
 1

COE 308 – Computer Architecture

Term 082 – Spring 2009

Project 2: Pipelined Processor Implementation

Objectives:

 Using the Logisim simulator
 Designing and testing a Pipelined 16-bit processor
 Teamwork

Instruction Set Architecture

In this project, you will design a simple 16-bit RISC processor with seven 16-bit general-purpose
registers: R1 through R7. R0 is hardwired to zero and cannot be written, so we are left with
seven registers. There is also one special-purpose 16-bit register, which is the program counter
(PC). All instructions are 16 bits. There are three instruction formats, R-type, I-type, and J-type
as shown below:

R-type format

5-bit opcode (Op), 2-bit function field (f), and 3-bit register numbers (Rd, Rs, and Rt)

I-type format

5-bit opcode (Op), 5-bit immediate constant and 3-bit register number (Rs and Rt)

J-type format

5-bit opcode (Op) and 11-bit immediate constant

For R-type instructions, Rs and Rt specify the two source register numbers, and Rd specifies the
destination register number. The function field can specify at most four functions for a given
opcode. We can reserve several opcodes for R-type instructions.

For I-type instructions, Rs specifies a source register number, and Rt can be a second source or a
destination register number. The immediate constant is only 5 bits because of the fixed-size
nature of the instruction. The size of the immediate constant is suitable for our uses. The 5-bit
immediate constant can be signed or unsigned depending on the opcode.

For J-type, an 11-bit immediate constant is used for LUI (load upper immediate), J (jump), and
JAL (jump-and-link) instructions.

Immediate11

Op5 Rt3Rs3Rd3

Immediate5 Rt3Rs3

f2

Op5

Op5

 2

Instruction Encoding

Nine R-type instructions, twelve I-type instructions, and three J-type instructions are defined.
These instructions, their meaning, and their encoding are shown below:

Instr Meaning Encoding
AND Reg(Rd) = Reg(Rs) & Reg(Rt) Op = 00000 f = 00 Rd Rs Rt
OR Reg(Rd) = Reg(Rs) | Reg(Rt) Op = 00000 f = 01 Rd Rs Rt
XOR Reg(Rd) = Reg(Rs) ^ Reg(Rt) Op = 00000 f = 10 Rd Rs Rt
NOR Reg(Rd) = ~(Reg(Rs) | Reg(Rt)) Op = 00000 f = 11 Rd Rs Rt
ADD Reg(Rd) = Reg(Rs) + Reg(Rt) Op = 00001 f = 00 Rd Rs Rt
SUB Reg(Rd) = Reg(Rs) – Reg(Rt) Op = 00001 f = 01 Rd Rs Rt
SLT Reg(Rd) = Reg(Rs) signed< Reg(Rt) Op = 00001 f = 10 Rd Rs Rt
SLTU Reg(Rd) = Reg(Rs) unsigned< Reg(Rt) Op = 00001 f = 11 Rd Rs Rt

JR PC = Reg(Rs) Op = 00010 f = 00 000 Rs 000

ANDI Reg(Rt) = Reg(Rs) & Immediate5 Op = 00100 Immediate5 Rs Rt
ORI Reg(Rt) = Reg(Rs) | Immediate5 Op = 00101 Immediate5 Rs Rt
XORI Reg(Rt) = Reg(Rs) ^ Immediate5 Op = 00110 Immediate5 Rs Rt
ADDI Reg(Rt) = Reg(Rs) + Immediate5 Op = 00111 Immediate5 Rs Rt
SLL Reg(Rt) = Reg(Rs) << Immediate4 Op = 01000 Immediate5 Rs Rt
SRL Reg(Rt) = Reg(Rs) zero>> Immediate4 Op = 01001 Immediate5 Rs Rt
SRA Reg(Rt) = Reg(Rs) sign>> Immediate4 Op = 01010 Immediate5 Rs Rt
ROR Reg(Rt) = Reg(Rs) rot>> Immediate4 Op = 01011 Immediate5 Rs Rt
LW Reg(Rt) = Mem(Reg(Rs) + Imm5) Op = 01100 Immediate5 Rs Rt
SW Mem(Reg(Rs) + Imm5) = Reg(Rt) Op = 01101 Immediate5 Rs Rt
BEQ Branch if (Reg(Rs) == Reg(Rt)) Op = 01110 Immediate5 Rs Rt
BNE Branch if (Reg(Rs) != Reg(Rt)) Op = 01111 Immediate5 Rs Rt

