
Homework 3 Solution
CSE 661 - Parallel and Vector Architectures

5.3 (? pts) Given: 50% of instructions are loads and stores
 Private reads = 70%, private writes = 20%, shared reads = 8%, shared writes = 2%
 Cache block size = 16 bytes
 Hit rates: private data = 97%, shared data = 95%, instructions = 98.5%
 Bus has 64 data lines and 32 address lines
 Processor clock twice as fast as that of a bus and CPI = 2.0 without memory penalties
 Memory latency = 2 bus cycles
 Probability of replacing a modified block = 0.3

(a) Write-through caches with write-allocate

Bus cycles for each type of hit and miss (ignoring cycles for cache consistency and bus
contention):

Read miss: 1-cycle address + 2-cycle memory latency (given) + 2-cycle data transfer
16 bytes are transferred with 8 bytes per cycle (64-bit data bus) = 2 bus-cycle transfer
Bus read = 5 bus cycles = 10 CPU cycles

Write miss (write-through + write allocate): 1-cycle address + 2-cycle memory
latency + 2-cycle read + 1-cycle write through = 6 bus cycles = 12 CPU cycles
Write miss is equivalent to a read miss + write through

Read hit: no bus transaction

Write hit (write-through): 1-cycle address overlapped with 1-cycle data transfer
Only word being written is transferred, not entire block
Write hit = 1 bus cycle = 2 CPU cycles.

Average bus cycles to execute 100 instructions

Instruction fetch cycles = 100 * (1 – 0.985) * 5 bus cycles = 7.50 bus cycles
Private data read miss cycles: 50 * 0.70 * (1 – 0.97) * 5 bus cycles = 5.25 bus cycles
Private data write miss cycles: 50 * 0.20 * (1 – 0.97) * 6 bus cycles = 1.80 bus cycles
Private data write hit cycles: 50 * 0.20 * 0.97 * 1 bus cycle = 9.70 bus cycles
Shared data read miss cycles: 50 * 0.08 * (1 – 0.95) * 5 bus cycles = 1.00 bus cycles
Shared data write miss cycles: 50 * 0.02 * (1 – 0.95) * 6 bus cycles = 0.30 bus cycles
Shared data write hit cycles: 50 * 0.02 * 0.95 * 1 bus cycle = 0.95 bus cycles

Total = 26.50 bus cycles = 53 CPU cycles per 100 instructions

Therefore, to execute 100 instructions, we have:
100 * 2 CPI = 200 CPU cycles without considering memory penalties +
53 CPU stall cycles to access memory = 253 cycles
So a single processor uses 53/253 = 20.9% of its time using the bus, or
At most 253/53 = 4.77 truncated to 4 processors can be supported

Prepared by Dr. Muhamed Mudawar – April 16, 2005 Page 1 of 4

(b) Write-back caches:
The write hits take no bus cycles. Each cache miss though has the possibility of a
writeback (the whole cache line must be written back)

Read miss: 1-cycle address + 2-cycle memory latency + 2-cycle transfer = 5 bus cycles
Write miss: 1-cycle address + 2-cycle memory latency + 2-cycle transfer = 5 bus cycles
Writeback: 1-cycle address overlapped with 2-cycle data transfer = 2 bus cycles

Adjusted Read miss with Writeback: 5 + 0.3 * 2 = 5.6 bus cycles
Adjusted Write miss with Writeback: 5 + 0.3 * 2 = 5.6 bus cycles

Average bus cycles to execute 100 instructions:
Instruction fetch cycles = 100 * (1 – 0.985) * 5 bus cycles = 7.50 bus cycles
Private data read miss cycles: 50 * 0.70 * (1 – 0.97) * 5.6 bus cycles = 5.88 bus cycles
Private data write miss cycles: 50 * 0.20 * (1 – 0.97) * 5.6 bus cycles = 1.68 bus cycles
Shared data read miss cycles: 50 * 0.08 * (1 – 0.95) * 5.6 bus cycles = 1.12 bus cycles
Shared data write miss cycles: 50 * 0.02 * (1 – 0.95) * 5.6 bus cycles = 0.28 bus cycles

Total = 16.46 Bus cycles = 32.92 CPU cycles per 100 instructions

Therefore, to execute 100 instructions, we have:
100 * 2 CPI = 200 CPU cycles without considering memory penalties +
32.92 CPU stall cycles to access memory = 232.92 CPU cycles
So a single processor uses 32.92/232.92 = 14.1% of its time using the bus, or
At most 232.92/32.92 = 7.08 truncated to 7 processors can be supported

5.4 (? pts) Given the following cost model:
read/write cache hit = 1 cycle
misses requiring simple transaction on bus (BusUpgr, BusUpd) = 60 cycles
misses requiring whole cache block transfer = 90 cycles

(a) Illinois MESI protocol

Stream 1:

