11. begin

13. int i,j, pid, n’ = n/nprocs, done = 0;

14. float temp, tempdiff, mydiff = 0; /*private variables*/

6. myA malloc(a 2-d array of size [n/nprocs + 2] by n+2);

Equation Solver with Message Passing

15. while (!done) do

16. mydiff = 0; /*set local diff to 0*/

/* Exchange border rows of neighbors into myA[0,*] and myA[n’+1,*]*/

16a. if (pid != 0) then SEND(&myA[1,1],n*sizeof(float),pid-1,ROW);

16b. if (pid != nprocs-1) then

SEND(&myA[n’,1],n*sizeof(float),pid+1,ROW);

16c. if (pid != 0) then RECEIVE(&myA[0,1],n*sizeof(float),pid-1,ROW);
16d. if (pid != nprocs-1) then

RECEIVE(&myA[n’+1,1],n*sizeof(float), pid+1,ROW);
 /*f h f (h t) */

/*initialize my rows of A, in an unspecified way*/7. initialize(myA)

Perspective on Parallel Programming - 38 © Muhamed Mudawar, CSE 661

17. for i 1 to n’ do /*for each of my (nonghost) rows*/

18. for j 1 to n do /*for all nonborder elements in that row*/

19. temp = myA[i,j];

20. myA[i,j] = 0.2 * (myA[i,j] + myA[i,j-1] + myA[i-1,j] +

21. myA[i,j+1] + myA[i+1,j]);

22. mydiff += abs(myA[i,j] - temp);
23. endfor

24. endfor

/*communicate local diff values and determine if done; can be replaced by reduction and broadcast*/

25a. if (pid != 0) then /*process 0 holds global total diff*/

25b. SEND(mydiff,sizeof(float),0,DIFF);

RECEIVE(i (i) DONE)

Equation Solver with Message Passing

25c. RECEIVE(done,sizeof(int),0,DONE);

25d. else /*pid 0 does this*/

25e. for i 1 to nprocs-1 do /*for each other process*/

25f. RECEIVE(tempdiff,sizeof(float),*,DIFF);

25g. mydiff += tempdiff; /*accumulate into total*/

25h. endfor

25i if (mydiff/(n*n) < TOL) then done = 1;

25j. for i 1 to nprocs-1 do /*for each other process*/

Perspective on Parallel Programming - 39 © Muhamed Mudawar, CSE 661

25k. SEND(done,sizeof(int),i,DONE);

25l. endfor

25m. endif

26. endwhile

27. end procedure

Notes on Message Passing Program
 Use of ghost rows
 Receive does not transfer data, send does

 Unlike Shared Memory which is usually receiver-initiated (load fetches data)

 C i i d b i i f i i d i i i Communication done at beginning of iteration - deterministic

 Communication in whole rows, not element at a time

 Core similar, but indices/bounds in local rather than global address space

 Synchronization through sends and receives
 Update of global diff and event synchronization for done condition
 Mutual exclusion: only one process touches data
 Can implement locks and barriers with messages

Perspective on Parallel Programming - 40 © Muhamed Mudawar, CSE 661

 Can use REDUCE and BROADCAST library calls to simplify code
/*communicate local diff values and determine if done, using reduction and broadcast*/

25b. REDUCE (0,mydiff,sizeof(float),ADD);
25c. if (pid == 0) then
25i. if (mydiff/(n*n) < TOL) then done = 1;
25k. endif
25m. BROADCAST (0,done,sizeof(int),DONE);

Send and Receive Alternatives
Send/Receive

Synchronous Asynchronous

 Synchronous Send returns control to calling process only when
 Corresponding synchronous receive has completed successfully

 Synchronous Receive returns control when
 Data has been received into destination process’s address space
 Acknowledgement to sender

(can easily deadlock)

Blocking Non-blocking

Perspective on Parallel Programming - 41 © Muhamed Mudawar, CSE 661

 Blocking Asynchronous Send returns control when
 Message has been taken from sending process buffer and is in care of system
 Sending process can resume much sooner than a synchronous send

 Blocking Asynchronous Receive returns control when
 Similar to synchronous receive, but No acknowledgment to sender

Send and Receive Alternatives – cont’d
 Non-blocking Asynchronous Send returns control immediately

 Non-blocking Receive returns control after posting intent to receive

 Actual receipt of message is performed asynchronously Actual receipt of message is performed asynchronously

 Separate primitives to probe the state of non-blocking send/receive

 Semantic flavors of send and receive affect …

 When data structures or buffers can be reused at either end

 Event synchronization (non-blocking send/receive have to use probe before data)

 Ease of programming and performance

 Sending/receiving non-contiguous regions of memory

Perspective on Parallel Programming - 42 © Muhamed Mudawar, CSE 661

 Sending/receiving non contiguous regions of memory

 Stride, Index arrays (gather on sender and scatter on receiver)

 Flexibility in matching messages

 Wildcards for tags and processes

Orchestration: Summary

 Shared address space
 Shared and private data explicitly separate

Communication implicit in access patternsCommunication implicit in access patterns

No correctness need for data distribution

 Synchronization via atomic operations on shared data

 Synchronization explicit and distinct from data communication

 Message passing
Data distribution among local address spaces needed

N li i h d (i li i i i i)

Perspective on Parallel Programming - 43 © Muhamed Mudawar, CSE 661

No explicit shared structures (implicit in communication patterns)

Communication is explicit

 Synchronization implicit in communication

Mutual exclusion when one process modifies global data

Grid Solver Program: Summary

Shared Address Message Passing

Yes NoExplicit global data structure?

 Decomposition and Assignment

Yes No

Implicit Explicit

Explicit Implicit

Assignment independent of data layout?

Communication

Synchronization

Explicit replication of border rows? No Yes

Perspective on Parallel Programming - 44 © Muhamed Mudawar, CSE 661

 Decomposition and Assignment
 Similar in shared memory and message-passing

 Orchestration is different
Data structures, data access/naming, communication, synchronization

