
 49

Filename: LMARFC04.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Mike Eddy
Revision #: 67 Page: 49 of 1 Printed: 10/02/00 04:15 PM

C H A P T E R 4

Topical Cross-reference for Processor Instructions 50
Interpreting Processor Instructions . 53

Flags . 53
Syntax . 54
Examples . 54
Clock Speeds . 54

Timings on the 8088 and 8086 Processors . 55
Timings on the 80286-80486 Processors . 56

Interpreting Encodings . 56
Interpreting 80386–80486 Encoding Extensions . 59

16-bit Encoding. 60
32-bit Encoding. 60

Address-Size Prefix . 60
Operand-Size Prefix . 60
Encoding Differences for 32-Bit Operations 60
Scaled Index Base Byte . 61

Instructions . 64

Processor

50 Reference

Filename: LMARFC04.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Mike Eddy
Revision #: 67 Page: 50 of 2 Printed: 10/02/00 04:15 PM

Topical Cross-reference for Processor Instructions
Arithmetic
ADC ADD DEC

DIV IDIV IMUL

INC MUL NEG

SBB SUB XADD#

BCD Conversion
AAA AAD AAM

AAS DAA DAS

Bit Operations
AND BSF§ BSR§

BT§ BTC§ BTR§

BTS§ NOT OR

RCL RCR ROL

ROR SAR SHL/SAL

SHLD§ SHR SHRD§

XOR

Compare
BT§ BTC§ BTR§

BTS§ CMP CMPS

CMPXCHG# TEST

Conditional Set
SETA/SETNBE§ SETAE/SETNB§ SETB/SETNAE§

SETBE/SETNA§ SETC§ SETE/SETZ§
SETG/SETNLE§ SETGE/SETNL§ SETL/SETNGE§

SETLE/SETNG§ SETNC§ SETNE/SETNZ§

SETNO§ SETNP/SETPO§ SETNS§

SETO§ SETP/SETPE§ SETS§

* 80186–80486 only. † 80286–80486 only.
§ 80386–80486 only. # 80486 only.

 Processor 51

Filename: LMARFC04.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Mike Eddy
Revision #: 67 Page: 51 of 3 Printed: 10/02/00 04:15 PM

Conditional Transfer
BOUND* INTO JA/JNBE

JAE/JNB JB/JNAE JBE/JNA

JC JCXZ/JECXZ JE/JZ

JG/JNLE JGE/JNL JL/JNGE

JLE/JNG JNC JNE/JNZ

JNO JNP/JPO JNS

JO JP/JPE JS

Data Transfer
BSWAP# CMPXCHG# LDS/LES

LEA LFS/LGS/LSS§ LODS

MOV MOVS MOVSX§

MOVZX§ STOS XADD#

XCHG XLAT/XLATB

Flag
CLC CLD CLI

CMC LAHF POPF

PUSHF SAHF STC

STD STI

Input/Output
IN INS*

OUT OUTS*

Loop
JCXZ/JECXZ LOOP

LOOPE/LOOPZ LOOPNE/LOOPNZ

* 80186–80486 only. † 80286–80486 only.
§ 80386–80486 only. # 80486 only.

52 Reference

Filename: LMARFC04.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Mike Eddy
Revision #: 67 Page: 52 of 4 Printed: 10/02/00 04:15 PM

Process Control
ARPL† CLTS† LAR†

LGDT/LIDT/LLDT† LMSW† LSL†

LTR† SGDT/SIDT/SLDT† SMSW†

STR† VERR† VERW†

MOV special§ INVD# INVLPG#

WBINVD#

Processor Control
HLT LOCK

NOP WAIT

Stack
PUSH PUSHF PUSHA*

PUSHAD* POP POPF

POPA* POPAD* ENTER*

LEAVE*

String
MOVS LODS STOS

SCAS CMPS INS*

OUTS* REP REPE/REPZ

REPNE/REPNZ

Type Conversion
CBW CWD

CWDE§ CDQ§

BSWAP#

Unconditional Transfer
CALL INT IRET

RET RETN/RETF JMP

* 80186–80486 only. † 80286–80486 only.
§ 80386–80486 only. # 80486 only.

 Processor 53

Filename: LMARFC04.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Mike Eddy
Revision #: 67 Page: 53 of 5 Printed: 10/02/00 04:15 PM

Interpreting Processor Instructions
The following sections explain the format of instructions for the 8086, 8088,
80286, 80386, and 80486 processors. Those instructions begin on page 64.

Flags
Only the flags common to all processors are shown. If none of the flags is
affected by the instruction, the flag line says No change. If flags can be affected,
a two-line entry is shown. The first line shows flag abbreviations as follows:

Abbreviation Flag

O Overflow

D Direction

I Interrupt

T Trap

S Sign

Z Zero

A Auxiliary carry

P Parity

C Carry

The second line has codes indicating how the flag can be affected:

Code Effect

1 Sets the flag

0 Clears the flag

? May change the flag, but the value is not predictable

blank No effect on the flag

± Modifies according to the rules associated with the flag

54 Reference

Filename: LMARFC04.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Mike Eddy
Revision #: 67 Page: 54 of 6 Printed: 10/02/00 04:15 PM

Syntax
Each encoding variation may have different syntaxes corresponding to different
addressing modes. The following abbreviations are used:

reg A general-purpose register of any size.

segreg One of the segment registers: DS, ES, SS, or CS (also FS or GS on the
80386–80486).

accum An accumulator register of any size: AL or AX (also EAX on the
80386–80486).

mem A direct or indirect memory operand of any size.

label A labeled memory location in the code segment.

src,dest A source or destination memory operand used in a string operation.

immed A constant operand.

In some cases abbreviations have numeric suffixes to specify that the operand
must be a particular size. For example, reg16 means that only a 16-bit (word)
register is accepted.

Examples
One or more examples are shown for each syntax. Their position is not related
to the clock speeds in the right column.

Clock Speeds
Column 3 shows the clock speeds for each processor. Sometimes an instruction
may have more than one clock speed. Multiple speeds are separated by
commas. If several speeds are part of an expression, they are enclosed in
parentheses. The following abbreviations are used to specify variations:

EA Effective address. This applies only to the 8088 and 8086 processors, as
described in the next section.

b,w,d Byte, word, or doubleword operands.

pm Protected mode.

n Iterations. Repeated instructions may have a base number of clocks plus a
number of clocks for each iteration. For example, 8+4n means 8 clocks plus 4
clocks for each iteration.

noj No jump. For conditional jump instructions, noj indicates the speed if the
condition is false and the jump is not taken.

 Processor 55

Filename: LMARFC04.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Mike Eddy
Revision #: 67 Page: 55 of 7 Printed: 10/02/00 04:15 PM

m Next instruction components. Some control transfer instructions take
different times depending on the length of the next instruction executed. On the
8088 and 8086, m is never a factor. On the 80286, m is the number of bytes in
the instruction. On the 80386–80486, m is the number of components. Each
byte of encoding is a component, and the displacement and data are separate
components.

W88,88 8088 exceptions. See “Timings on the 8088 and 8086 Processors,”
following.

Clocks can be converted to nanoseconds by dividing 1 microsecond by the
number of megahertz (MHz) at which the processor is running. For example, on
a processor running at 8 MHz, 1 clock takes 125 nanoseconds (1000 MHz per
nanosecond / 8 MHz).

The clock counts are for best-case timings. Actual timings vary depending on
wait states, alignment of the instruction, the status of the prefetch queue, and
other factors.

Timings on the 8088 and 8086 Processors
Because of its 8-bit data bus, the 8088 always requires two fetches to get a 16-
bit operand. Therefore, instructions that work on 16-bit memory operands take
longer on the 8088 than on the 8086. Separate 8088 timings are shown in
parentheses following the main timing. For example, 9 (W88=13) means that the
8086 with any operands or the 8088 with byte operands take 9 clocks, but the
8088 with word operands takes 13 clocks. Similarly, 16 (88=24) means that the
8086 takes 16 clocks, but the 8088 takes 24 clocks.

On the 8088 and 8086, the effective address (EA) value must be added for
instructions that operate on memory operands. A displacement is any direct
memory or constant operand, or any combination of the two. The following
shows the number of clocks to add for the effective address:

Components EA Clocks Examples

Displacement 6 mov ax,stuff
mov ax,stuff+2

Base or index 5 mov ax,[bx]
mov ax,[di]

Displacement
plus base or index

9 mov ax,[bp+8]
mov ax,stuff[di]

Base plus index (BP+DI, BX+SI) 7 mov ax,[bx+si]
mov ax,[bp+di]

56 Reference

Filename: LMARFC04.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Mike Eddy
Revision #: 67 Page: 56 of 8 Printed: 10/02/00 04:15 PM

Components EA Clocks Examples

Base plus index (BP+SI, BX+DI) 8 mov ax,[bx+di]
mov ax,[bp+si]

Base plus index plus displacement
(BP+DI+disp, BX+SI+disp)

11 mov ax,stuff[bx+si]
mov ax,[bp+di+8]

Base plus index
plus displacement (BP+SI+disp,
BX+DI+disp)

12 mov ax,stuff[bx+di]
mov ax,[bp+si+20]

Segment override EA+2 mov ax,es:stuff
mov ax,ds:[bp+10]

Timings on the 80286–80486 Processors
On the 80286–80486 processors, the effective address calculation is handled by
hardware and is therefore not a factor in clock calculations except in one case. If
a memory operand includes all three possible elements — a displacement, a base
register, and an index register — then add one clock. On the 80486, the extra
clock is not always used. Examples are shown in the following.

mov ax,[bx+di] ;No extra

mov ax,array[bx+di] ;One extra

mov ax,[bx+di+6] ;One extra

80186 and 80188 timings are different from 8088, 8086, and 80286
timings. They are not shown in this manual. Timings are also not shown for
protected-mode transfers through gates or for the virtual 8086 mode available on
the 80386–80486 processors.

Interpreting Encodings
Encodings are shown for each variation of the instruction. This section describes
encoding for all processors except the 80386–80486. The encodings take the
form of boxes filled with 0s and 1s for bits that are constant for the instruction
variation, and abbreviations (in italics) for the following variable bits or bitfields:

d Direction bit. If set, do memory to register; the reg field is the destination. If
clear, do register to memory or register to register; the reg field is the source.

a Accumulator direction bit. If set, move accumulator register to memory. If
clear, move memory to accumulator register.

w Word/byte bit. If set, use 16-bit or 32-bit operands. If clear, use 8-bit
operands.

Note

 Processor 57

Filename: LMARFC04.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Mike Eddy
Revision #: 67 Page: 57 of 9 Printed: 10/02/00 04:15 PM

s Sign bit. If set, sign-extend 8-bit immediate data to 16 bits.

mod Mode. This 2-bit field gives the register/memory mode with
displacement. The possible values are shown below:

mod Meaning

00 This value can have two meanings:
 If r/m is 110, a direct memory operand is used.
 If r/m is not 110, the displacement is 0 and an indirect memory operand is
 used. The operand must be based, indexed, or based indexed.

01 An indirect memory operand is used with an 8-bit displacement.

10 An indirect memory operand is used with a 16-bit displacement.

11 A two-register instruction is used; the reg field specifies the destination and the r/m
field specifies the source.

reg Register. This 3-bit field specifies one of the general-purpose registers:

reg 16/32-bit if w=1 8-bit if w=0

000 AX/EAX AL

001 CX/ECX CL

010 DX/EDX DL

011 BX/EBX BL

100 SP/ESP AH

101 BP/EBP CH

110 SI/ESI DH

111 DI/EDI BH

The reg field is sometimes used to specify encoding information rather than a
register.

sreg Segment register. This field specifies one of the segment registers:

sreg Register

000 ES

001 CS

010 SS

011 DS

100 FS

101 GS

58 Reference

Filename: LMARFC04.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Mike Eddy
Revision #: 67 Page: 58 of 10 Printed: 10/02/00 04:15 PM

r/m Register/memory. This 3-bit field specifies a register or memory r/m
operand.

