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Divergent Parallel Architectures

 Parallel architectures were tied closely to programming models 

 Divergent architectures, with no predictable pattern for growth

Application Software

System
Software SIMD

Systolic
Arrays

Architecture
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 Uncertainty of direction paralyzed parallel software development

Message Passing

Shared MemoryDataflow



Plan of this Presentation

 Look at major programming models
 From where they came? what do they provide?

 Understand the diversity of parallel architectures

 Understand how parallel architectures have converged

 Understand fundamental design issues

SIMDSystolic
Arrays Generic

A hi
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Message Passing

Shared Memory

Dataflow

Architecture

Flynn’s Taxonomy

 SISD (Single Instruction Single Data)
Uniprocessors

MISD (M lti l I t ti Si l D t )MISD (Multiple Instruction Single Data)
 Single data stream operated by successive functional units

 SIMD (Single Instruction Multiple Data)
 Instruction stream executed by multiple processors on different data
 Simple programming model, low overhead

 Example: Vector Processor

MIMD (M lti l I t ti M lti l D t ) i th t l
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MIMD (Multiple Instruction Multiple Data) is the most general
 Flexibility for parallel applications and multi-programmed systems 
 Processors can run independent processes or applications

 Processors can also run threads belonging to one parallel application

Uses off-the-shelf microprocessors and components



Major MIMD Styles
 Symmetric Multiprocessors (SMP)

 Main memory is shared and equally accessible by all processors

 Called also Uniform Memory Access (UMA) Called also Uniform Memory Access (UMA)

 Bus based or interconnection network based

 Distributed memory multiprocessors
 Distributed Shared Memory (DSM) multiprocessors

 Distributed memories are shared and can be accessed by all processors

 Non-uniform memory access (NUMA)

 Latency varies between local and remote memory access
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 Latency varies between local and remote memory access

 Message-Passing multiprocessors, multi-computers, and clusters

 Distributed memories are NOT shared

 Each processor can access its own local memory

 Processors communicate by sending and receiving messages

Layers of Abstraction

CAD

Multiprogramming Shared
address

Message
passing

Data
parallel

Database Scientific modeling Parallel applications

Programming models

Communication abstraction
User/system boundary

Compilation
or library

Operating systems support

H d / ft b d
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Communication hardware

Physical communication medium

Hardware/software boundary



Programming Model

 Concepts that programmers use in coding applications
Specifies parallelism

How tasks cooperate and coordinate their activitiesHow tasks cooperate and coordinate their activities

Specifies communication and synchronization operations

Multiprogramming
No communication or synchronization at the program level

 Shared memory
Shared address space is used for communication and synchronization

 i
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Message passing
Explicit messages are sent and received, explicit point to point

 Data parallel
Operations are performed in parallel on all elements of a data structure

Shared Memory Architecture
 Any processor can directly reference any physical memory

 Any I/O controller to any physical memory

 Operating system can run on any processor
OS uses shared memory to coordinate

 Communication occurs implicitly as result of loads and stores

Wide range of scale
Few to hundreds of processors

Memory may be physically Processor

Processor

Processor
Processor
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distributed among processors

 History dates to early 1960s

Shared Physical
Memory

Processor

I/O I/O

I/O



Shared Memory Organizations
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$

Interconnection network

$
Mem Mem

Distributed Shared Memory (NUMA)

$ $

Mem I/O devices

Bus-based Shared Memory

Bus-Based Symmetric Multiprocessors

 Symmetric access to main memory from any processor

 Dominate the server market
Building blocks for larger systems

 Attractive as throughput servers and for parallel programs

P1

M ltil l

Pn

Multilevel

Uniform access via loads/stores

Automatic data movement and 
coherent replication in caches

Cheap and powerful extension to 
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I/O systemMain memory

Bus

Multilevel
Cache

Multilevel
Cacheuniprocessors

Key is extension of memory 
hierarchy to support multiple 
processors



Shared Address Space Programming Model

 A process is a virtual address space
With one or more threads of control

 P t f th i t l dd i h d b Part of the virtual address space is shared by processes
Multiple threads share the address space of a single process 