LUI R1 = Immediate11 << 5 Op = 10000 Immediate11
J PC = PC + Immediate11 Op = 11110 Immediate11
JAL R7 = PC + 1, PC = PC + Immediate11 Op = 11111 Immediate11

Opcodes 0, 1, and 2 are used for R-type instructions. Opcode 2 is used for the JR (jump register)
instruction. Opcodes 4 through 15 are used for I-type instructions. The 5-bit immediate constant
is zero-extended for ANDI, ORI, and XORI. It is sign-extended for the remaining instructions.
There are three shift and one rotate instruction. To shift or rotate, use the lower 4 bits of
Immediate5 as the shift/rotate amount. There is only one rotate left (ROL) instruction. To rotate
right by n bits, you can rotate left by 16 – n bits, because registers are 16 bits. The Load Upper
Immediate (LUI) is of the J-type to have an 11-bit immediate constant loaded into the upper 11
bits of register R1. The LUI can be combined with ORI to load any 16-bit constant into a
register. Although the instruction set is reduced, it is still rich enough to write useful programs.
We can have procedure calls and returns using the JAL and JR instructions.

 3

Memory

Your processor will have separate instruction and data memories with 216 words each. Each
word is 16 bits or 2 bytes. Memory is word addressable. Only words (not bytes) can be read and
written to memory, and each address is a word address. This will simplify the processor
implementation. The PC contains a word address (not a byte address). Therefore, it is sufficient
to increment the PC by 1 (rather than 2) to point to the next instruction in memory.
Also, the Load and Store instructions can only load and store words. There is no instruction to
load or store a byte in memory.

Register File

Implement a Register file containing Seven 16-bit registers R1 to R7 with two read ports and one
write port. R0 is hardwired to zero.

Arithmetic and Logical Unit (ALU)

Implement a 16-bit ALU to perform all the required operations:
OR, AND, XOR, NOR, ADD, SUB, SLT, SLTU, SLL, SRL, SRA, ROR

Addressing Modes

PC-relative addressing mode is used for branch and jump instructions.
For branching (BEQ, BNE), the branch target address is computed as follows:
PC = PC + sign-extend(Imm5), by adding the contents of PC to sign-extended 5-bit Immediate.
For jumps (J and JAL): PC = PC + sign-extend(Imm11).
For LW and SW base-displacement addressing mode is used. The base address in register(Rs) is
added to the sign-extended 5-bit immediate to compute the memory address.

Program Execution

The program will be loaded and will start at address 0 in the instruction memory. The data
segment will be loaded and will start also at address 0 in the data memory. You may also have a
stack segment if you want to support procedures. The stack segment can occupy the upper part
of the data memory and can grow backwards towards lower addresses. The stack segment can be
implemented completely in software.
To terminate the execution of a program, the last instruction in the program can jump or branch
to itself indefinitely.

Getting Started with Logisim

You should first download Logisim from the COE 308 course website or Logisim website
http://ozark.hendrix.edu/~burch/logisim/. Logisim is very easy to use. To get started, you can
read the documentation available under the Logisim website/ Course WebCT.

Building a Pipelined Processor

It is recommended that you start by building the datapath and control of a single-cycle processor
and ensure its correctness. Once you have succeeded in doing this, convert your design and
implement a pipelined-datapath and its control logic. A five-stage pipeline should be constructed
similar to the pipeline presented in the class lectures. Add pipeline registers between stages.
Design the control logic to detect data dependencies among instructions and implement the
forwarding logic. For branch and jump instructions, reduce the delay to one cycle only. Stall the
pipeline for one clock cycle after a jump or a taken branch instruction. If the branch is not taken,
then there is no need to stall the pipeline. Also, stall the pipeline after a LW instruction, if it is
followed by a dependent instruction.

 4

Testing

 Test all components and sub-circuits independently to ensure their correctness. For
example, test the correctness of the ALU, the register file, the control logic separately,
before putting your components together.