If the mod field is 11, r/m specifies the source register using the reg field codes.
Otherwise, the field has one of the following values:

r/m Operand Address

000 DS:[BX+SI+disp]

001 DS:[BX+DI+disp]

010 SS:[BP+SI+disp]

011 SS:[BP+DI+disp]

100 DS:[SI+disp]

101 DS:[DI+disp]

110 SS:[BP+disp]*

111 DS:[BX+disp]
* If mod is 00 and r/m is 110, then the operand is treated as a direct memory operand. This means

that the operand [BP] is encoded as [BP+0] rather than having a short-form like other register
indirect operands. Encoding [BX] takes one byte, but encoding [BP] takes two.

disp Displacement. These bytes give the offset for memory operands. The
possible lengths (in bytes) are shown in parentheses.

data Data. These bytes give the actual value for constant values. The possible
lengths (in bytes) are shown in parentheses.

If a memory operand has a segment override, the entire instruction has one of
the following bytes as a prefix:

Prefix Segment

00101110 (2Eh) CS

00111110 (3Eh) DS

00100110 (26h) ES

00110110 (36h) SS

01100100 (64h) FS

01100101 (65h) GS

Example
As an example, assume you want to calculate the encoding for the following
statement (where warray is a 16-bit variable):

 add warray[bx+di], -3

 Processor 59

Filename: LMARFC04.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Mike Eddy
Revision #: 67 Page: 59 of 11 Printed: 10/02/00 04:15 PM

First look up the encoding for the immediate-to-memory syntax of the ADD
instruction:

100000sw mod,000,r/m disp (0, 1, or 2) data (0, 1, or 2)

Since the destination is a word operand, the w bit is set. The 8-bit immediate
data must be sign-extended to 16 bits to fit into the operand, so the s bit is also
set. The first byte of the instruction is therefore 10000011 (83h).

Since the memory operand can be anywhere in the segment, it must have a 16-
bit offset (displacement). Therefore the mod field is 10. The reg field is 000, as
shown in the encoding. The r/m coding for [bx+di+disp] is 001. The second
byte is 10000001 (81h).

The next two bytes are the offset of warray. The low byte of the offset is
stored first and the high byte second. For this example, assume that warray is
located at offset 10EFh.

The last byte of the instruction is used to store the 8-bit immediate value –3
(FDh). This value is encoded as 8 bits (but sign-extended to 16 bits by the
processor).

The encoding is shown here in hexadecimal:

83 81 EF 10 FD

You can confirm this by assembling the instruction and looking at the resulting
assembly listing.

Interpreting 80386–80486 Encoding Extensions
This book shows 80386–80486 encodings for instructions that are available only
on the 80386–80486 processors. For other instructions, encodings are shown
only for the 16-bit subset available on all processors. This section tells how to
convert the 80286 encodings shown in the book to 80386–80486 encodings that
use extensions such as 32-bit registers and memory operands.

The extended 80386–80486 encodings differ in that they can have additional
prefix bytes, a Scaled Index Base (SIB) byte, and 32-bit displacement and
immediate bytes. Use of these elements is closely tied to the segment word size.
The use type of the code segment determines whether the instructions are
processed in 32-bit mode (USE32) or 16-bit mode (USE16). Current versions of
MS-DOS® and Microsoft® Windows™ use 16-bit mode only. Windows NT uses
32-bit mode.

The bytes that can appear in an instruction encoding are:

60 Reference

Filename: LMARFC04.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Mike Eddy
Revision #: 67 Page: 60 of 12 Printed: 10/02/00 04:15 PM

16-Bit Encoding
Opcode mod-reg-r/m disp immed

(1-2) (0-1) (0-2) (0-2)

32-Bit Encoding
Address-
Size
(67h)

Operand-
Size (66h)

Opcode

mod-reg-
r/m

Scaled
Index
Base

disp

immed

(0-1) (0-1) (1-2) (0-1) (0-1) (0-4) (0-4)

Additional bytes may be added for a segment prefix, a repeat prefix, or the
LOCK prefix.

Address-Size Prefix
The address-size prefix determines the segment word size of the operation. It
can override the default size for calculating the displacement of memory
addresses. The address prefix byte is 67h. The assembler automatically inserts
this byte where appropriate.

In 32-bit mode (USE32 or FLAT code segment), displacements are calculated
as 32-bit addresses. The effective address-size prefix must be used for any
instructions that must calculate addresses as 16-bit displacements. In 16-bit
mode, the defaults are reversed. The prefix must be used to specify calculation
of 32-bit displacements.

Operand-Size Prefix
The operand-size prefix determines the size of operands. It can override the
default size of registers or memory operands. The operand-size prefix byte is
66h. The assembler automatically inserts this byte where appropriate.

In 32-bit mode, the default sizes for operands are 8 bits and 32 bits (depending
on the w bit). For most instructions, the operand-size prefix must be used for
any instructions that use 16-bit operands. In 16-bit mode, the default sizes are 8
bits and 16 bits. The prefix must be used for any instructions that use 32-bit
operands. Some instructions use 16-bit operands, regardless of mode.

Encoding Differences for 32-Bit Operations
When 32-bit operations are performed, the meaning of certain bits or fields is
different from their meaning in 16-bit operations. The changes may affect
default operations in 32-bit mode, or 16-bit mode operations in which the
address-size prefix or the operand-size prefix is used. The following fields may

 Processor 61

Filename: LMARFC04.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Mike Eddy
Revision #: 67 Page: 61 of 13 Printed: 10/02/00 04:15 PM

have a different meaning for 32-bit operations from their meaning as described
in the “Interpreting Encodings” section:

w Word/byte bit. If set, use 32-bit operands. If clear, use 8-bit operands.

s Sign bit. If set, sign-extend 8-bit and 16-bit immediate data to 32 bits.

mod Mode. This field indicates the register/memory mode. The value 11 still
indicates a register-to-register operation with r/m containing the code for a 32-bit
source register. However, other codes have different meanings as shown in the
tables in the next section.

reg Register. The codes for 16-bit registers are extended to 32-bit registers.
For example, if the reg field is 000, EAX is used instead of AX. Use of 8-bit
registers is unchanged.

sreg Segment register. The 80386 has the following additional segment
registers:

sreg Register

100 FS

101 GS

r/m Register/memory. If the r/m field is used for the source register, 32-bit
registers are used as for the reg field. If the field is used for memory operands,
the meaning is completely different from the meaning used for 16-bit operations,
as shown in the tables in the next section.

disp Displacement. This field is 4 bytes for 32-bit addresses.

data Data. Immediate data can be up to 4 bytes.

Scaled Index Base Byte
Many 80386–80486 extended memory operands are too complex to be
represented by a single mod-reg-r/m byte. For these operands, a value of 100 in
the r/m field signals the presence of a second encoding byte called the Scaled
Index Base (SIB) byte. The SIB byte is made up of the following fields:

ss index base

ss Scaling Field. This two-bit field specifies one of the following scaling
factors:

ss Scale

00 1

01 2

10 4

62 Reference

Filename: LMARFC04.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Mike Eddy
Revision #: 67 Page: 62 of 14 Printed: 10/02/00 04:15 PM

11 8

index Index Register. This three-bit field specifies one of the following index
registers:

index Register

000 EAX

001 ECX

010 EDX

011 EBX

100 no index

101 EBP

110 ESI

111 EDI

ESP cannot be an index register. If the index field is 100, the ss field
must be 00.

base Base Register. This 3-bit field combines with the mod field to specify the
base register and the displacement. Note that the base field only specifies the
base when the r/m field is 100. Otherwise, the r/m field specifies the base.

The possible combinations of the mod, r/m, scale, index, and base fields are as
follows:

Note

 Processor 63

Filename: LMARFC04.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Mike Eddy
Revision #: 67 Page: 63 of 15 Printed: 10/02/00 04:15 PM

If a memory operand has a segment override, the entire instruction has one of
the prefixes discussed in the preceding section, “Interpreting Encodings,” or one
of the following prefixes for the segment registers available only on the 80386–
80486:

Prefix Segment

01100100 (64h) FS

01100101 (65h) GS

Example
Assume you want to calculate the encoding for the following statement (where
warray is a 16-bit variable). Assume that the instruction is used in 16-bit mode.

 add warray[eax+ecx*2], -3

First look up the encoding for the immediate-to-memory syntax of the ADD
instruction:

100000sw mod,000,r/m disp (0, 1, or 2) data (1 or 2)

This encoding must be expanded to account for 80386–80486 extensions. Note
that the instruction operates on 16-bit data in a 16-bit mode program. Therefore,
the operand-size prefix is not needed. However, the instruction does use 32-bit

64 Reference

Filename: LMARFC04.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Mike Eddy
Revision #: 67 Page: 64 of 16 Printed: 10/02/00 04:15 PM

registers to calculate a 32-bit effective address. Thus the first byte of the
encoding must be the effective address-size prefix, 01100111 (67h).

The opcode byte is the same (83h) as for the 80286 example described in the
“Interpreting Encodings” section.

The mod-reg-r/m byte must specify a based indexed operand with a scaling
factor of two. This operand cannot be specified with a single byte, so the
encoding must also use the SIB byte. The value 100 in the r/m field specifies an
SIB byte. The reg field is 000, as shown in the encoding. The mod field is 10
for operands that have base and scaled index registers and a 32-bit displacement.
The combined mod, reg, and r/m fields for the second byte are 10000100 (84h).

The SIB byte is next. The scaling factor is 2, so the ss field is 01. The index
register is ECX, so the index field is 001. The base register is EAX, so the base
field is 000. The SIB byte is 01001000 (48h).

The next 4 bytes are the offset of warray. The low bytes are stored first. For
this example, assume that warray is located at offset 10EFh. This offset only
requires 2 bytes, but 4 must be supplied because of the addressing mode. A 32-
bit address can be safely used in 16-bit mode as long as the upper word is 0.

The last byte of the instruction is used to store the 8-bit immediate value –3
(FDh). The encoding is shown here in hexadecimal:

67 83 84 48 00 00 EF 10 FD

Instructions
This section provides an alphabetical reference to the instructions for the 8086,
8088, 80286, 80386, and 80486 processors.

AAA ASCII Adjust After Addition
Adjusts the result of an addition to a decimal digit (0–9). The previous addition
instruction should place its 8-bit sum in AL. If the sum is greater than 9h, AH is
incremented and the carry and auxiliary carry flags are set. Otherwise, the carry
and auxiliary carry flags are cleared.

 O D I T S Z A P C
? ? ? ± ? ±

Flags

 AAD ASCII Adjust Before Division 65

Filename: LMARFC04.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Mike Eddy
Revision #: 67 Page: 65 of 17 Printed: 10/02/00 04:15 PM

00110111

Syntax Examples CPU Clock Cycles

AAA aaa 88/86
286
386
486

8
3
4
3

AAD ASCII Adjust Before Division
Converts unpacked BCD digits in AH (most significant digit) and AL (least
significant digit) to a binary number in AX. This instruction is often used to
prepare an unpacked BCD number in AX for division by an unpacked BCD
digit in an 8-bit register.

 O D I T S Z A P C
? ± ± ? ± ?

11010101 00001010

Syntax Examples CPU Clock Cycles

AAD aad 88/86
286
386
486

60
14
19
14

Encoding

Flags

Encoding

66 AAM ASCII Adjust After Multiply

Filename: LMARFC04.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Mike Eddy
Revision #: 67 Page: 66 of 18 Printed: 10/02/00 04:15 PM

AAM ASCII Adjust After Multiply
Converts an 8-bit binary number less than 100 decimal in AL to an unpacked
BCD number in AX. The most significant digit goes in AH and the least
significant in AL. This instruction is often used to adjust the product after a
MUL instruction that multiplies unpacked BCD digits in AH and AL. It is also
used to adjust the quotient after a DIV instruction that divides a binary number
less than 100 decimal in AX by an unpacked BCD number.

 O D I T S Z A P C
? ± ± ? ± ?