Operation P1 P2 P3 Bus Action Cycles
Read1 E BusRd(~S) 90
Write1 M 1
Read1 M 1
Write1 M 1
Read2 S S BusRd(S), Flush 90
Write2 I M BusUpgr 60
Read2 I M 1
Write2 I M 1
Read3 I S S BusRd(S), Flush 90
Write3 I I M BusUpgr 60
Read3 I I M 1
Write3 I I M 1

 Total 397

Prepared by Dr. Muhamed Mudawar – April 16, 2005 Page 2 of 4

Stream 2:
Operation P1 P2 P3 Bus Action Cycles

Read1 E BusRd(~S) 90
Read2 S S BusRd(S) 90
Read3 S S S BusRd(S) 90
Write1 M I I BusUpgr 60
Write2 I M I BusRdX, Flush 90
Write3 I I M BusRdX, Flush 90
Read1 S I S BusRd(S), Flush 90
Read2 S S S BusRd(S), Flush 90
Read3 S S S 1
Write3 I I M BusUpgr 60
Write1 M I I BusRdX, Flush 90

 Total 841

Stream 3:

Operation P1 P2 P3 Bus Action Cycles
Read1 E BusRd(~S) 90
Read2 S S BusRd(S) 90
Read3 S S S BusRd(S) 90
Read3 S S S 1
Write1 M I I BusUpgr 60
Write1 M I I 1
Write1 M I I 1
Write1 M I I 1
Write2 I M I BusRdX, Flush 90
Write3 I I M BusRdX, Flush 90

 Total 514

(b) Dragon protocol:

Stream 1:

Operation P1 P2 P3 Bus Action Cycles
Read1 E BusRd(~S) 90
Write1 M 1
Read1 M 1
Write1 M 1
Read2 Sm Sc BusRd(S), C2C 90
Write2 Sc Sm BusUpd(S) 60
Read2 Sc Sm 1
Write2 Sc Sm BusUpd(S) 60
Read3 Sc Sm Sc BusRd(S), C2C 90
Write3 Sc Sc Sm BusUpd(S) 60
Read3 Sc Sc Sm 1
Write3 Sc Sc Sm BusUpd(S) 60

 Total 515

Prepared by Dr. Muhamed Mudawar – April 16, 2005 Page 3 of 4

Stream 2:
Operation P1 P2 P3 Bus Action Cycles

Read1 E BusRd(~S) 90
Read2 Sc Sc BusRd(S) 90
Read3 Sc Sc Sc BusRd(S) 90
Write1 Sm Sc Sc BusUpd(S) 60
Write2 Sc Sm Sc BusUpd(S) 60
Write3 Sc Sc Sm BusUpd(S) 60
Read1 Sc Sc Sm 1
Read2 Sc Sc Sm 1
Read3 Sc Sc Sm 1
Write3 Sc Sc Sm BusUpd(S) 60
Write1 Sm Sc Sc BusUpd(S) 60

 Total 573

Stream 3:

Operation P1 P2 P3 Bus Action Cycles
Read1 E BusRd(~S) 90
Read2 Sc Sc BusRd(S) 90
Read3 Sc Sc Sc BusRd(S) 90
Read3 Sc Sc Sc 1
Write1 Sm Sc Sc BusUpd(S) 60
Write1 Sm Sc Sc BusUpd(S) 60
Write1 Sm Sc Sc BusUpd(S) 60
Write1 Sm Sc Sc BusUpd(S) 60
Write2 Sc Sm Sc BusUpd(S) 60
Write3 Sc Sc Sm BusUpd(S) 60

 Total 631

5.10 (? pts) Four-processor bus-based multiprocessor
Each processor executes test&set lock to gain access to a null critical section
Test&set always goes on the bus and it takes the same time as a normal read transaction.
Initial condition: processor1 has the lock and processors 2, 3, 4 are spinning on their
caches waiting for the lock to be released.

Test-and-Test&Set algorithm is used

(a) Best-case number of bus transactions = 7

Trans Action P1 P2 P3 P4 Comment
 S S S S Initial State

1: BusUpgr P1: st loc, #0 M I I I P1 releases lock
2: BusRd, Flush P2: ld reg, loc S S I I P2 reads lock and finds it 0

3: BusUpgr P2: t&s reg, loc I M I I P2 acquires lock
 P2: st loc, #0 I M I I P2 releases – No transaction

4: BusRd, Flush P3: ld reg, loc I S S I P3 reads lock and finds it 0
5: BusUpgr P3: t&s reg, loc I I M I P3 acquires lock

 P3: st loc, #0 I I M I P3 releases – No transaction

Prepared by Dr. Muhamed Mudawar – April 16, 2005 Page 4 of 4

6: BusRd, Flush P4: ld reg, loc I I S S P4 reads lock and finds it 0
7: BusUpgr P4: t&s reg, loc I I I M P4 acquires lock