 All communication is
through shared memory
Achieved by loads and stores

Writes by one process/thread
are visible to others

P1

P2

Pn

P0

Load

Pn pr i v at e

Virtual address spaces for a
collection of processes communicating
via shared addresses

Machine physical
address space

Common physical
addresses
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are visible to others

 Special atomic operations
for synchronization

OS uses shared memory
to coordinate processes

St or e

P0

P0 pr i v at e

P1 pr i v at e

P2 pr i v at e
Shared portion
of address space

Private portion
of address space

Engineering: SUN Enterprise
CPU/mem
cardsP
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 CPU/Mem cards and I/O cards
16 cards of either type

Gigaplane bus (256 data, 41 addr ess, 83 MHz)
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All memory accessed over bus

 Symmetric multiprocessor, symmetric access to all memory locations

Highly pipelined memory bus, 2.5 GB/sec

Two UltraSparc processors per card, each with level-1 and level-2 caches

S S S

2 
F

10



Medium and Large Scale Multiprocessors

Interconnection Network

Interconnection Network

M M M° ° °

 Problem is interconnect: high cost (crossbar) or bandwidth (bus)
 Centralized memory or uniform memory access (UMA) – Less common today
 Latencies to memory uniform, but uniformly large

° ° °

Distributed Shared Memory
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 Interconnection network: crossbar or multi-stage

 Distributed shared memory (DSM) or non-uniform memory access (NUMA)
 Distributed memory forms one global shared physical address space
 Access to local memory is faster than access to remote memory

 Caching shared (particularly nonlocal) data is an issue

P

$

Exter nal I/O

Mem

Engineering: Cray T3E

SwitchX

Z

Mem
ctrl

and NI

Y

 Scales up to 1024 processors

 Supports a global shared address space with non-uniform memory access 
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 Each node contains Alpha processor, memory, network interface and switch

 Interconnection network is organized as a 3D cube with 650 MB/s links

 Memory controller generates request message for non-local references

 No hardware mechanism for cache coherence – Remote data is not cached



Message Passing Architectures 

 Complete computer as a building block
 Includes processor, memory, and I/O system

 E i t b ild d l th

Interconnection Network

 Easier to build and scale than
shared memory architectures

 Communication via explicit I/O operations
 Communication integrated at I/O level, Not into memory system

Much in common with networks of workstations
 However, tight integration between processor and network

° ° °M
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$ M

P

$ M

P

$
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 Network is of higher capability than a local area network

 Programming model
 Direct access only to local memory (private address space) 

 Communication via explicit send/receive messages (library or system calls)

Message-Passing Abstraction

Address X
Send Q, X, t 

Address Y

Local process

Process P Process Q

Receive P, Y, t 

 Send specifies receiving process and buffer to be transmitted

 Receive specifies sending process and buffer to receive into

 Optional tag on send and matching rule on receive
Matching rule: match a specific tag t or any tag

MatchLocal process 
address space

Local process 
address space
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 Combination of send and matching receive achieves …
Pairwise synchronization event

Memory to memory copy of message

 Overheads: copying, buffer management, protection



Variants of Send and Receive

 Parallel programs using send and receive are quite structured
Most often, all nodes execute identical copies of a program

 Processes can name each other using a simple linear ordering Processes can name each other using a simple linear ordering

 Blocking send:
 Sender sends a request and waits until the reply is returned

 Non-blocking send:
 Sender sends a message and continues without waiting for a reply

 Blocking receive:
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Receiver blocks if it tries to receive a message that has not arrived

 Non-blocking receive:
Receiver simply posts a receive without waiting for sender

Requires completion detection

100101

Evolution of Message-Passing Machines

Early machines: FIFO on each link
Hardware close to programming model 

Synchronous send/receive operations

000001

010011

110111

Synchronous send/receive operations

Topology central (hypercube algorithms)
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CalTech Cosmic Cube (Seitz), 1981
64 Intel 8086/87 processors
6-dimensional hypercube



Diminishing Role of Topology

 Any-to-any pipelined routing
 Better performance than store&forward

 Node network interface dominates Node-network interface dominates 
communication time

 Shift to general links
 DMA, enabling non-blocking operations

 Non-blocking send
 Sender initiates send and continues 

 Data is buffered by system at destination 

Intel iPSC (1985)  iPSC/860 (1990)
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until receive

 Simplifies programming

 Richer design space of interconnect
 Grids, Hypercubes, etc.