11010100 00001010

Syntax Examples CPU Clock Cycles

AAM aam 88/86
286
386
486

83
16
17
15

AAS ASCII Adjust After Subtraction
Adjusts the result of a subtraction to a decimal digit (0–9). The previous
subtraction instruction should place its 8-bit result in AL. If the result is greater
than 9h, AH is decremented and the carry and auxiliary carry flags are set.
Otherwise, the carry and auxiliary carry flags are cleared.

 O D I T S Z A P C
? ? ? ± ? ±

00111111

Syntax Examples CPU Clock Cycles

AAS aas 88/86
286
386
486

8
3
4
3

Flags

Encoding

Flags

Encoding

 ADC Add with Carry 67

Filename: LMARFC04.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Mike Eddy
Revision #: 67 Page: 67 of 19 Printed: 10/02/00 04:15 PM

ADC Add with Carry
Adds the source operand, the destination operand, and the value of the carry
flag. The result is assigned to the destination operand. This instruction is used to
add the more significant portions of numbers that must be added in multiple
registers.

 O D I T S Z A P C
± ± ± ± ± ±

000100dw mod,reg,r/m disp (0, 1, or 2)

Syntax Examples CPU Clock Cycles

ADC reg,reg adc dx,cx 88/86
286
386
486

3
2
2
1

ADC mem,reg adc WORD PTR m32[2],dx 88/86
286
386
486

16+EA (W88=24+EA)
7
7
3

ADC reg,mem adc dx,WORD PTR m32[2] 88/86
286
386
486

9+EA (W88=13+EA)
7
6
2

100000sw mod, 010,r/m disp (0, 1, or 2) data (1 or 2)

Syntax Examples CPU Clock Cycles

ADC reg,immed adc dx,12 88/86
286
386
486

4
3
2
1

ADC mem,immed adc WORD PTR m32[2],16 88/86
286
386
486

17+EA (W88=23+EA)
7
7
3

0001010w data (1 or 2)

Syntax Examples CPU Clock Cycles

ADC accum,immed adc ax,5 88/86
286
386
486

4
3
2
1

Flags

Encoding

Encoding

Encoding

68 ADD Add

Filename: LMARFC04.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Mike Eddy
Revision #: 67 Page: 68 of 20 Printed: 10/02/00 04:15 PM

ADD Add
Adds the source and destination operands and puts the sum in the destination
operand.

 O D I T S Z A P C
± ± ± ± ± ±

000000dw mod,reg,r/m disp (0, 1, or 2)

Syntax Examples CPU Clock Cycles

ADD reg,reg add ax,bx 88/86
286
386
486

3
2
2
1

ADD mem, reg add total, cx
add array[bx+di], dx

88/86
286
386
486

16+EA (W88=24+EA)
7
7
3

ADD reg,mem add cx,incr
add dx,[bp+6]

88/86
286
386
486

9+EA (W88=13+EA)
7
6
2

100000sw mod, 000,r/m disp (p,1, or2) data (1or2)

Syntax Examples CPU Clock Cycles

ADD reg,immed add bx,6 88/86
286
386
486

4
3
2
1

ADD mem,immed add amount,27
add pointers[bx][si],6

88/86
286
386
486

17+EA (W88=23+EA)
7
7
3

0000010w data (1 or 2)

Syntax Examples CPU Clock Cycles

ADD accum,immed add ax,10 88/86
286
386
486

4
3
2
1

Flags

Encoding

Encoding

Encoding

 AND Logical AND 69

Filename: LMARFC04.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Mike Eddy
Revision #: 67 Page: 69 of 21 Printed: 10/02/00 04:15 PM

AND Logical AND
Performs a bitwise AND operation on the source and destination operands and
stores the result in the destination operand. For each bit position in the operands,
if both bits are set, the corresponding bit of the result is set. Otherwise, the
corresponding bit of the result is cleared.

 O D I T S Z A P C
0 ± ± ? ± 0

001000dw mod,reg,r/m disp (0, 1, or 2)

Syntax Examples CPU Clock Cycles

AND reg,reg and dx,bx 88/86
286
386
486

3
2
2
1

AND mem,reg and bitmask,bx
and [bp+2],dx

88/86
286
386
486

16+EA (W88=24+EA)
7
7
3

AND reg,mem and bx,masker
and dx,marray[bx+di]

88/86
286
386
486

9+EA (W88=13+EA)
7
6
2

100000sw mod, 100, r/m disp (0, 1, or 2) data (1 or 2)

Syntax Examples CPU Clock Cycles

AND reg,immed and dx,0F7h 88/86
286
386
486

4
3
2
1

AND mem,immed and masker, 100lb 88/86
286
386
486

17+EA(W88=24+EA)
7
7
3

0010010w data (1 or 2)

Syntax Examples CPU Clock Cycles

AND accum,immed and ax,0B6h 88/86
286
386
486

4
3
2
1

Flags

Encoding

Encoding

Encoding

70 ARPL Adjust Requested Privilege Level

Filename: LMARFC04.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Mike Eddy
Revision #: 67 Page: 70 of 22 Printed: 10/02/00 04:15 PM

ARPL Adjust Requested Privilege Level
80286–80486 Protected Only Verifies that the destination Requested Privilege
Level (RPL) field (bits 0 and 1 of a selector value) is less than the source RPL
field. If it is not, ARPL adjusts the destination RPL to match the source RPL.
The destination operand should be a 16-bit memory or register operand
containing the value of a selector. The source operand should be a 16-bit
register containing the test value. The zero flag is set if the destination is
adjusted; otherwise, the flag is cleared. ARPL is useful only in 80286–80486
protected mode. See Intel documentation for details on selectors and privilege
levels.

 O D I T S Z A P C
 ±

01100011 mod,reg,r/m disp (0, 1, or 2)

Syntax Examples CPU Clock Cycles

ARPL reg,reg arpl ax,cx 88/86
286
386
486

—
10
20
9

ARPL mem,reg arpl selector,dx 88/86
286
386
486

—
11
21
9

BOUND Check Array Bounds
80286–80486 Only Verifies that a signed index value is within the bounds of an
array. The destination operand can be any 16-bit register containing the index to
be checked. The source operand must then be a 32-bit memory operand in
which the low and high words contain the starting and ending values,
respectively, of the array. (On the 80386–80486 processors, the destination
operand can be a 32-bit register; in this case, the source operand must be a 64-
bit operand made up of 32-bit bounds.) If the source operand is less than the
first bound or greater than the last bound, an interrupt 5 is generated. The
instruction pointer pushed by the interrupt (and returned by IRET) points to the
BOUND instruction rather than to the next instruction.

No change

Flags

Encoding

Flags

 BSF/BSR Bit Scan 71

Filename: LMARFC04.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Mike Eddy
Revision #: 67 Page: 71 of 23 Printed: 10/02/00 04:15 PM

01100010 mod,reg, r/m disp (2)

Syntax Examples CPU Clock Cycles

BOUND reg16,mem32
BOUND reg32,mem64*

bound di,base-4 88/86
286
386
486

—
noj=13†
noj=10†
noj=7

* 80386–80486 only.

† See INT for timings if interrupt 5 is called.

BSF/BSR Bit Scan
80386–80486 Only Scans an operand to find the first set bit. If a set bit is found,
the zero flag is cleared and the destination operand is loaded with the bit index
of the first set bit encountered. If no set bit is found, the zero flag is set. BSF
(Bit Scan Forward) scans from bit 0 to the most significant bit. BSR (Bit Scan
Reverse) scans from the most significant bit of an operand to bit 0.

 O D I T S Z A P C
 ±

00001111 10111100 mod, reg, r/m disp (0, 1, 2, or 4)

Syntax Examples CPU Clock Cycles

BSF reg16,reg16
BSF reg32,reg32

bsf cx,bx 88/86
286
386
486

—
—
10+3n*
6–42†

BSF reg16,mem16
BSF reg32,mem32

bsf ecx,bitmask 88/86
286
386
486

—
—
10+3n*
7–43§

Encoding

Flags

Encoding

72 BSWAP Byte Swap

Filename: LMARFC04.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Mike Eddy
Revision #: 67 Page: 72 of 24 Printed: 10/02/00 04:15 PM

00001111 10111101 mod, reg, r/m disp (0, 1, 2, or 4)

Syntax Examples CPU Clock Cycles

BSR reg16,reg16
BSR reg32,reg32

bsr cx,dx 88/86
286
386
486

—
—
10+3n*
103 – 3n#

BSR reg16,mem16
BSR reg32,mem32

bsr eax,bitmask 88/86
286
386
486

—
—
10+3n*
104 – 3n#

* n = bit position from 0 to 31.
clocks = 6 if second operand equals 0.

† Clocks = 8 +
 4 for each byte scanned +
 3 for each nibble scanned +
 3 for each bit scanned in last nibble
 or 6 if second operand equals 0.

§ Same as footnote above, but add 1 clock.

n = bit position from 0 to 31.
clocks = 7 if second operand equals 0.

BSWAP Byte Swap
80486 Only Takes a single 32-bit register as operand and exchanges the first
byte with the fourth, and the second byte with the third. This instruction does
not alter any bit values within the bytes and is useful for quickly translating
between 8086-family byte storage and storage schemes in which the high byte is
stored first.

 No change

00001111 11001 reg

Syntax Examples CPU Clock Cycles

BSWAP reg32 bswap eax
bswap ebx

88/86
286
386
486

—
—
—
1

Encoding

Flags

Encoding

 BT/BTC/BTR/BTS Bit Tests 73

Filename: LMARFC04.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Mike Eddy
Revision #: 67 Page: 73 of 25 Printed: 10/02/00 04:15 PM

BT/BTC/BTR/BTS Bit Tests
80386–80486 Only Copies the value of a specified bit into the carry flag, where
it can be tested by a JC or JNC instruction. The destination operand specifies
the value in which the bit is located; the source operand specifies the bit
position. BT simply copies the bit to the flag. BTC copies the bit and
complements (toggles) it in the destination. BTR copies the bit and resets
(clears) it in the destination. BTS copies the bit and sets it in the destination.

 O D I T S Z A P C
 ±

00001111 10111010 mod, BBB*,r/m disp (0, 1, 2, or 4) data (1)

Syntax Examples CPU Clock Cycles

BT reg16,immed8† bt ax,4 88/86
286
386
486

—
—
3
3

BTC reg16,immed8†
BTR reg16,immed8†
BTS reg16,immed8†

bts ax,4
btr bx,17
btc edi,4

88/86
286
386
486

—
—
6
6

BT mem16,immed8† btr DWORD PTR
[si],27
btc color[di],4

88/86
286
386
486

—
—
6
3

BTC mem16,immed8†
BTR mem16,immed8†
BTS mem16,immed8†

btc DWORD PTR
[bx],27
btc maskit,4
btr color[di],4

88/86
286
386
486

—
—
8
8

00001111 10BBB011* mod, reg, r/m disp (0, 1, 2, or 4)

Syntax Examples CPU Clock Cycles

BT reg16,reg16† bt ax,bx 88/86
286
386
486

—
—
3
3

BTC reg16,reg16†
BTR reg16,reg16†
BTS reg16,reg16†

btc eax,ebx
bts bx,ax
btr cx,di

88/86
286
386
486

—
—
6
6

Flags

Encoding

Encoding

74 CALL Call Procedure

Filename: LMARFC04.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Mike Eddy
Revision #: 67 Page: 74 of 26 Printed: 10/02/00 04:15 PM

Syntax Examples CPU Clock Cycles

BT mem16,reg16† bt [bx],dx 88/86
286
386
486

—
—
12
8

BTC mem16,reg16†
BTR mem16,reg16†
BTS mem16,reg16†

bts flags[bx],cx
btr rotate,cx
btc [bp+8],si

88/86
286
386
486

—
—
13
13

* BBB is 100 for BT, 111 for BTC, 110 for BTR, and 101 for BTS.

† Operands also can be 32 bits (reg32 and mem32).

CALL Call Procedure
Calls a procedure. The instruction pushes the address of the next instruction
onto the stack and jumps to the address specified by the operand. For NEAR
calls, the offset (IP) is pushed and the new offset is loaded into IP.

