COE 308 – Computer Architecture Term 052 – Spring 2006

Computer Engineering Department College of Computer Sciences & Engineering King Fahd University of Petroleum & Minerals

Professor:	Muhamed Mudawar, Room 22/328, Phone 4642	
Office Hours:	SMW 10 – 12 noon or by appointment	
Course URL:	http://www.ccse.kfupm.edu.sa/~mudawar/coe308/	
Email:	mudawar@ccse.kfupm.edu.sa	

Catalog Description

Memory hierarchy and cache memory. Integer and floating point arithmetic. Instruction and arithmetic pipelining, superscalar architecture. Reduced Instruction Set Computers. Parallel architectures and interconnection networks.

Prerequisites: COE 205.

Textbook

David A. Patterson and John L. Hennessy, *Computer Organization and Design: The Hardware / Software Interface*, Third Edition, Morgan Kauffmann Publishers, 2005. ISBN 1-55860-604-1.

Course Objectives

- In-depth understanding of the inner-workings of modern computer systems, their evolution, and tradeoffs present at the hardware-software interface.
- Understanding the design process of a modern computer system. This includes the design of the processor datapath and control, the memory system, and I/O subsystem.

Grading Policy

Assignments and Quizzes	20%
Mini-Projects	15%
Major Exam I	20%
Major Exam II	20%
Final Exam	25%

- Written assignments should be submitted at the beginning of class time in the specified due date. Late written assignments are not accepted, especially if the solution is discussed in class.
- Late projects are accepted, but will be penalized 5% for each late day, up to a maximum of seven late days.

Software Tools used in Mini-Projects

- PCSpim simulator: runs MIPS R2000/R3000 assembly language programs.
- MipsIt: consists of a software development system, a system simulator, a cache simulator, and a flexible micro-architecture simulator for simulating pipelines.

Week	Course Topics	Reading
1	Introduction to computer architecture, ISA versus organization, components, abstraction, technology improvements, chip manufacturing process.	Chapter 1
2,3	Instruction set design, RISC design principles, MIPS registers, instruction formats, arithmetic instructions, immediate operands, bit manipulation, load and store instructions, byte ordering, addressing modes, flow control instructions, pseudo-instructions, procedures and runtime stack, call and return, MIPS register conventions, alternative IA-32 architecture.	Sections 2.1 – 2.9 Sections 2.13, 2.15 – 2.18 Sections 3.2 – 3.3 Appendix A.9 – A.10
4	CPU performance and metrics, CPI, performance equation, MIPS as a metric, Amdahl's law, benchmarks and performance of recent Intel processors.	Chapter 4
5,6	Integer multiplication, integer division, floating point representation, IEEE 754 standard, normalized and de- normalized numbers, zero, infinity, NaN, FP comparison, FP addition, FP multiplication, rounding and accurate arithmetic, FP instructions in MIPS.	Sections 3.4 – 3.6 Sections 3.8 – 3.9
7,8	Designing a processor, register transfer logic, datapath components, clocking methodology, single-cycle datapath, main control signals, ALU control, single- cycle delay, multi-cycle instruction execution, multi- cycle implementation, CPI in a multi-cycle CPU.	Sections 5.1 – 5.5
9	Pipelining versus serial execution, MIPS 5-stage pipeline, pipelined datapath, pipelined control, pipeline performance.	Sections 6.1 – 6.3
10	Pipeline hazards, structural hazards, data hazards, stalling pipeline, forwarding, load delay, compiler scheduling, hazard detection, stall and forwarding unit, control hazards, branch delay, dynamic branch prediction, branch target and prediction buffer.	Sections 6.4 – 6.6
11,12	Cache memory design, locality of reference, memory hierarchy, DRAM and SRAM, direct-mapped, fully- associative, and set-associative caches, handling cache miss, write policy, write buffer, replacement policy, cache performance, CPI with memory stall cycles, AMAT, two-level caches and their performance, main memory organization and performance.	Sections 7.1 – 7.3 Sections 7.5 – 7.6
13	Virtual memory, address mapping, page table, handling a page fault, TLB, virtual versus physical caches, overlapped TLB and cache access.	Section 7.4
14, 15	I/O subsystem and devices, disk operation, dependability, reliability and availability, RAID, busses, bus operation, DMA, I/O performance.	Sections 8.1 – 8.2 Sections 8.4 – 8.7