COE 502 / CSE 661

Parallel Processing Architectures

Quiz 4 on Interconnection Networks: Monday, December 26, 2011

SOLUTION

Suppose the links are 2-byte wide and operating at 500 MHz in an interconnection network where the average distance is $\log_2 N$ for N nodes, and the switch delay is 3 cycles to advance the first 2 bytes (header) of a packet, containing routing information, inside a switch from input to output port.

a) (5 pts) Compute the average unloaded network latency for 150-byte packets and N = 16 nodes under store-and-forward routing.

Average $h = \log_2 16 = 4$ hops, link bandwidth b = 2 byte*500 MHz = 10^9 byte/sec = 1 byte/ns Average unloaded latency = 4*(150/1 ns + 3*2 ns) = 4*156 ns = 624 ns

b) (4 pts) Repeat for N = 1024 nodes.

Average $h = \log_2 1024 = 10$ hops Average unloaded latency = 10*(150/1 ns + 3*2 ns) = 10*156 ns = 1560 ns

c) (5 pts) Repeat for cut-through routing, and N = 1024 nodes.

Average unloaded latency = 10*(3*2ns) + 150/1 ns = 60+150 = 210 ns

d) (6 pts) Repeat for 1050 byte packets and N = 1024 nodes, for both store-and-forward and cut-through routing.

For store-and-forward: latency = 10*(1050/1 ns + 3*2ns) = 10*1056 = 10560 ns

For cut-through = 10*(3*2ns) + 1050/1ns = 1110 ns