For FAR calls, the segment (CS) is pushed and the new segment is loaded into
CS. Then the offset (IP) is pushed and the new offset is loaded into IP. A
subsequent RET instruction can pop the address so that execution continues
with the instruction following the call.

 No change

11101000 disp (2)

Syntax Examples CPU Clock Cycles

CALL label call upcase 88/86
286
386
486

19 (88=23)
7+m
7+m
3

10011010 disp (4)

Syntax Examples CPU Clock Cycles

CALL label call FAR PTR job
call distant

88/86
286
386
486

28 (88=36)
13+m,pm=26+m*
17+m,pm=34+m*
18,pm=20*

Flags

Encoding

Encoding

 CBW Convert Byte to Word 75

Filename: LMARFC04.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Mike Eddy
Revision #: 67 Page: 75 of 27 Printed: 10/02/00 04:15 PM

11111111 mod,010,r/m

Syntax Examples CPU Clock Cycles

CALL reg call ax 88/86
286
386
486

16 (88=20)
7+m
7+m
5

CALL mem16 call pointer 88/86 21+EA (88=29+EA)

CALL mem32† call [bx] 286
386
486

11+m
10+m
5

11111111 mod,011,r/m

Syntax Examples CPU Clock Cycles

CALL mem32 call far_table[di] 88/86 37+EA (88=53+EA)

CALL mem48† call DWORD PTR [bx] 286
386
486

16+m,pm=29+m*
22+m,pm=38+m*
17,pm=20*

* Timings for calls through call and task gates are not shown, since they are used primarily in
operating systems.

† 80386–80486 32-bit addressing mode only.

CBW Convert Byte to Word
Converts a signed byte in AL to a signed word in AX by extending the sign bit
of AL into all bits of AH.

 No change

10011000*

Syntax Examples CPU Clock Cycles

CBW cbw 88/86
286
386
486

2
2
3
3

* CBW and CWDE have the same encoding with two exceptions: in 32-bit mode, CBW is preceded
by the operand-size byte (66h) but CWDE is not; in 16-bit mode, CWDE is preceded by the
operand-size byte but CBW is not.

Encoding

Encoding

Flags

Encoding

76 CDQ Convert Double to Quad

Filename: LMARFC04.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Mike Eddy
Revision #: 67 Page: 76 of 28 Printed: 10/02/00 04:15 PM

CDQ Convert Double to Quad
80386–80486 Only Converts the signed doubleword in EAX to a signed
quadword in the EDX:EAX register pair by extending the sign bit of EAX into
all bits of EDX.

 No change

10011001*

Syntax Examples CPU Clock Cycles

CDQ cdq 88/86
286
386
486

—
—
2
3

* CWD and CDQ have the same encoding with two exceptions: in 32-bit mode, CWD is preceded by
the operand-size byte (66h) but CDQ is not; in 16-bit mode, CDQ is preceded by the operand-size
byte but CWD is not.

CLC Clear Carry Flag
Clears the carry flag.

 O D I T S Z A P C
 0

11111000

Syntax Examples CPU Clock Cycles

CLC clc 88/86
286
386
486

2
2
2
2

Flags

Encoding

Flags

Encoding

 CLTS Clear Task-Switched Flag 77

Filename: LMARFC04.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Mike Eddy
Revision #: 67 Page: 77 of 29 Printed: 10/02/00 04:15 PM

CLD Clear Direction Flag
Clears the direction flag. All subsequent string instructions will process up (from
low addresses to high addresses) by increasing the appropriate index registers.

 O D I T S Z A P C
 0

11111100

Syntax Examples CPU Clock Cycles

CLD cld 88/86
286
386
486

2
2
2
2

CLI Clear Interrupt Flag
Clears the interrupt flag. When the interrupt flag is cleared, maskable interrupts
are not recognized until the flag is set again with the STI instruction. In
protected mode, CLI clears the flag only if the current task’s privilege level is
less than or equal to the value of the IOPL flag. Otherwise, a general-protection
fault occurs.

 O D I T S Z A P C
 0

11111010

Syntax Examples CPU Clock Cycles

CLI cli 88/86
286
386
486

2
3
3
5

CLTS Clear Task-Switched Flag
80286–80486 Privileged Only Clears the task-switched flag in the Machine
Status Word (MSW) of the 80286, or the CR0 register of the 80386–80486.
This instruction can be used only in system software executing at privilege level

Flags

Encoding

Flags

Encoding

78 CMC Complement Carry Flag

Filename: LMARFC04.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Mike Eddy
Revision #: 67 Page: 78 of 30 Printed: 10/02/00 04:15 PM

0. See Intel documentation for details on the task-switched flag and other
privileged-mode concepts.

 No change

00001111 00000110

Syntax Examples CPU Clock Cycles

CLTS clts 88/86
286
386
486

—
2
5
7

CMC Complement Carry Flag
Complements (toggles) the carry flag.

 O D I T S Z A P C
 ±

11110101

Syntax Examples CPU Clock Cycles

CMC cmc 88/86
286
386
486

2
2
2
2

CMP Compare Two Operands
Compares two operands as a test for a subsequent conditional-jump or set
instruction. CMP does this by subtracting the source operand from the
destination operand and setting the flags according to the result. CMP is the
same as the SUB instruction, except that the result is not stored.

 O D I T S Z A P C
± ± ± ± ± ±

Flags

Encoding

Flags

Encoding

Flags

 CMP Compare Two Operands 79

Filename: LMARFC04.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Mike Eddy
Revision #: 67 Page: 79 of 31 Printed: 10/02/00 04:15 PM

001110dw mod, reg, r/m disp (0, 1, or 2)

Syntax Examples CPU Clock Cycles

CMP reg,reg cmp di,bx
cmp dl,cl

88/86
286
386
486

3
2
2
1

CMP mem,reg cmp maximum,dx
cmp array[si],bl

88/86
286
386
486

9+EA
(W88=13+EA)
7
5
2

CMP reg,mem cmp dx,minimum
cmp bh,array[si]

88/86
286
386
486

9+EA
(W88=13+EA)
6
6
2

100000sw mod, 111,r/m disp (0, 1, or 2) data (1 or 2)

Syntax Examples CPU Clock Cycles

CMP reg,immed cmp bx,24 88/86
286
386
486

4
3
2
1

CMP mem,immed cmp WORD PTR [di],4
cmp tester,4000

88/86
286
386
486

10+EA
(W88=14+EA)
6
5
2

0011110w data (1 or 2)

Syntax Examples CPU Clock Cycles

CMP accum,immed cmp ax,1000 88/86
286
386
486

4
3
2
1

Encoding

Encoding

Encoding

80 CMPS/CMPSB/CMPSW/CMPSD Compare String

Filename: LMARFC04.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Mike Eddy
Revision #: 67 Page: 80 of 32 Printed: 10/02/00 04:15 PM

CMPS/CMPSB/CMPSW/CMPSD Compare String
Compares two strings. DS:SI must point to the source string and ES:DI must
point to the destination string (even if operands are given). For each comparison,
the destination element is subtracted from the source element and the flags are
updated to reflect the result (although the result is not stored). DI and SI are
adjusted according to the size of the operands and the status of the direction
flag. They are increased if the direction flag has been cleared with CLD, or
decreased if the direction flag has been set with STD.

If the CMPS form of the instruction is used, operands must be provided to
indicate the size of the data elements to be processed. A segment override can
be given for the source (but not for the destination). If CMPSB (bytes),
CMPSW (words), or CMPSD (doublewords on the 80386–80486 only) is
used, the instruction determines the size of the data elements to be processed.

CMPS and its variations are normally used with repeat prefixes. REPNE (or
REPNZ) is used to find the first match between two strings. REPE (or REPZ)
is used to find the first mismatch. Before the comparison, CX should contain the
maximum number of elements to compare. After a REPNE CMPS, the zero
flag is clear if no match was found. After a REPE CMPS, the zero flag is set if
no mismatch was found.

When the instruction finishes, ES:DI and DS:SI point to the element that follows
(if the direction flag is clear) or precedes (if the direction flag is set) the match or
mismatch. If CX decrements to 0, ES:DI and DS:SI point to the element that
follows or precedes the last comparison. The zero flag is set or clear according
to the result of the last comparison, not according to the value of CX.

 O D I T S Z A P C
± ± ± ± ± ±

1010011w

Syntax Examples CPU Clock Cycles

CMPS [[segreg:]] src, [[ES:]] dest
CMPSB [[[[segreg:[[src,]]ES:]] dest]]
CMPSW [[[[segreg:[[src,]]ES:]] dest]]
CMPSD [[[[segreg:[[src,]]ES:]] dest]]

cmps source,es:dest
repne cmpsw
repe cmpsb
repne cmpsd

88/86
286
386
486

22 (W88=30)
8
10
8

Flags

Encoding

 CWD Convert Word to Double 81

Filename: LMARFC04.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Mike Eddy
Revision #: 67 Page: 81 of 33 Printed: 10/02/00 04:15 PM

CMPXCHG Compare and Exchange
80486 Only Compares the destination operand to the accumulator (AL, AX, or
EAX). If equal, the source operand is copied to the destination. Otherwise, the
destination is copied to the accumulator. The instruction sets flags according to
the result of the comparison.

 O D I T S Z A P C
± ± ± ± ± ±

00001111 1011000b mod, reg, r/m disp (0, 1, or 2)

Syntax Examples CPU Clock Cycles

CMPXCHG mem,reg cmpxchg warr[bx],cx
cmpxchg string,bl

88/86
286
386
486

—
—
—
7–10

CMPXCHG reg,reg cmpxchg dl,cl
cmpxchg bx,dx

88/86
286
386
486

—
—
—
6

CWD Convert Word to Double
Converts the signed word in AX to a signed doubleword in the DX:AX register
pair by extending the sign bit of AX into all bits of DX.

 O D I T S Z A P C
± ± ± ± ± ±

10011001*

Syntax Examples CPU Clock Cycles

CWD cwd 88/86
286
386
486

5
2
2
3

* CWD and CDQ have the same encoding with two exceptions: in 32-bit mode, CWD is preceded by
the operand-size byte (66h) but CDQ is not; in 16-bit mode, CDQ is preceded by the operand-size
byte but CWD is not.

Flags

Encoding

Flags

Encoding

82 CWDE Convert Word to Extended Double

Filename: LMARFC04.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Mike Eddy
Revision #: 67 Page: 82 of 34 Printed: 10/02/00 04:15 PM

CWDE Convert Word to Extended Double
80386–80486 Only Converts a signed word in AX to a signed doubleword in
EAX by extending the sign bit of AX into all bits of EAX.

 No change

10011000*

Syntax Examples CPU Clock Cycles

CWDE cwde 88/86
286
386
486

—
—
3
3

* CBW and CWDE have the same encoding with two exceptions: in 32-bit mode, CBW is preceded
by the operand-size byte (66h) but CWDE is not; in 16-bit mode, CWDE is preceded by the
operand-size byte but CBW is not.

DAA Decimal Adjust After Addition
Adjusts the result of an addition to a packed BCD number (less than 100
decimal). The previous addition instruction should place its 8-bit binary sum in
AL. DAA converts this binary sum to packed BCD format with the least
significant decimal digit in the lower four bits and the most significant digit in the
upper four bits. If the sum is greater than 99h after adjustment, the carry and
auxiliary carry flags are set. Otherwise, the carry and auxiliary carry flags are
cleared.

 O D I T S Z A P C
? ± ± ± ± ±

00100111

Syntax Examples CPU Clock Cycles

DAA daa 88/86
286
386
486

4
3
4
2

Flags

Encoding

Flags

Encoding

 DEC Decrement 83

Filename: LMARFC04.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Mike Eddy
Revision #: 67 Page: 83 of 35 Printed: 10/02/00 04:15 PM

DAS Decimal Adjust After Subtraction
Adjusts the result of a subtraction to a packed BCD number (less than 100
decimal). The previous subtraction instruction should place its 8-bit binary result
in AL. DAS converts this binary sum to packed BCD format with the least
significant decimal digit in the lower four bits and the most significant digit in the
upper four bits. If the sum is greater than 99h after adjustment, the carry and
auxiliary carry flags are set. Otherwise, the carry and auxiliary carry flags are
cleared.

