
CSE 661 – Parallel and Vector Architectures Slide 1

Message-Passing Computing

Message Passing Interface (MPI)

CSE 661 – Parallel and Vector Architectures Slide 2

Message-Passing Programming using
User-level Message-Passing Libraries

Two primary mechanisms needed:

1. A method of creating separate processes for
execution on different computers

2. A method of sending and receiving messages

CSE 661 – Parallel and Vector Architectures Slide 3

Single Program Multiple Data (SPMD) model
.

Source
file

Executables

Processor 0 Processor p - 1

Compile to suit
processor

Basic MPI way

Different processes merged into one program. Control
statements select different parts for each processor to
execute. All executables started together - static process
creation

CSE 661 – Parallel and Vector Architectures Slide 4

Multiple Program Multiple Data (MPMD) Model

Process 1

Process 2spawn();

Time

Start execution
of process 2

Separate programs for each processor. One processor
executes master process. Other processes started from within
master process - dynamic process creation.

CSE 661 – Parallel and Vector Architectures Slide 5

Basic “point-to-point”
Send and Receive Routines

Process 1 Process 2

send(&x, 2);

recv(&y, 1);

x y

Movement
of data

Generic syntax (actual formats later)

Passing a message between processes using
send() and recv() library calls:

CSE 661 – Parallel and Vector Architectures Slide 6

Synchronous Message Passing

Routines that actually return when message transfer
completed

Synchronous send routine
• Waits until complete message can be accepted by the

receiving process before sending the message
Synchronous receive routine

• Waits until the message it is expecting arrives

Synchronous routines intrinsically perform two actions:
They transfer data and they synchronize processes

CSE 661 – Parallel and Vector Architectures Slide 7

Synchronous send() and recv()
using 3-way protocol

Process 1 Process 2

recv();Suspend process

Both continue

Time
Acknowledgment

Message

(a) When send() occurs before recv()

Process 1 Process 2

Suspend
process

Time

MessageBoth processes
continue

(b) When recv() occurs before send()

Request to send

Request to send

Acknowledgment
recv();

send();

send();

CSE 661 – Parallel and Vector Architectures Slide 8

Asynchronous Message Passing

• Routines that do not wait for actions to complete before returning.
Usually require local storage for messages.

• More than one version depending upon the actual semantics for
returning.

• In general, they do not synchronize processes but allow processes
to move forward sooner. Must be used with care.

CSE 661 – Parallel and Vector Architectures Slide 9

MPI Definitions of Blocking
and Non-Blocking

• Blocking - return after their local actions complete, though the
message transfer may not have been completed.

• Non-blocking - return immediately.

Assumes that data storage used for transfer not modified by
subsequent statements prior to being used for transfer, and it is left
to the programmer to ensure this.
These terms may have different interpretations in other systems.

CSE 661 – Parallel and Vector Architectures Slide 10

How message-passing routines return
before message transfer completed

Process 1 Process 2

send();

recv();

Message
buffer

Read buffer

Continue
process

Time

Message buffer needed between source and
destination to hold message:

CSE 661 – Parallel and Vector Architectures Slide 11

Asynchronous routines changing to
synchronous routines

• Once local actions completed and message is safely
on its way, sending process can continue with
subsequent work.

• Buffers only of finite length and a point could be
reached when send routine held up because all
available buffer space exhausted.

• Then, send routine will wait until storage becomes re-
available - i.e then routine behaves as a synchronous
routine.

CSE 661 – Parallel and Vector Architectures Slide 12

Message Tag

• Used to differentiate between different types of
messages being sent.

• Message tag is carried within message.

• If special type matching is not required, a wild card
message tag is used with recv(), so that it will match
with any send().

CSE 661 – Parallel and Vector Architectures Slide 13

Message Tag Example
To send a message, x, with message tag 5 from
a source process, 1, to a destination process, 2,
and assign to y:

Process 1 Process 2

send(&x, 2, 5);

recv(&y, 1, 5);

x y

Movement
of data

Waits for a message from process 1 with a tag of 5

CSE 661 – Parallel and Vector Architectures Slide 14

“Group” message passing routines

Have routines that send message(s) to a group of
processes or receive message(s) from a group of
processes

Higher efficiency than separate point-to-point routines,
although not absolutely necessary depending on
implementation

CSE 661 – Parallel and Vector Architectures Slide 15

Broadcast
Sending same message to all processes including the
root (the sender) process
Multicast - sending same message to a defined group
of processes

bcast();

buf

bcast();

data

bcast();

datadata

Process 0 Process p - 1Process 1

Action

Code

CSE 661 – Parallel and Vector Architectures Slide 16

Scatter
Sending each element of an array in root process
to a separate process. Contents of ith location of
array sent to ith process.