Intel Paragon (1992)

i860

L1 $

i860

L1 $

Intel
Paragon
node

Memory bus (64-bit, 50 MHz)

NI

DMA

Driver

Mem
ctrl

4-way
interleaved

DRAM

8 bits

Sandia’s Intel Paragon XP/S-based SuperComputer

Each card is an SMP with two or more 
i860 processors and a network interface
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8 bits,
175 MHz,
bidir ectional

2D grid network
with processing node
attached to every switch

i860 processors and a network interface 
chip connected to the cache-coherent 
memory bus.

Each node has a DMA engine to transfer 
contiguous chunks of data to and from 
the network at a high rate.



IBM SP (1994 – 2002)
 Made out of essentially complete 

RS6000 workstations

 Packaged workstations into g
standing racks

 Network interface card connected 
to I/O bus
Contains drivers for the actual link

Memory to buffer message data

DMA engine

 i860 processor to move data 

Memory bus

MicroChannel bus

IBM SP-2 node

L2 $

Power 2
CPU

Memory
contr oller

4-way
interleaved

DRAM
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p
between host and network

 Network
Butterfly-like structure

Cascaded 8 × 8 crossbar switches

I/O

i860 NI

DMA

D
R

A
M

NIC

Toward Architectural Convergence

 Evolution and role of software has blurred boundary
 Send/receive supported on shared memory machines via shared buffers
 Global address space on message passing using process and local address Global address space on message passing using process and local address
 Shared virtual address space (page level) on message passing architectures

 Hardware organization converging too
 Tighter NI integration even for message passing

Lower latency, higher bandwidth

 Remote memory access in shared memory converted to network messages

 Even clusters of workstations/SMPs are parallel systems
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p y
 Emergence of fast system area networks (SAN)

 Programming models distinct, but organizations converging
 Nodes connected by general network and communication assists
 Implementations also converging, at least in high-end machines



Data Parallel Systems
 Programming model

Operations performed in parallel on each element of data structure

 Logically single thread of control, performs sequential or parallel steps

Contr ol
processor

 Logically single thread of control, performs sequential or parallel steps

Conceptually, a processor associated with each data element 

 Architectural model: Single Instruction Multiple Data (SIMD)
Array of many simple, cheap processors with little memory to each
 Processors don’t sequence through instructions

Attached to a control processor that issues instructions

 Specialized and general communication
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PE PE PE

PE PE PE

PE PE PE

  

p g

Cheap global synchronization

 Original motivations
 Matches important scientific computations

 Communication is often with neighboring elements

Engineering: The Connection Machine
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(Tucker, IEEE Computer, August 1988)



Evolution and Convergence

 Rigid control structure (SIMD in Flynn’s taxonomy)
 SISD = uniprocessor, MIMD = multiprocessor

 Replaced by vectors in mid 1970s Replaced by vectors in mid-1970s
More flexible w.r.t. memory layout and easier to manage

 Revived in mid-1980s when 32-bit datapath slices just fit on chip
 Other reasons for demise

 Simple, regular applications have good locality, can do well anyway
 Loss of applicability due to hardwiring data parallelism
MIMD machines as effective for data parallelism and more general
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MIMD machines as effective for data parallelism and more general

 Programming model evolved to SPMD (Single Program Multiple Data)

Contributes need for fast global synchronization
 Structured global address space
 Implemented with either shared memory or message passing

Evolution of Connection Machine: CM-5

 Repackaged 
SparcStationSparcStation
 4 per board

 Fat-Tree network

 Control network for 
global synchronization

 Supports data parallel 
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and message passing 
programming models