 O D I T S Z A P C
? ± ± ± ± ±

00101111

Syntax Examples CPU Clock Cycles

DAS das 88/86
286
386
486

4
3
4
2

DEC Decrement
Subtracts 1 from the destination operand. Because the operand is treated as an
unsigned integer, the DEC instruction does not affect the carry flag. To detect
any effects on the carry flag, use the SUB instruction.

 O D I T S Z A P C
± ± ± ± ±

1111111w mod, 001,r/m disp (0, 1, or 2)

Syntax Examples CPU Clock Cycles

DEC reg8 dec cl 88/86
286
386
486

3
2
2
1

DEC mem dec counter 88/86
286
386
486

15+EA (W88=23+EA)
7
6
3

Flags

Encoding

Flags

Encoding

84 DIV Unsigned Divide

Filename: LMARFC04.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Mike Eddy
Revision #: 67 Page: 84 of 36 Printed: 10/02/00 04:15 PM

01001 reg

Syntax Examples CPU Clock Cycles

DEC reg16 dec ax 88/86 3

DEC reg32* 286
386
486

2
2
1

* 80386–80486 only.

DIV Unsigned Divide
Divides an implied destination operand by a specified source operand. Both
operands are treated as unsigned numbers. If the source (divisor) is 16 bits wide,
the implied destination (dividend) is the DX:AX register pair. The quotient goes
into AX and the remainder into DX. If the source is 8 bits wide, the implied
destination operand is AX. The quotient goes into AL and the remainder into
AH. On the 80386–80486, if the source is EAX, the quotient goes into EAX and
the remainder into EDX.

 O D I T S Z A P C
? ? ? ? ? ?

1111011w mod, 110,r/m disp (0, 1, or 2)

Syntax Examples CPU Clock Cycles

DIV reg div cx
div dl

88/86
286
386
486

b=80–90,w=144–162
b=14,w=22
b=14,w=22,d=38
b=16,w=24,d=40

DIV mem div [bx]
div fsize

88/86

286
386
486

(b=86–96,w=150–
168)+EA*
b=17,w=25
b=17,w=25,d=41
b=16,w=24,d=40

* Word memory operands on the 8088 take (158–176)+EA clocks.

Encoding

Flags

Encoding

 HLT Halt 85

Filename: LMARFC04.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Mike Eddy
Revision #: 67 Page: 85 of 37 Printed: 10/02/00 04:15 PM

ENTER Make Stack Frame
80286-80486 Only Creates a stack frame for a procedure that receives
parameters passed on the stack. When immed16 is 0, ENTER is equivalent to
push bp, followed by mov bp,sp. The first operand of the ENTER
instruction specifies the number of bytes to reserve for local variables. The
second operand specifies the nesting level for the procedure. The nesting level
should be 0 for languages that do not allow access to local variables of higher-
level procedures (such as C, Basic, and FORTRAN). See the complementary
instruction LEAVE for a method of exiting from a procedure.

 No change

11001000 data (2) data (1)

Syntax Examples CPU Clock Cycles

ENTER immed16,0 enter 4,0 88/86
286
386
486

—
11
10
14

ENTER immed16,1 enter 0,1 88/86
286
386
486

—
15
12
17

ENTER immed16,immed8 enter 6,4 88/86
286
386
486

—
12+4(n – 1)
15+4(n – 1)
17+3n

HLT Halt
Stops CPU execution until an interrupt restarts execution at the instruction
following HLT. In protected mode, this instruction works only in privileged
mode.

 No change

Flags

Encoding

Flags

86 HLT Halt

Filename: LMARFC04.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Mike Eddy
Revision #: 67 Page: 86 of 38 Printed: 10/02/00 04:15 PM

11110100

Syntax Examples CPU Clock Cycles

HLT hlt 88/86
286
386
486

2
2
5
4

Encoding

 IMUL Signed Multiply 87

Filename: LMARFC04.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Mike Eddy
Revision #: 67 Page: 87 of 39 Printed: 10/02/00 04:15 PM

IDIV Signed Divide
Divides an implied destination operand by a specified source operand. Both
operands are treated as signed numbers. If the source (divisor) is 16 bits wide,
the implied destination (dividend) is the DX:AX register pair. The quotient goes
into AX and the remainder into DX. If the source is 8 bits wide, the implied
destination is AX. The quotient goes into AL and the remainder into AH. On the
80386–80486, if the source is EAX, the quotient goes into EAX and the
remainder into EDX.

 O D I T S Z A P C
? ? ? ? ? ?

1111011w mod, 111,r/m disp (0, 1, or 2)

Syntax Examples CPU Clock Cycles

IDIV reg idiv bx
idiv dl

88/86

286
386
486

b=101–112,w=
165–184
b=17,w=25
b=19,w=27,d=43
b=19,w=27,d=43

IDIV mem idiv itemp 88/86

286
386
486

(b=107–118,w=171–
190)+EA*
b=20,w=28
b=22,w=30,d=46
b=20,w=28,d=44

* Word memory operands on the 8088 take (175–194)+EA clocks.

IMUL Signed Multiply
Multiplies an implied destination operand by a specified source operand. Both
operands are treated as signed numbers. If a single 16-bit operand is given, the
implied destination is AX and the product goes into the DX:AX register pair. If a
single 8-bit operand is given, the implied destination is AL and the product goes
into AX. On the 80386–80486, if the operand is EAX, the product goes into the
EDX:EAX register pair. The carry and overflow flags are set if the product is
sign-extended into DX for 16-bit operands, into AH for 8-bit operands, or into
EDX for 32-bit operands.

Flags

Encoding

88 IMUL Signed Multiply

Filename: LMARFC04.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Mike Eddy
Revision #: 67 Page: 88 of 40 Printed: 10/02/00 04:15 PM

Two additional syntaxes are available on the 80186–80486 processors. In the
two-operand form, a 16-bit register gives one of the factors and serves as the
destination for the result; a source constant specifies the other factor. In the
three-operand form, the first operand is a 16-bit register where the result will be
stored, the second is a 16-bit register or memory operand containing one of the
factors, and the third is a constant representing the other factor. With both
variations, the overflow and carry flags are set if the result is too large to fit into
the 16-bit destination register. Since the low 16 bits of the product are the same
for both signed and unsigned multiplication, these syntaxes can be used for
either signed or unsigned numbers. On the 80386–80486, the operands can be
either 16 or 32 bits wide.

A fourth syntax is available on the 80386–80486. Both the source and
destination operands can be given specifically. The source can be any 16- or 32-
bit memory operand or general-purpose register. The destination can be any
general-purpose register of the same size. The overflow and carry flags are set if
the product does not fit in the destination.

 O D I T S Z A P C
± ? ? ? ? ±

1111011w mod, 101,r/m disp (0, 1, or 2)

Syntax Examples CPU Clock Cycles

IMUL reg imul dx 88/86
286
386
486

b=80–98,w=128–154
b=13,w=21
b=9–14,w=9–22,d=9–38*
b=13–18,w=13–26,d=13–42

IMUL mem imul factor 88/86
286
386
486

(b=86–104,w=134–160)+EA†
b=16,w=24
b=12–17,w=12–25,d=12–41*
b=13–18,w=13–26, d=13–42

* The 80386–80486 processors have an early-out multiplication algorithm. Therefore, multiplying an

8-bit or 16-bit value in EAX takes the same time as multiplying the value in AL or AX.

† Word memory operands on the 8088 take (138–164)+EA clocks.

011010s1 mod, reg, r/m disp (0, 1, or 2) data (1 or 2)

Syntax Examples CPU Clock Cycles

IMUL reg16,immed
IMUL reg32,immed*

imul cx,25 88/86
286
386
486

—
21
b=9–14,w=9–22,d=9–38†
b=13–18,w=13–26,d=13–42

Flags

Encoding

Encoding

 IMUL Signed Multiply 89

Filename: LMARFC04.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Mike Eddy
Revision #: 67 Page: 89 of 41 Printed: 10/02/00 04:15 PM

IMUL reg16,reg16,immed
IMUL reg32,reg32,immed*

imul
dx,ax,18

88/86
286
386
486

—
21
b=9–14,w=9–22,d=9–38†
b=13–18,w=13–26,d=13–42

90 IN Input from Port

Filename: LMARFC04.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Mike Eddy
Revision #: 67 Page: 90 of 42 Printed: 10/02/00 04:15 PM

Syntax Examples CPU Clock Cycles

IMUL reg16,mem16,immed
IMUL reg32,mem32,immed*

imul
bx,[si],60

88/86
286
386
486

—
24
b=12–17,w=12–25,d=12–41†
b=13–18,w=13–26,d=13–42

00001111 10101111 mod,reg,r/m disp (0, 1, or 2)

Syntax Examples CPU Clock Cycles

IMUL reg16,reg16
IMUL reg32,reg32*

imul cx,ax 88/86
286
386
486

—
—
w=9–22,d=9–38
b=13–18,w=13–26,d=13–42

IMUL reg16,mem16
IMUL reg32,mem32*

imul
dx,[si]

88/86
286
386
486

—
—
w=12–25,d=12–41
b=13–18,w=13–26,d=13–42

* 80386–80486 only.

† The variations depend on the source constant size; destination size is not a factor.

IN Input from Port
Transfers a byte or word (or doubleword on the 80386–80486) from a port to
the accumulator register. The port address is specified by the source operand,
which can be DX or an 8-bit constant. Constants can be used only for port
numbers less than 255; use DX for higher port numbers. In protected mode, a
general-protection fault occurs if IN is used when the current privilege level is
greater than the value of the IOPL flag.

 No change

1110010w data (1)

Syntax Examples CPU Clock Cycles

IN accum,immed in ax,60h 88/86
286
386
486

10 (W88=14)
5
12,pm=6,26*
14,pm=9,29*†

Encoding

Flags

Encoding

 INC Increment 91

Filename: LMARFC04.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Mike Eddy
Revision #: 67 Page: 91 of 43 Printed: 10/02/00 04:15 PM

1110110w

Syntax Examples CPU Clock Cycles

IN accum,DX in ax,dx
in al,dx

88/86
286
386
486

8 (W88=12)
5
13,pm=7,27*
14,pm=8,28*†

* First protected-mode timing: CPL ≤ IOPL. Second timing: CPL > IOPL.

† Takes 27 clocks in virtual 8086 mode.

INC Increment
Adds 1 to the destination operand. Because the operand is treated as an
unsigned integer, the INC instruction does not affect the carry flag. If a signed
carry requires detection, use the ADD instruction.

 O D I T S Z A P C
± ± ± ± ±

1111111w mod,000,r/m disp (0, 1, or 2)

Syntax Examples CPU Clock Cycles

INC reg8 inc cl 88/86
286
386
486

3
2
2
1

INC mem inc vpage 88/86
286
386
486

15+EA (W88=23+EA)
7
6
3

01000 reg

Syntax Examples CPU Clock Cycles

INC reg16
INC reg32*

inc bx 88/86
286
386
486

3
2
2
1

* 80386–80486 only.

Encoding

Flags

Encoding

Encoding

92 INS/INSB/INSW/INSD Input from Port to String

Filename: LMARFC04.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Mike Eddy
Revision #: 67 Page: 92 of 44 Printed: 10/02/00 04:15 PM

INS/INSB/INSW/INSD Input from Port to String
80286-80486 Only Receives a string from a port. The string is considered the
destination and must be pointed to by ES:DI (even if an operand is given). The
input port is specified in DX. For each element received, DI is adjusted
according to the size of the operand and the status of the direction flag. DI is
increased if the direction flag has been cleared with CLD or decreased if the
direction flag has been set with STD.

If the INS form of the instruction is used, a destination operand must be
provided to indicate the size of the data elements to be processed, and DX must
be specified as the source operand containing the port number. A segment
override is not allowed. If INSB (bytes), INSW (words), or INSD (doublewords
on the 80386–80486 only) is used, the instruction determines the size of the
data elements to be received.