scatter();

buf

scatter();

data

scatter();

datadata

Process 0 Process p - 1Process 1

Action

Code

CSE 661 – Parallel and Vector Architectures Slide 17

Gather
Having one process collect individual values
from a set of processes.

gather();

buf

gather();

data

gather();

datadata

Process 0 Process p - 1Process 1

Action

Code

CSE 661 – Parallel and Vector Architectures Slide 18

Reduce

reduce();

buf

reduce();

data

reduce();

datadata

Process 0 Process p - 1Process 1

+

Gather operation combined with specified
arithmetic/logical operation.

Alternative Action: values could be gathered and
then added together by root

Action

Code

CSE 661 – Parallel and Vector Architectures Slide 19

MPI (Message Passing Interface)
• Message passing library standard developed by

group of academics and industrial partners to foster
more widespread use and portability

• Defines routines, not implementation
MPI 1 defined 120+ functions (MPI 2 added more)
Only need few (about 20) to write programs
All MPI routines start with the prefix MPI_ (C version)

• Several free implementations exist
MPICH Argonne National Laboratory
LAM/MPI Ohio Supercomputing Center

CSE 661 – Parallel and Vector Architectures Slide 20

MPI Process Creation and Execution

• Purposely not defined - Will depend upon
implementation.

• Only static process creation supported in MPI version 1.
All processes must be defined prior to execution and
started together.

• Originally SPMD model of computation.

• MPMD also possible with static creation - each program
to be started together specified.

CSE 661 – Parallel and Vector Architectures Slide 21

Unsafe message passing - Example

lib()

lib()

send(…,1,…);

recv(…,0,…);

Process 0 Process 1

send(…,1,…);

recv(…,0,…);

(a) Intended Behavior

(b) Runtime Behavior
might mix user with
library messages

lib()

lib()

send(…,1,…);

recv(…,0,…);

Process 0 Process 1

send(…,1,…);

recv(…,0,…);

Destination

Source

CSE 661 – Parallel and Vector Architectures Slide 22

MPI Solution: Communicators

• Defines a communication domain - a set of
processes that are allowed to communicate between
themselves.

• Communication domains of libraries can be
separated from that of a user program.

• Used in all point-to-point and collective MPI
message-passing communications.

CSE 661 – Parallel and Vector Architectures Slide 23

Communicators

• Defines scope of a communication operation.

• Processes have ranks associated with communicator.

• Initially, all processes enrolled in a “universe” called
MPI_COMM_WORLD, and each process is given a
unique rank number from 0 to p - 1, with p processes.

• Other communicators can be established for groups of
processes.

CSE 661 – Parallel and Vector Architectures Slide 24

Default Communicator
MPI_COMM_WORLD

• Exists as first communicator for all processes
existing in the application.

• A set of MPI routines exists for forming
communicators.

• Processes have a “rank” in a communicator.

CSE 661 – Parallel and Vector Architectures Slide 25

Using SPMD Computational Model
main (int argc, char *argv[]) {

MPI_Init(&argc, &argv);
.
.

MPI_Comm_rank(MPI_COMM_WORLD, &myrank); /*find process rank */

if (myrank == 0)
master();

else
slave();
.
.

MPI_Finalize();
}

where master() and slave() are to be executed by master
process and slave processes, respectively.

CSE 661 – Parallel and Vector Architectures Slide 26

Initializing and Ending MPI

• Initialize MPI Environment
MPI_Init(&argc, &argv)
Before calling any MPI function

argc is the argument count (main function)
argv is the argument vector (main function)

• Terminate MPI execution environment
MPI_Finalize()

CSE 661 – Parallel and Vector Architectures Slide 27

MPI Point-to-Point Communication

• Uses send and receive routines with
message tags as well as communicator

• Wild card message tags available

CSE 661 – Parallel and Vector Architectures Slide 28

MPI Blocking Routines

• Return when “locally complete” - when location
used to hold message can be used again or
altered without affecting message being sent.

• Blocking send will send message and return -
does not mean that message has been
received, just that process free to move on
without adversely affecting message.