 P4: st loc, #0 I I I M P4 releases – No transaction

(b) Worst-case number of bus transactions = 15

Transaction Action P1 P2 P3 P4 Comment
 S S S S Initial State

1: BusUpgr P1: st loc, #0 M I I I P1 releases lock
2: BusRd, Flush P2: ld reg, loc S S I I P2 reads lock and finds it 0

3: BusRd P3: ld reg, loc S S S I P3 reads lock and finds it 0
4: BusRd P4: ld reg, loc S S S S P4 reads lock and finds it 0

5: BusUpgr P2: t&s reg, loc I M I I P2 acquires lock
6: BusRdT, Flush P3: t&s reg, loc I S S I P3 fails to acquire lock

7: BusRdT P4: t&s reg, loc I S S S P4 fails to acquire lock
8: BusUpgr P2: st loc, #0 I M I I P2 releases lock

9: BusRd, Flush P3: ld reg, loc I S S I P3 reads lock and finds it 0
10: BusRd P4: ld reg, loc I S S S P4 reads lock and finds it 0

11: BusUpgr P3: t&s reg, loc I I M I P3 acquires lock
12:BusRdT,Flush P4: t&s reg, loc I I S S P4 fails to acquires lock

13: BusUpgr P3: st loc, #0 I I M I P3 releases lock
14: BusRd, Flush P4: ld reg, loc I I S S P4 reads lock and finds it 0

15: BusUpgr P4: t&s reg, loc I I I M P4 acquires lock
 P4: st loc, #0 I I I M P4 releases – No transaction

The assumption here is that a miss on a test&set generates a single BusRdT (Bus Read
for Test&Set) that invalidates other caches (equivalent to Bus read exclusive BusRdX)
when it succeeds, but is equivalent to a Bus Read BusRd when it fails.

(c) Dragon Protocol

Best-case = 7 transactions

Trans Action P1 P2 P3 P4 Comment
 Sm Sc Sc Sc Initial State

1: BusUpd P1: st loc, #0 Sm Sc Sc Sc P1 releases lock
 P2: ld reg, loc Sm Sc Sc Sc P2 reads lock and finds it 0

2: BusUpd P2: t&s reg, loc Sc Sm Sc Sc P2 acquires lock
3: BusUpd P2: st loc, #0 Sc Sm Sc Sc P2 releases lock

 P3: ld reg, loc Sc Sm Sc Sc P3 reads lock and finds it 0
4: BusUpd P3: t&s reg, loc Sc Sc Sm Sc P3 acquires lock
5: BusUpd P3: st loc, #0 Sc Sc Sm Sc P3 releases lock

 P4: ld reg, loc Sc Sc Sm Sc P4 reads lock and finds it 0
6: BusUpd P4: t&s reg, loc Sc Sc Sc Sm P4 acquires lock
7: BusUpd P4: st loc, #0 Sc Sc Sc Sm P4 releases lock

Worst-case = 7 transactions

Prepared by Dr. Muhamed Mudawar – April 16, 2005 Page 5 of 4

Trans Action P1 P2 P3 P4 Comment

 Sm Sc Sc Sc Initial State
1: BusUpd P1: st loc, #0 Sm Sc Sc Sc P1 releases lock

 P2: ld reg, loc Sm Sc Sc Sc P2 reads lock and finds it 0
 P3: ld reg, loc Sm Sc Sc Sc P3 reads lock and finds it 0
 P4: ld reg, loc Sm Sc Sc Sc P4 reads lock and finds it 0

2: BusUpd P2: t&s reg, loc Sc Sm Sc Sc P2 acquires lock
 P3: t&s reg, loc Sc Sm Sc Sc P3 fails to acquires lock
 P4: t&s reg, loc Sc Sm Sc Sc P4 fails to acquires lock

3: BusUpd P2: st loc, #0 Sc Sm Sc Sc P2 releases lock
 P3: ld reg, loc Sc Sm Sc Sc P3 reads lock and finds it 0
 P4: ld reg, loc Sc Sm Sc Sc P4 reads lock and finds it 0

4: BusUpd P3: t&s reg, loc Sc Sc Sm Sc P3 acquires lock
 P4: t&s reg, loc Sc Sc Sm Sc P4 fails to acquires lock

5: BusUpd P3: st loc, #0 Sc Sc Sm Sc P3 releases lock
 P4: ld reg, loc Sc Sc Sm Sc P4 reads lock and finds it 0

6: BusUpd P4: t&s reg, loc Sc Sc Sc Sm P4 acquires lock
7: BusUpd P4: st loc, #0 Sc Sc Sc Sm P4 releases lock

 The assumption here is that test&set generates a bus update transaction when it succeeds

but does nothing when it fails.

Prepared by Dr. Muhamed Mudawar – April 16, 2005 Page 6 of 4