INS and its variations are normally used with the REP prefix. Before the
repeated instruction is executed, CX should contain the number of elements to
be received. In protected mode, a general-protection fault occurs if INS is used
when the current privilege level is greater than the value of the IOPL flag.

No change

0110110w

Syntax Examples CPU Clock Cycles

INS [[ES:]] dest, DX ins es:instr,dx 88/86 —

INSB [[[[ES:]] dest, DX]] rep insb 286 5

INSW [[[[ES:]] dest, DX]] rep insw 386 15,pm=9,29*

INSD [[[[ES:]] dest, DX]] rep insd 486 17,pm=10,32*

* First protected-mode timing: CPL ≤ IOPL. Second timing: CPL > IOPL.

INT Interrupt
Generates a software interrupt. An 8-bit constant operand (0 to 255) specifies
the interrupt procedure to be called. The call is made by indexing the interrupt
number into the Interrupt Vector Table (IVT) starting at segment 0, offset 0. In
real mode, the IVT contains 4-byte pointers to interrupt procedures. In
privileged mode, the IVT contains 8-byte pointers.

When an interrupt is called in real mode, the flags, CS, and IP are pushed onto
the stack (in that order), and the trap and interrupt flags are cleared. STI can be

Flags

Encoding

 INTO Interrupt on Overflow 93

Filename: LMARFC04.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Mike Eddy
Revision #: 67 Page: 93 of 45 Printed: 10/02/00 04:15 PM

used to restore interrupts. See Intel documentation and the documentation for
your operating system for details on using and defining interrupts in privileged
mode. To return from an interrupt, use the IRET instruction.

 O D I T S Z A P C
 0 0

11001101 data (1)

Syntax Examples CPU Clock Cycles

INT immed8 int 25h 88/86
286
386
486

51 (88=71)
23+m,pm=(40,78)+m*
37,pm=59,99*
30,pm=44,71*

11001100

Syntax Examples CPU Clock Cycles

INT 3 int 3 88/86
286
386
486

52 (88=72)
23+m,pm=(40,78)+m*
33,pm=59,99*
26,pm=44,71*

* The first protected-mode timing is for interrupts to the same privilege level. The second is for

interrupts to a higher privilege level. Timings for interrupts through task gates are not shown.

INTO Interrupt on Overflow
Generates Interrupt 4 if the overflow flag is set. The default MS-DOS behavior
for Interrupt 4 is to return without taking any action. For INTO to have any
effect, you must define an interrupt procedure for Interrupt 4.

 O D I T S Z A P C
 ± ±

11001110

Syntax Examples CPU Clock Cycles

INTO into 88/86
286

386
486

53 (88=73),noj=4
24+m,noj=3,pm=(40,
78)+m*
35,noj=3,pm=59,99*
28,noj=3,pm=46,73*

* The first protected-mode timing is for interrupts to the same privilege level. The second is for

interrupts to a higher privilege level. Timings for interrupts through task gates are not shown.

Flags

Encoding

Encoding

Flags

Encoding

94 INVD Invalidate Data Cache

Filename: LMARFC04.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Mike Eddy
Revision #: 67 Page: 94 of 46 Printed: 10/02/00 04:15 PM

INVD Invalidate Data Cache
80486 Only Empties contents of the current data cache without writing changes
to memory. Proper use of this instruction requires knowledge of how contents
are placed in the cache. INVD is intended primarily for system programming.
See Intel documentation for details.

 No change

00001111 00001000

Syntax Examples CPU Clock Cycles

INVD invd 88/86
286
386
486

—
—
—
4

INVLPG Invalidate TLB Entry
80486 Only Invalidates an entry in the Translation Lookaside Buffer (TLB),
used by the demand-paging mechanism in virtual-memory operating systems.
The instruction takes a single memory operand and calculates the effective
address of the operand, including the segment address. If the resulting address is
mapped by any entry in the TLB, this entry is removed. Proper use of
INVLPG requires understanding the hardware-supported demand-paging
mechanism. INVLPG is intended primarily for system programming. See Intel
documentation for details.

 No change

00001111 00000001 mod, reg, r/m disp (2)

Syntax Examples CPU Clock Cycles

INVLPG invlpg pointer[bx]
invlpg es:entry

88/86
286
386
486

—
—
—
12*

* 11 clocks if address is not mapped by any TLB entry.

Flags

Encoding

Flags

Encoding

 Jcondition Jump Conditionally 95

Filename: LMARFC04.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Mike Eddy
Revision #: 67 Page: 95 of 47 Printed: 10/02/00 04:15 PM

IRET/IRETD Interrupt Return
Returns control from an interrupt procedure to the interrupted code. In real
mode, the IRET instruction pops IP, CS, and the flags (in that order) and
resumes execution. See Intel documentation for details on IRET operation in
privileged mode. On the 80386–80486, the IRETD instruction should be used to
pop a 32-bit instruction pointer when returning from an interrupt called from a
32-bit segment. The F suffix prevents epilogue code from being generated when
ending a PROC block. Use it to terminate interrupt service procedures.

 O D I T S Z A P C
± ± ± ± ± ± ± ± ±

11001111

Syntax Examples CPU Clock Cycles

IRET iret 88/86 32 (88=44)

IRETD* 286 17+m,pm=(31,55)+m†

IRETF 386 22,pm=38,82†

IRETDF* 486 15,pm=20,36

* 80386–80486 only.

† The first protected-mode timing is for interrupts to the same privilege level within a task. The
second is for interrupts to a higher privilege level within a task. Timings for interrupts through task
gates are not shown.

Jcondition Jump Conditionally
Transfers execution to the specified label if the flags condition is true. The
condition is tested by checking the flags shown in the table on the following
page. If condition is false, no jump is taken and program execution continues at
the next instruction. On the 8086–80286 processors, the label given as the
operand must be short (between –128 and +127 bytes from the instruction
following the jump).* The 80386–80486 processors allow near jumps (–32,768
to +32,767 bytes). On the 80386–80486, the assembler generates the shortest
jump possible, unless the jump size is explicitly specified.

When the 80386–80486 processors are in FLAT memory model, short jumps
range from –128 to +127 bytes and near jumps range from –2 to +2 gigabytes.
There are no far jumps.

 No change

Flags

Encoding

Flags

96 Jcondition Jump Conditionally

Filename: LMARFC04.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Mike Eddy
Revision #: 67 Page: 96 of 48 Printed: 10/02/00 04:15 PM

0111cond disp (1)

Syntax Examples CPU Clock Cycles

Jcondition label jg bigger
jo SHORT too_big
jpe p_even

88/86
286
386
486

16,noj=4
7+m,noj=3
7+m,noj=3
3,noj=1

00001111 1000cond disp (2)

Syntax Examples CPU Clock Cycles

Jcondition label† je next
jnae lesser
js negative

88/86
286
386
486

—
—
7+m,noj=3
3,noj=1

* If a source file for an 8086–80286 program contains a conditional jump outside the range of –128 to
+127 bytes, the assembler emits a level 3 warning and generates two instructions (including an
unconditional jump) that are the equivalent of the desired instruction. This behavior can be enabled
and disabled with the OPTION LJMP and OPTION NOLJMP directives.

† Near labels are only available on the 80386–80486. They are the default.

Opcode* Mnemonic Flags Checked Description

size 0010 JB/JNAE CF=1 Jump if below/not above or equal
(unsigned comparisons)

size 0011 JAE/JNB CF=0 Jump if above or equal/not below
(unsigned comparisons)

size 0110 JBE/JNA CF=1 or ZF=1 Jump if below or equal/not above
(unsigned comparisons)

size 0111 JA/JNBE CF=0 and ZF=0 Jump if above/not below or equal
(unsigned comparisons)

size 0100 JE/JZ ZF=1 Jump if equal (zero)

size 0101 JNE/JNZ ZF=0 Jump if not equal (not zero)

size 1100 JL/JNGE SF_OF Jump if less/not greater or equal (signed
comparisons)

size 1101 JGE/JNL SF=OF Jump if greater or equal/not less (signed
comparisons)

size 1110 JLE/JNG ZF=1 or SF_OF Jump if less or equal/not greater (signed
comparisons)

size 1111 JG/JNLE ZF=0 and
SF=OF

Jump if greater/not less or equal (signed
comparisons)

size 1000 JS SF=1 Jump if sign

size 1001 JNS SF=0 Jump if not sign

Encoding

Encoding

Jump Conditions

 JMP Jump Unconditionally 97

Filename: LMARFC04.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Mike Eddy
Revision #: 67 Page: 97 of 49 Printed: 10/02/00 04:15 PM

Opcode* Mnemonic Flags Checked Description

size 0010 JC CF=1 Jump if carry

size 0011 JNC CF=0 Jump if not carry

size 0000 JO OF=1 Jump if overflow

size 0001 JNO OF=0 Jump if not overflow

size 1010 JP/JPE PF=1 Jump if parity/parity even

size 1011 JNP/JPO PF=0 Jump if no parity/parity odd

* The size bits are 0111 for short jumps or 1000 for 80386–80486 near jumps.

JCXZ/JECXZ Jump if CX is Zero
Transfers program execution to the specified label if CX is 0. On the 80386–
80486, JECXZ can be used to jump if ECX is 0. If the count register is not 0,
execution continues at the next instruction. The label given as the operand must
be short (between –128 and +127 bytes from the instruction following the
jump).

 No change

11100011 disp (1)

Syntax Examples CPU Clock Cycles

JCXZ label
JECXZ label*

jcxz not found 88/86
286
386
486

18,noj=6
8+m,noj=4
9+m,noj=5
8,noj=5

* 80386–80486 only.

JMP Jump Unconditionally
Transfers program execution to the address specified by the destination operand.
Jumps are near (between –32,768 and +32,767 bytes from the instruction
following the jump), or short (between –128 and +127 bytes), or far (in a
different code segment). Unless a distance is explicitly specified, the assembler
selects the shortest possible jump. With near and short jumps, the operand
specifies a new IP address. With far jumps, the operand specifies new IP and
CS addresses.

Flags

Encoding

98 JMP Jump Unconditionally

Filename: LMARFC04.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Mike Eddy
Revision #: 67 Page: 98 of 50 Printed: 10/02/00 04:15 PM

When the 80386–80486 processors are in FLAT memory model, short jumps
range from –128 to +127 bytes and near jumps range from –2 to +2 gigabytes.

 No change

11101011 disp (1)

Syntax Examples CPU Clock Cycles

JMP label jmp SHORT exit 88/86
286
386
486

15
7+m
7+m
3

11101001 disp (2*)

Syntax Examples CPU Clock Cycles

JMP label jmp close
jmp NEAR PTR distant

88/86
286
386
486

15
7+m
7+m
3

11101010 disp (4*)

Syntax Examples CPU Clock Cycles

JMP label jmp FAR PTR close
jmp distant

88/86
286
386
486

15
11+m,pm=23+m†
12+m,pm=27+m†
17,pm=19†

11111111 mod,100,r/m disp (0 or 2)

Syntax Examples CPU Clock Cycles

JMP reg16
JMP mem32§

jmp ax 88/86
286
386
486

11
7+m
7+m
5

JMP mem16
JMP mem32§

jmp WORD PTR [bx]
jmp table[di]
jmp DWORD PTR [si]

88/86
286
386
486

18+EA
11+m
10+m
5

Flags

Encoding

Encoding

Encoding

Encoding

 LAR Load Access Rights 99

Filename: LMARFC04.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Mike Eddy
Revision #: 67 Page: 99 of 51 Printed: 10/02/00 04:15 PM

11111111 mod,101,r/m disp (4*)

Syntax Examples CPU Clock Cycles

JMP mem32
JMP mem48§

jmp fpointer[si]
jmp DWORD PTR [bx]
jmp FWORD PTR [di]

88/86
286
386
486

24+EA
15+m,pm=26+m
12+m,pm=27+m
13,pm=18

* On the 80386–80486, the displacement can be 4 bytes for near jumps or 6 bytes for far jumps.

† Timings for jumps through call or task gates are not shown, since they are normally used only in
operating systems.