 Test each instruction independently to ensure its correct execution.

 Test sequences of dependent instructions to ensure the correctness of the forwarding
logic. Also, test a LW (load word) followed by a dependent instruction to ensure stalling
the pipeline correctly by one clock cycle.

 Test the behavior of taken and untaken branch instructions and their effect on stalling the
pipeline.

 Write a sample program that adds an array of integers. Two procedures are required. The
main procedure initializes the array elements with some constant values. It then calls the
second procedure after passing the array address and the number of elements as
parameters in two registers. The second procedure uses the parameters to compute the
sum of the array elements and returns the result in a register. Convert the program into
machine instructions by hand and load it into the instruction memory starting at address
0. Having two procedures, you will be able to test the JAL and JR instructions.

 Write additional programs as necessary for further testing, translate them by hand, and
save them into files. These files can be loaded into the instruction memory and executed.
Their data can be saved as well in files and loaded into the data memory.

 Document all your test programs and files and include them in the report document.

WARNING

Although Logisim is stable, it might crash from time to time. Therefore, it is best to save your
work often. Make several copies and versions of your design before making changes, in case you
need to go back to an older version. There are also some known bugs. For example, 3-input or
higher-input XOR or XNOR gates do not function properly when more than 2 inputs are equal to
logic ‘1’, so do not use them. However, 2-input XOR and XNOR gates function properly. Make
sure you test your sub-circuits with enough test cases before using them.

Project Report

The report document must contain sections highlighting the following:

1 – Design and Implementation

 Specify clearly the design giving detailed description of the datapath, its components,
control, and the implementation details (highlighting the design choices you made and
why, and any notable features that your processor might have.)

 Provide drawings of the component circuits and the overall datapath.
 Provide a complete description of the control logic and the control signals. Provide a

table giving the control signal values for each instruction. Provide the logic equations for
each control signal.

 Provide a complete description of the forwarding logic, the cases that were handled, and
the cases that stall the pipeline, and the logic that you have implemented to stall the
pipeline.

 Provide list of sources for any parts of your design that are not entirely yours (if any).
 Carry out the design and implementation with the following aspects in mind:

- Correctness of the individual components

 5

- Correctness of the overall design when wiring the components together
- Completeness: all instructions were implemented properly, detecting dependences

and forwarding was handled properly, and stalling the pipeline was handled properly
for all cases.

2 – Simulation and Testing

 Carry out the simulation of the processor developed using Logisim.
 Describe all the features of the simulator used for simulating your design with a clear

emphasis on its advantages and limitations (if any) for simulating the design, list the
known bugs or missing features (if any).

 Describe the test programs that you used to test your design with enough comments
describing the program, its inputs, and its expected output. List all the instructions that
were tested and work correctly. List all the instructions that do not run properly.

 Describe all the cases that you handled involving dependences between instructions,
forwarding cases, and cases that stall the pipeline.

 Also provide snapshots of the Simulator window with your test program loaded and
showing the simulation output results.

3 – Teamwork

 As in the first project, two or at most three students can form a group. It is best to
continue with the same group unless there is a compelling reason to change. Make sure to
write the names of all the group members on the project report title page.

 Group members are required to coordinate the work equally among themselves so that
everyone is involved in all the following activities:
- Design and Implementation
- Simulation and Testing

 Clearly show the work done by each group member using a chart and prepare an
execution plan showing the time frame for completing the subtasks of the project. You
can also mention how many meetings were conducted between the group members to
discuss the design, implementation, and testing.

Submission Guidelines

All submissions will be done through WebCT.

Attach one zip file containing all the design circuits and sub-circuits, the test programs, their
source code and binary instruction files that you have used to test your design, their test data, as
well as the report document. Submit also a hard copy of the report during the class lecture.

Grading policy

The grade will be divided according to the following components:

■ Correctness: whether your implementation is working
■ Completeness and testing: whether all instructions and cases have been implemented,

handled, and tested properly
■ Participation and contribution to the project
■ Report document

Late policy

The project should be submitted on the due date by midnight. Late projects are accepted, but will
be penalized 5% for each late day and for a maximum of 3 late days (or 15%). Projects
submitted after 3 late days will not be accepted.