Dataflow Architectures

Represent computation as a 
graph of essential dependences

Node execution activated by

1 b

+  ´

c e

(b +1) ´ (b )Node execution activated by 
availability of operands

 Tokens (messages) carry data, 
tag, and instruction address

 Tag compared with others in 
matching store; match fires 
execution

Graph can have multiple

a

+

´

´

d

f

Dataflow graph

f = a ´ d

Network

Token
store

Program
store

a = (b +1) ´ (b  c)
d = c ´ e
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Graph can have multiple 
dynamic activations

Ability to name operations

 Synchronization and dynamic 
scheduling at each node

Waiting
Matching

Instruction
fetch

Execute

Token queue

Form
token

Network

Network

Evolution and Convergence

 Problems
Operations have locality across them, useful to group together
Handling complex data structures like arraysHandling complex data structures like arrays
Complexity of matching store and memory units
 Expose too much parallelism (?)

 Converged to use conventional processors and memory
 Support for large, dynamic set of threads to map to processors
 Typically shared address space as well
 Separation of programming model from hardware (like data-parallel)
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p p g g ( p )

 Lasting contributions
 Integration of communication with thread (handler) generation
 Tightly integrated communication and fine-grained synchronization
Remains as a useful concept for compilers and software



Systolic Architectures

 Special purpose architectures driven by advances in VLSI
 Implement algorithms directly on chips connected in regular pattern 

R l i l i h f l i lReplace single processor with array of regular processing elements

Orchestrate data flow for high throughput with less memory access

 Diff t f i li i

M

PE

M

PE PE PE
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 Different from pipelining
Nonlinear array structure, multi-direction data flow, each PE may have 

(small) local instruction and data memory

 Different from SIMD: each PE may do something different

Example of a Systolic Array Computation
y(i) = w1 × x(i) + w2 × x(i + 1) + w3 × x(i + 2) + w4 × x(i + 3)

x8
x7

x6
x5

x4
x3

x2
x1

 Practical realizations (e.g. iWARP) use quite general processors

 Enable variety of algorithms on same hardware

y3 y2 y1
w4

x

w

w3 w2 w1

xin

yin

xout

yout

xout = x

yout = yin + w × xin
x = xin

Example:
1-D convolution
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y g

But dedicated interconnect channels

 Data transfer directly from register to register across channel

Communication patterns

 Regular and highly localized



Convergence: Generic Parallel Architecture
 Generic modern multiprocessor

Collection of essentially complete computers

 Node
° ° °

Network

 Node
One or more processors
Memory system plus communication assist
Network interface and communication controller

 Scalable network
 Separation of programming model from hardware structure

But programming model place some requirements on network and CA

Mem

P

$

Communication
assist (CA)

Diversity and Convergence of Parallel Architectures - 31 Muhamed Mudawar - CSE 661

p g g p q
What operations should be supported, how efficient, etc.
 Shared memory: access to and caching of remote and shared memory
 Message Passing: quick message initiation and response to incoming ones
 Data Parallel and Systolic: emphasis on fast global synchronization
 Dataflow: fast dynamic scheduling based on incoming messages

Fundamental Design Issues
 Key concepts that affect the design of software/hardware layers

Naming: How are logically shared data and/or processes referenced?

Operations: What operations are provided on named objects or data

Ordering: How are accesses to data ordered and coordinated?

Replication: How are data replicated to reduce communication?

Communication Cost and Performance:

 Latency: time taken to complete an operation

 Bandwidth: rate of performing operations
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 Cost: impact on execution time of a program

 How to reduce the overhead of initiating a transfer?

 How to overlap useful computation with communication?