§ 80386–80486 only. You can use DWORD PTR to specify near register-indirect jumps or FWORD

PTR to specify far register-indirect jumps.

LAHF Load Flags into AH Register
Transfers bits 0 to 7 of the flags register to AH. This includes the carry, parity,
auxiliary carry, zero, and sign flags, but not the trap, interrupt, direction, or
overflow flags.

 No change

10011111

Syntax Examples CPU Clock Cycles

LAHF lahf 88/86
286
386
486

4
2
2
3

LAR Load Access Rights
80286-80486 Protected Only Loads the access rights of a selector into a
specified register. The source operand must be a register or memory operand
containing a selector. The destination operand must be a register that will receive
the access rights if the selector is valid and visible at the current privilege level.
The zero flag is set if the access rights are transferred, or cleared if they are not.
See Intel documentation for details on selectors, access rights, and other
privileged-mode concepts.

Encoding

Flags

Encoding

100 LDS/LES/LFS/LGS/LSS Load Far Pointer

Filename: LMARFC04.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Mike Eddy
Revision #: 67 Page: 100 of 52 Printed: 10/02/00 04:15 PM

 O D I T S Z A P C
 ±

00001111 00000010 mod, reg, r/m disp (0, 1, 2, or 4)

Syntax Examples CPU Clock Cycles

LAR reg16,reg16
LAR reg32,reg32*

lar ax,bx 88/86
286
386
486

—
14
15
11

LAR reg16,mem16
LAR reg32,mem32*

lar cx,selector 88/86
286
386
486

—
16
16
11

* 80386–80486 only.

LDS/LES/LFS/LGS/LSS Load Far Pointer
Reads and stores the far pointer specified by the source memory operand. The
instruction moves the pointer’s segment value into DS, ES, FS, GS, or SS
(depending on the instruction). Then it moves the pointer’s offset value into the
destination operand. The LDS and LES instructions are available on all
processors. The LFS, LGS, and LSS instructions are available only on the
80386–80486.

 No change

11000101 mod, reg, r/m disp (2)

Syntax Examples CPU Clock Cycles

LDS reg,mem lds si,fpointer 88/86
286
386
486

16+EA (88=24+EA)
7,pm=21
7,pm=22
6,pm=12

11000100 mod, reg, r/m disp (2)

Syntax Examples CPU Clock Cycles

LES reg,mem les di,fpointer 88/86
286
386
486

16+EA (88=24+EA)
7,pm=21
7,pm=22
6,pm=12

Flags

Encoding

Flags

Encoding

Encoding

 LEA Load Effective Address 101

Filename: LMARFC04.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Mike Eddy
Revision #: 67 Page: 101 of 53 Printed: 10/02/00 04:15 PM

00001111 10110100 mod, reg, r/m disp (2 or 4)

Syntax Examples CPU Clock Cycles

LFS reg,mem lfs edi,fpointer 88/86
286
386
486

—
—
7,pm=25
6,pm=12

00001111 10110101 mod, reg, r/m disp (2 or 4)

Syntax Examples CPU Clock Cycles

LGS reg,mem lgs bx,fpointer 88/86
286
386
486

—
—
7,pm=25
6,pm=12

00001111 10110010 mod, reg, r/m disp (2 or 4)

Syntax Examples CPU Clock Cycles

LSS reg,mem lss bp,fpointer 88/86
286
386
486

—
—
7,pm=22
6,pm=12

LEA Load Effective Address
Calculates the effective address (offset) of the source memory operand and
stores the result in the destination register. If the source operand is a direct
memory address, the assembler encodes the instruction in the more efficient
MOV reg,immediate form (equivalent to MOV reg, OFFSET mem).

 No change

10001101 mod, reg, r/m disp (2)

Syntax Examples CPU Clock Cycles

LEA reg16,mem
LEA reg32,mem*

lea bx,npointer 88/86
286
386
486

2+EA
3
2
1†

* 80386–80486 only.
† 2 if index register used.

Encoding

Encoding

Encoding

Flags

Encoding

102 LEAVE High Level Procedure Exit

Filename: LMARFC04.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Mike Eddy
Revision #: 67 Page: 102 of 54 Printed: 10/02/00 04:15 PM

LEAVE High Level Procedure Exit
Terminates the stack frame of a procedure. LEAVE reverses the action of a
previous ENTER instruction by restoring SP and BP to the values they had
before the procedure stack frame was initialized. LEAVE is equivalent to mov
sp,bp, followed by pop bp.

 No change

11001001

Syntax Examples CPU Clock Cycles

LEAVE leave 88/86
286
386
486

—
5
4
5

LES/LFS/LGS Load Far Pointer to Extra Segment
See LDS.

LGDT/LIDT/LLDT Load Descriptor Table
Loads a value from an operand into a descriptor table register. LGDT loads into
the Global Descriptor Table, LIDT into the Interrupt Vector Table, and LLDT
into the Local Descriptor Table. These instructions are available only in
privileged mode. See Intel documentation for details on descriptor tables and
other protected-mode concepts.

 No change

00001111 00000001 mod, 010,r/m disp (2)

Syntax Examples CPU Clock Cycles

LGDT mem48 lgdt descriptor 88/86
286
386
486

—
11
11
11

Flags

Encoding

Flags

Encoding

 LMSW Load Machine Status Word 103

Filename: LMARFC04.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Mike Eddy
Revision #: 67 Page: 103 of 55 Printed: 10/02/00 04:15 PM

00001111 00000001 mod, 011,r/m disp (2)

Syntax Examples CPU Clock Cycles

LIDT mem48 lidt descriptor 88/86
286
386
486

—
12
11
11

00001111 00000000 mod, 010,r/m disp (0, 1, or 2)

Syntax Examples CPU Clock Cycles

LLDT reg16 lldt ax 88/86
286
386
486

—
17
20
11

LLDT mem16 lldt selector 88/86
286
386
486

—
19
24
11

LMSW Load Machine Status Word
80286-80486 Privileged Only Loads a value from a memory operand into the
Machine Status Word (MSW). This instruction is available only in privileged
mode. See Intel documentation for details on the MSW and other protected-
mode concepts.

 No change

00001111 00000001 mod, 110,r/m disp (0, 1, or 2)

Syntax Examples CPU Clock Cycles

LMSW reg16 lmsw ax 88/86
286
386
486

—
3
10
13

LMSW mem16 lmsw machine 88/86
286
386
486

—
6
13
13

Encoding

Encoding

Flags

Encoding

104 LOCK Lock the Bus

Filename: LMARFC04.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Mike Eddy
Revision #: 67 Page: 104 of 56 Printed: 10/02/00 04:15 PM

LOCK Lock the Bus
Locks out other processors during execution of the next instruction. This
instruction is a prefix. It must precede an instruction that accesses a memory
location that another processor might attempt to access at the same time. See
Intel documentation for details on multiprocessor environments.

 No change

11110000

Syntax Examples CPU Clock Cycles

LOCK instruction lock xchg ax,sem 88/86
286
386
486

2
0
0
1

LODS/LODSB/LODSW/LODSD Load Accumulator
from String
LODS/LODSB/LODSW/LODSD Load Accumulator from String

Loads the accumulator register with an element from a string in memory. DS:SI
must point to the source element, even if an operand is given. For each source
element loaded, SI is adjusted according to the size of the operand and the
status of the direction flag. SI is incremented if the direction flag has been
cleared with CLD or decremented if the direction flag has been set with STD.

If the LODS form of the instruction is used, an operand must be provided to
indicate the size of the data elements to be processed. A segment override can
be given. If LODSB (bytes), LODSW (words), or LODSD (doublewords on
the 80386–80486 only) is used, the instruction determines the size of the data
elements to be processed and whether the element will be loaded to AL, AX, or
EAX.

LODS and its variations are not used with repeat prefixes, since there is no
reason to repeatedly load memory values to a register.

 No change

Flags

Encoding

Flags

 LOOPcondition/LOOPconditionW/LOOPconditionD Loop Conditionally 105

Filename: LMARFC04.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Mike Eddy
Revision #: 67 Page: 105 of 57 Printed: 10/02/00 04:15 PM

1010110w

Syntax Examples CPU Clock Cycles

LODS [[segreg:]]src
LODSB [[[[segreg:]]src]]
LODSW[[[[segreg:]]src]]
LODSD [[[[segreg:]]src]]

lods es:source
lodsw

88/86
286
386
486

12 (W88=16)
5
5
5

LOOP/LOOPW/LOOPD Loop
Loops repeatedly to a specified label. LOOP decrements CX (without changing
any flags) and, if the result is not 0, transfers execution to the address specified
by the operand. On the 80386–80486, LOOP uses the 16-bit CX in 16-bit
mode and the 32-bit ECX in 32-bit mode. The default can be overridden with
LOOPW (CX) or LOOPD (ECX). If CX is 0 after being decremented,
execution continues at the next instruction. The operand must specify a short
label (between –128 and +127 bytes from the instruction following the LOOP
instruction).

 No change

11100010 disp (1)

Syntax Examples CPU Clock Cycles

LOOP label
LOOPW label*
LOOPD label*

loop wend 88/86
286
386
486

17,noj=5
8+m,noj=4
11+m
7,noj=6

* 80386–80486 only.

LOOPcondition/LOOPconditionW/LOOPconditionD
Loop Conditionally

Loops repeatedly to a specified label if condition is met and if CX is not 0. On
the 80386–80486, these instructions use the 16-bit CX in 16-bit mode and the
32-bit ECX in 32-bit mode. This default can be overridden with the W (CX) or
D (ECX) forms of the instruction. The instruction decrements CX (without
changing any flags) and tests whether the zero flag was set by a previous
instruction (such as CMP). With LOOPE and LOOPZ (they are synonyms),

Encoding

Flags

Encoding

106 LSL Load Segment Limit

Filename: LMARFC04.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Mike Eddy
Revision #: 67 Page: 106 of 58 Printed: 10/02/00 04:15 PM

execution is transferred to the label if the zero flag is set and CX is not 0. With
LOOPNE and LOOPNZ (they are synonyms), execution is transferred to the
label if the zero flag is cleared and CX is not 0. Execution continues at the next
instruction if the condition is not met. Before entering the loop, CX should be
set to the maximum number of repetitions desired.

 No change

11100001 disp (1)

Syntax Examples CPU Clock Cycles

LOOPE label
LOOPEW label*
LOOPED label*
LOOPZ label
LOOPZW label*
LOOPZD label*

loopz again 88/86
286
386
486

18,noj=6
8+m,noj=4
11+m
9,noj=6

11100000 disp (1)

Syntax Examples CPU Clock Cycles

LOOPNE label
LOOPNEW label*
LOOPNED label*
LOOPNZ label
LOOPNZW label*
LOOPNZD label*

loopnz for_next 88/86
286
386
486

19,noj=5
8,noj=4
11+m
9,noj=6

* 80386–80486 only.

LSL Load Segment Limit
80286-80486 Protected Only Loads the segment limit of a selector into a
specified register. The source operand must be a register or memory operand
containing a selector. The destination operand must be a register that will receive
the segment limit if the selector is valid and visible at the current privilege level.
The zero flag is set if the segment limit is transferred, or cleared if it is not. See
Intel documentation for details on selectors, segment limits, and other protected-
mode concepts.

 O D I T S Z A P C
 ±

Flags

Encoding

Encoding

Flags

 LTR Load Task Register 107

Filename: LMARFC04.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Mike Eddy
Revision #: 67 Page: 107 of 59 Printed: 10/02/00 04:15 PM

00001111 00000011 mod, reg, r/m disp (0, 1, or 2)

Syntax Examples CPU Clock Cycles

LSL reg16,reg16
LSL reg32,reg32*

lsl ax,bx 88/86
286
386
486

—
14
20,25†
10

LSL reg16,mem16
LSL reg32,mem32*

lsl cx,seg_lim 88/86
286
386
486

—
16
21,26†
10

* 80386–80486 only.

† The first value is for byte granular; the second is for page granular.

LSS Load Far Pointer to Stack Segment
See LDS.