CSE 661 – Parallel and Vector Architectures Slide 29

Parameters of Blocking Send

MPI_Send(buf, count, datatype, dest, tag, comm)

void * buf Address of send buffer

int count Number of items to send

MPI_Datatype datatype Datatype of each item

int dest Rank of destination process

int tag Message tag

MPI_Comm comm Communicator

CSE 661 – Parallel and Vector Architectures Slide 30

Parameters of Blocking Receive

MPI_Recv(buf, count, datatype, src, tag, comm, status)

void * buf Address of receive buffer (loaded)

int count Max number of items to receive

MPI_Datatype datatype Datatype of each item

int src Rank of source process

int tag Message tag

MPI_Comm comm Communicator

MPI_Status * status Status after operation (returned)

CSE 661 – Parallel and Vector Architectures Slide 31

Wildcards and Status in MPI_Recv

• MPI_ANY_SOURCE matches any source

• MPI_ANY_TAG matches any tag

• Status is a return value

status -> MPI_SOURCE rank of source
status -> MPI_TAG tag of message
status -> MPI_ERROR potential errors

CSE 661 – Parallel and Vector Architectures Slide 32

Example
To send an integer x from process 0 to process 1

int myrank;
int tag = 0;
int x;
MPI_Comm_rank(MPI_COMM_WORLD, &myrank); /* find rank */

if (myrank == 0) {
/* input some value for x */
MPI_Send(&x, 1, MPI_INT, 1, tag, MPI_COMM_WORLD);

}
else if (myrank == 1) {

MPI_Recv(&x, 1, MPI_INT, 0, tag, MPI_COMM_WORLD, status);
. . .

}

CSE 661 – Parallel and Vector Architectures Slide 33

Some Predefined MPI Datatypes

doubleMPI_DOUBLE
floatMPI_FLOAT
unsigned intMPI_UNSIGNED
unsigned short intMPI_UNSIGNED_SHORT
unsigned charMPI_UNSIGNED_CHAR
signed intMPI_INT
signed short intMPI_SHORT
signed charMPI_CHAR

C datatypeMPI datatype

CSE 661 – Parallel and Vector Architectures Slide 34

Process Rank and Group Size

MPI_Comm_rank returns rank of calling process

MPI_Comm_size returns size of group within comm

MPI_Comm comm communicator

int * rank process rank (returned)

int * size size of group (returned)

MPI_Comm_rank(comm, rank)

MPI_Comm_size(comm, size)

CSE 661 – Parallel and Vector Architectures Slide 35

MPI Non-Blocking Routines

• Non-blocking send - MPI_Isend() - will return
“immediately” even before source location is
safe to be altered.

• Non-blocking receive - MPI_Irecv() - will
return even if no message to accept.

• The ‘I’ in ‘Isend’ and ‘Irecv’ means Immediate

CSE 661 – Parallel and Vector Architectures Slide 36

Non-Blocking Routine Formats

MPI_Isend(buf, count, datatype, dest, tag, comm, request)

MPI_Irecv(buf, count, datatype, src, tag, comm, request)

void * buf Address of buffer

int count number of items to send/receive

MPI_Datatype datatype Datatype of each item

int dest/src Rank of destination/source process

int tag Message tag

MPI_Comm comm Communicator

MPI_Request * request Request handle (returned)

CSE 661 – Parallel and Vector Architectures Slide 37

Completion Detection

Completion detected by MPI_Wait() and MPI_Test()

MPI_Wait(request, status)
Wait until operation completes and then return

MPI_Test(request, flag, status)
Test for completion of a non-blocking operation

MPI_Request * request request handle

MPI_Status * status same as return status of MPI_Recv()

int * flag true if operation completed (returned)

CSE 661 – Parallel and Vector Architectures Slide 38

Example
Send an integer x from process 0 to process 1 and allow
process 0 to continue
int myrank;
int tag = 0;
int x;
MPI_Request req;
MPI_Status status;
MPI_Comm_rank(MPI_COMM_WORLD, &myrank); /* find rank */
if (myrank == 0) {

MPI_Isend(&x,1,MPI_INT,1,tag,MPI_COMM_WORLD,&req);
compute();
MPI_Wait(&req, &status);

} else if (myrank == 1) {
MPI_Recv(&x,1,MPI_INT,0,msgtag,MPI_COMM_WORLD,&status);
. . .

}

CSE 661 – Parallel and Vector Architectures Slide 39

Send Communication Modes

• Standard Mode Send - Not assumed that
corresponding receive routine has started. Amount of
buffering not defined by MPI. If buffering provided, send
could complete before receive reached.

• Buffered Mode - Send may start and return before a
matching receive. Necessary to specify buffer space via
routine MPI_Buffer_attach().

• Synchronous Mode - Send and receive can start before
each other but can only complete together.

• Ready Mode - Send can only start if matching receive
already reached, otherwise error. Use with care.