 Design issues apply at all layers



Sequential Programming Model
 Naming: can name any variable in virtual address space

Operating System allocates and maps to physical addresses

H d d l iHardware does translation

 Operations: loads and stores

 Ordering: sequential program order

 Replication: transparently done in caches

 Performance:
C il d h d i l i l d
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Compilers and hardware violate sequential program order

 But maintain dependences to ensure correctness

Compiler: instruction reordering and register allocation

Hardware: out of order execution, pipeline bypassing, write buffers

Shared Address Programming Model
 Naming: any thread can name any variable in shared address space

 Operations: loads, stores, and atomic read-modify-writep , , y

 Ordering: various models, here is a simple one 

Within a process/thread: sequential program order

Across threads: some interleaving (as in time-sharing)

No assumption is made on relative thread speed
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Additional ordering through synchronization

Again, compilers/hardware can violate sequential ordering

But without violating dependences and memory access ordering requirements



Synchronization in Shared Address
 Required when implicit ordering is not enough

Mutual exclusion (locks)
O i h d d b f d b l h d iOperations on shared data can be performed by only one thread at a time

 Similar to a room that only one person can enter at a time

No required ordering: threads can enter in any order

 Serialization of access which degrades performance

 Event synchronization 
 Ordering of events to preserve dependences 
 E l d t f h i ti
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 Example: producer → consumer type of synchronization

 Three main types:
 Point-to-point: involving a pair of threads

 Global: involving all threads

 Group: involving a subset of threads

Message Passing Programming Model
 Naming: processes can name other processes

No shared address space but a named process space

 O ti li i i i h h d d i Operations: explicit communication through send and receive
 Send transfers data from private address space to another process

Receive copies data from process to private address space

 Ordering:
 Program order within a process

 Send and receive can provide point to point synch between processes
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Mutual exclusion inherent because there is no shared address space

 Can construct global address space:
 Process number + address within process address space

But no direct operations on these names



Communication and Replication

 Inherently related

 Replication reduces data transfer/communication
 Depending on naming model

 Uniprocessor: caches reduce communication with memory
Coherence problem: multiple copies in memory hierarchy

Message Passing communication and replication
Receive replicates message in the destination address space

Replication is explicit in software
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 Shared Address Space communication and replication
A load brings in data, that can replicate transparently in cache

Hardware caches do replicate blocks in shared physical address space

No explicit renaming, many copies for same name: coherence problem

Linear Model of Data Transfer Time
 Transfer time (n) = T0 + n/B

 T0 : Startup cost to initiate transfer

 f d ( b f b ) St t tins
fe

r 
tim

e

 n: amount of data (number of bytes)

B: Transfer rate (bytes per second)

 Useful for message passing, memory access, vector operations

 As n increases, bandwidth approaches asymptotic rate B

 Size at half peak bandwidth: half-power point

T B

Number of data items (n)

Startup time

T
ra

n
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n1/2 = T0 B

 But linear model is not enough
When can next transfer be initiated?

Can useful work be overlapped?



Simple Example

 IBM SP-2 with MPI is quoted to have the following:
 Startup time = 35 µs = 35000 ns

 T f t 1 d bl (8 b t ) 230 Transfer rate = 1 double (8 bytes) per 230 ns

Clock cycle time = 4.2 ns

 Normalizing the startup time and transfer rate to clock cycles
 Startup time = 35000 ns / 4.2 ns = 8333 cycles

 Transfer rate = 1 double / 55 cycles

 Conclusions:
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 In many cases, the startup time dominates the communication time

 Startup time cannot be ignored unless n is very large

A lot of computation cycles are needed to hide communication latency

 Linear model is not always accurate due to contention delays

Communication Cost Model

 Communication Time per message = 

Overhead + Occupancy +  Network Delay + Contention

 Overhead: time to initiate the transfer (tell the assist to start)

 Occupancy: time to pass through the slowest component along path

 Occupancy = n /B to transfer n bytes through the slowest component 
that has a bandwidth of B bytes per second.

 Network delay:  sum of delays along the network path

 Contention: time waiting for resource increases communication time Contention: time waiting for resource, increases communication time

 Communication Cost = Frequency×(Communication time – Overlap)

 Overlapping the communication time with useful computation 
reduces the communication cost



Summary of Design Issues

 Functional and performance design issues apply at all layers

 Functional design issues:

Naming, operations, and ordering

 Performance issues:

Organization, latency, bandwidth, overhead, and occupancy

 Replication and communication are deeply related

 Goals of architect:
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Design against frequency and type of operations at communication 
abstraction.

Hardware/software tradeoffs – what primitives at the hardware layer, 
what primitives at the software layer.