CSE 661 – Parallel and Vector Architectures Slide 40

• Each of the four modes can be applied to both
blocking and non-blocking send routines.

MPI_Send() MPI_Isend() Standard send
MPI_Bsend() MPI_Ibsend() Buffered send
MPI_Ssend() MPI_Issend() Synchronous send
MPI_Rsend() MPI_Irsend() Ready send

• Only the standard mode is available for the blocking
and non-blocking receive routines.

• Any type of send routine can be used with any type of
receive routine.

Send Communication Modes – cont’d

CSE 661 – Parallel and Vector Architectures Slide 41

Collective Communication
Involves set of processes, defined by a communicator.
Message tags not present. Principal collective operations:

MPI_Bcast (buf, count, datatype, root, comm)
Broadcast message from root to all processes in comm and to itself

MPI_Scatter (sendbuf, sendcount, sendtype,
recvbuf, recvcount, recvtype, root, comm)

Scatter a buffer from root in parts to group of processes

MPI_Gather (sendbuf, sendcount, sendtype,
recvbuf, recvcount, recvtype, root, comm)

Gather values for group of processes including root

CSE 661 – Parallel and Vector Architectures Slide 42

Example on MPI_Gather

To gather items from group of
processes into process 0, using
dynamically allocated memory in
root process:

int *buf; /* buffer space is
allocated dynamically */

int data[10]; /* data sent
from all processes */

CSE 661 – Parallel and Vector Architectures Slide 43

Collective Communication – Cont’d

MPI_Alltoall (sendbuf, sendcount, sendtype,
recvbuf, recvcount, recvtype, comm)

Send data from all processes to all processes

MPI_Reduce(sendbuf, recvbuf, count, datatype
operation, root, comm)

Combines values on all processes to a single value at root

MPI_Scan (sendbuf, recvbuf, count, datatype,
operation, comm)

Computes the partial reductions of data on a collection of processes

MPI_Barrier(comm)
Block process until all processes have called it

CSE 661 – Parallel and Vector Architectures Slide 44

#include <mpi.h>
#include <stdio.h>
#include <math.h>
#define MAXSIZE 100000
void main(int argc, char *argv)
{

int myid, numprocs;
int data[MAXSIZE], i, x, low, high, myresult, result;
char fn[255];
char *fp;
MPI_Init(&argc, &argv);
MPI_Comm_size(MPI_COMM_WORLD,&numprocs);
MPI_Comm_rank(MPI_COMM_WORLD,&myid);
if (myid == 0) { /* Open input file and initialize data */

strcpy(fn, getenv(“HOME”));
strcat(fn, ”/MPI/rand_data.txt”);
if ((fp = fopen(fn, ”r”)) == NULL) {

printf(“Can’t open the input file: %s\n\n”, fn);
exit(1);

}
for(i = 0; i < MAXSIZE; i++) fscanf(fp,”%d”, &data[i]);

}

Sample MPI program

CSE 661 – Parallel and Vector Architectures Slide 45

/* broadcast data */

MPI_Bcast(data, MAXSIZE, MPI_INT, 0, MPI_COMM_WORLD);

/* Add my portion of data */

x = n/nproc;

low = myid * x;

high = low + x;

for(i = low; i < high; i++)

myresult += data[i];

printf(“I got %d from %d\n”, myresult, myid);

/* Compute global sum */

MPI_Reduce(&myresult, &result, 1, MPI_INT, MPI_SUM, 0,

MPI_COMM_WORLD);

if (myid == 0) printf(“The sum is %d.\n”, result);

MPI_Finalize();

}

Sample MPI program – cont’d

Can you guess what this program is doing?

CSE 661 – Parallel and Vector Architectures Slide 46

Visualization Tools

Programs can be watched as they are executed in a space-time
diagram (or process-time diagram):

Process 1

Process 2

Process 3

TimeComputing
Waiting
Message-passing system routine
Message

CSE 661 – Parallel and Vector Architectures Slide 47

Evaluating Programs Empirically
Measuring Execution Time

To measure the execution time between two points in
the code, we might have a construction such as

.
double t1 = MPI_Wtime(); /* start timer */

.

.
double t2 = MPI_Wtime(); /* stop timer */

.
elapsed_time = t2 - t1; /* in seconds */
printf(“Elapsed time = %5.2f seconds”, elapsed_time);

MPI provides the routine MPI_Wtime()
Returns time in seconds since an arbitrary time in past

CSE 661 – Parallel and Vector Architectures Slide 48

Step by Step Instructions

for Compiling and Executing

Programs Using MPICH

(Class Demo)