LTR Load Task Register
80286-80486 Protected Only Loads a value from the specified operand to the
current task register. LTR is available only in privileged mode. See Intel
documentation for details on task registers and other protected-mode concepts.

No change

00001111 00000000 mod, 011,r/m disp (0, 1, or 2)

Syntax Examples CPU Clock Cycles

LTR reg16 ltr ax 88/86
286
386
486

—
17
23
20

LTR mem16 ltr task 88/86
286
386
486

—
19
27
20

Encoding

Flags

Encoding

108 MOV Move Data

Filename: LMARFC04.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Mike Eddy
Revision #: 67 Page: 108 of 60 Printed: 10/02/00 04:15 PM

MOV Move Data
Moves the value in the source operand to the destination operand. If the
destination operand is SS, interrupts are disabled until the next instruction is
executed (except on early versions of the 8088 and 8086).

No change

100010dw mod, reg, r/m disp (0, 1, or 2)

Syntax Examples CPU Clock Cycles

MOV reg,reg mov dh,bh
mov dx,cx
mov bp,sp

88/86
286
386
486

2
2
2
1

MOV mem,reg mov array[di],bx
mov count,cx

88/86
286
386
486

9+EA (W88=13+EA)
3
2
1

MOV reg,mem mov bx,pointer
mov dx,matrix[bx+di]

88/86
286
386
486

8+EA (W88=12+EA)
5
4
1

1100011w mod, 000,r/m disp (0, 1, or 2) data (1 or 2)

Syntax Examples CPU Clock Cycles

MOV mem,immed mov [bx],15
mov color,7

88/86
286
386
486

10+EA (W88=14+EA)
3
2
1

1011w reg data (1 or 2)

Syntax Examples CPU Clock Cycles

MOV reg,immed mov cx,256
mov dx,OFFSET string

88/86
286
386
486

4
2
2
1

Flags

Encoding

Encoding

Encoding

 MOV Move to/from Special Registers 109

Filename: LMARFC04.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Mike Eddy
Revision #: 67 Page: 109 of 61 Printed: 10/02/00 04:15 PM

101000aw disp (2)

Syntax Examples CPU Clock Cycles

MOV mem,accum mov total,ax 88/86
286
386
486

10 (W88=14)
3
2
1

MOV accum,mem mov al,string 88/86
286
386
486

10 (W88=14)
5
4
1

100011d0 mod,sreg, r/m disp (0, 1, or 2)

Syntax Examples CPU Clock Cycles

MOV segreg,reg16 mov ds,ax 88/86
286
386
486

2
2,pm=17
2,pm=18
3,pm=9

MOV segreg,mem16 mov es,psp 88/86
286
386
486

8+EA (88=12+EA)
5,pm=19
5,pm=19
3,pm=9

MOV reg16,segreg mov ax,ds 88/86
286
386
486

2
2
2
3

MOV mem16,segreg mov stack_save,ss 88/86
286
386
486

9+EA (88=13+EA)
3
2
3

MOV Move to/from Special Registers
80386–80486 Only Moves a value from a special register to or from a 32-bit
general-purpose register. The special registers include the control registers CR0,
CR2, and CR3; the debug registers DR0, DR1, DR2, DR3, DR6, and DR7; and
the test registers TR6 and TR7. On the 80486, the test registers TR3, TR4, and
TR5 are also available. See Intel documentation for details on special registers.

 O D I T S Z A P C
? ? ? ? ? ?

Encoding

Encoding

Flags

110 MOV Move to/from Special Registers

Filename: LMARFC04.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Mike Eddy
Revision #: 67 Page: 110 of 62 Printed: 10/02/00 04:15 PM

00001111 001000d0 11, reg*, r/m

Syntax Examples CPU Clock Cycles

MOV reg32, controlreg mov eax,cr2 88/86
286
386
486

—
—
6
4

MOV controlreg,reg32 mov cr0,ebx 88/86
286
386

486

—
—
CR0=10,CR2=4,CR3=
5
4,CR0=16

00001111 001000d1 11, reg*, r/m

Syntax Examples CPU Clock Cycles

MOV reg32,debugreg mov edx,dr3 88/86
286
386
486

—
—
DR0–3=22,DR6–7=14
10

MOV debugreg,reg32 mov dr0,ecx 88/86
286
386
486

—
—
DR0–3=22,DR6–7=16
11

00001111 001001d0 11,reg*, r/m

Syntax Examples CPU Clock Cycles

MOV reg32,testreg mov edx,tr6 88/86
286
386
486

—
—
12
4,TR3=3

MOV testreg, reg32 mov tr7,eax 88/86
286
386
486

—
—
12
4,TR3=6

* The reg field contains the register number of the special register (for example, 000 for CR0, 011 for
DR7, or 111 for TR7).

Encoding

Encoding

Encoding

 MOVSX Move with Sign-Extend 111

Filename: LMARFC04.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Mike Eddy
Revision #: 67 Page: 111 of 63 Printed: 10/02/00 04:15 PM

MOVS/MOVSB/MOVSW/MOVSD Move String Data
Moves a string from one area of memory to another. DS:SI must point to the
source string and ES:DI to the destination address, even if operands are given.
For each element moved, DI and SI are adjusted according to the size of the
operands and the status of the direction flag. They are increased if the direction
flag has been cleared with CLD, or decreased if the direction flag has been set
with STD.

If the MOVS form of the instruction is used, operands must be provided to
indicate the size of the data elements to be processed. A segment override can
be given for the source operand (but not for the destination). If MOVSB
(bytes), MOVSW (words), or MOVSD (doublewords on the 80386–80486
only) is used, the instruction determines the size of the data elements to be
processed.

MOVS and its variations are normally used with the REP prefix.

No change

1010010w

Syntax Examples CPU Clock Cycles

MOVS [[ES:]]dest,[[segreg:]]src
MOVSB [[[[ES:]]dest,[[segreg:]]src]]
MOVSW [[[[ES:]]dest,[[segreg:]]src]]
MOVSD [[[[ES:]]dest,[[segreg:]]src]]

rep movsb
movs dest,es:source

88/86
286
386
486

18 (W88=26)
5
7
7

MOVSX Move with Sign-Extend
80386–80486 Only Moves and sign-extends the value of the source operand to
the destination register. MOVSX is used to copy a signed 8-bit or 16-bit source
operand to a larger 16-bit or 32-bit destination register.

No change

00001111 1011111w mod, reg, r/m disp (0, 1, 2, or 4)

Syntax Examples CPU Clock Cycles

MOVSX reg,reg movsx eax,bx
movsx ecx,bl
movsx bx,al

88/86
286
386
486

—
—
3
3

Flags

Encoding

Flags

Encoding

112 MOVZX Move with Zero-Extend

Filename: LMARFC04.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Mike Eddy
Revision #: 67 Page: 112 of 64 Printed: 10/02/00 04:15 PM

Syntax Examples CPU Clock Cycles

MOVSX reg,mem movsx cx,bsign
movsx edx,wsign
movsx eax,bsign

88/86
286
386
486

—
—
6
3

MOVZX Move with Zero-Extend
80386–80486 Only Moves and zero-extends the value of the source operand to
the destination register. MOVZX is used to copy an unsigned 8-bit or 16-bit
source operand to a larger 16-bit or 32-bit destination register.

No change

00001111 1011011w mod, reg, r/m disp (0, 1, 2, or 4)

Syntax Examples CPU Clock Cycles

MOVZX reg,reg movzx eax,bx
movzx ecx,bl
movzx bx,al

88/86
286
386
486

—
—
3
3

MOVZX reg,mem movzx cx,bunsign
movzx edx,wunsign
movzx eax,bunsign

88/86
286
386
486

—
—
6
3

MUL Unsigned Multiply
Multiplies an implied destination operand by a specified source operand. Both
operands are treated as unsigned numbers. If a single 16-bit operand is given,
the implied destination is AX and the product goes into the DX:AX register pair.
If a single 8-bit operand is given, the implied destination is AL and the product
goes into AX. On the 80386–80486, if the operand is EAX, the product goes
into the EDX:EAX register pair. The carry and overflow flags are set if DX is
not 0 for 16-bit operands or if AH is not 0 for 8-bit operands.

 O D I T S Z A P C
± ? ? ? ? ±

Flags

Encoding

Flags

 NEG Two’s Complement Negation 113

Filename: LMARFC04.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Mike Eddy
Revision #: 67 Page: 113 of 65 Printed: 10/02/00 04:15 PM

1111011w mod, 100, r/m disp (0, 1, or 2)

Syntax Examples CPU Clock Cycles

MUL reg mul bx
mul dl

88/86
286
386
486

b=70–77,w=118–133
b=13,w=21
b=9–14,w=9–22,d=9–38*
b=13–18,w=13–26,d=13–42

MUL mem mul factor
mul WORD PTR [bx]

88/86
286
386
486

(b=76–83,w=124–139)+EA†
b=16,w=24
b=12–17,w=12–25,d=12–41*
b=13–18,w=13–26,d=13–42

* The 80386–80486 processors have an early-out multiplication algorithm. Therefore, multiplying an
8-bit or 16-bit value in EAX takes the same time as multiplying the value in AL or AX.

† Word memory operands on the 8088 take (128–143)+EA clocks.

NEG Two’s Complement Negation
Replaces the operand with its two’s complement. NEG does this by subtracting
the operand from 0. If the operand is 0, the carry flag is cleared. Otherwise, the
carry flag is set. If the operand contains the maximum possible negative value (–
128 for 8-bit operands or –32,768 for 16-bit operands), the value does not
change, but the overflow and carry flags are set.

 O D I T S Z A P C
± ± ± ± ± ±

1111011w mod, 011, r/m disp (0, 1, or 2)

Syntax Examples CPU Clock Cycles

NEG reg neg ax 88/86
286
386
486

3
2
2
1

NEG mem neg balance 88/86
286
386
486

16+EA (W88=24+EA)
7
6
3

Encoding

Flags

Encoding

114 NOP No Operation

Filename: LMARFC04.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Mike Eddy
Revision #: 67 Page: 114 of 66 Printed: 10/02/00 04:15 PM

NOP No Operation
Performs no operation. NOP can be used for timing delays or alignment.

No change

10010000*

Syntax Examples CPU Clock Cycles

NOP nop 88/86
286
386
486

3
3
3
3

* The encoding is the same as XCHG AX,AX.

NOT One’s Complement Negation
Toggles each bit of the operand by clearing set bits and setting cleared bits.

No change

1111011w mod, 010, r/m disp (0,1,or2)

Syntax Examples CPU Clock Cycles

NOT reg not ax 88/86
286
386
486

3
2
2
1

NOT mem not masker 88/86
286
386
486

16+EA (W88=24+EA)
7
6
3

Flags

Encoding

Flags

Encoding

 OR Inclusive OR 115

Filename: LMARFC04.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Mike Eddy
Revision #: 67 Page: 115 of 67 Printed: 10/02/00 04:15 PM

OR Inclusive OR
Performs a bitwise OR operation on the source and destination operands and
stores the result to the destination operand. For each bit position in the
operands, if either or both bits are set, the corresponding bit of the result is set.
Otherwise, the corresponding bit of the result is cleared.

 O D I T S Z A P C
0 ± ± ? ± 0

000010dw mod, reg, r/m disp (0, 1, or 2)

Syntax Examples CPU Clock Cycles

OR reg,reg or ax,dx 88/86
286
386
486

3
2
2
1

OR mem,reg or bits,dx
or [bp+6],cx

88/86
286
386
486

16+EA (W88=24+EA)
7
7
3

OR reg,mem or bx,masker
or dx,color[di]

88/86
286
386
486

9+EA (W88=13+EA)
7
6
2

100000sw mod,001, r/m disp (0, 1, or 2) data (1 or 2)

Syntax Examples CPU Clock Cycles

OR reg,immed or dx,110110b 88/86
286
386
486

4
3
2
1

OR mem,immed or flag_rec,8 88/86
286
386
486

(b=17,w=25)+EA
7
7
3

0000110w data (1 or 2)

Syntax Examples CPU Clock Cycles

OR accum,immed or ax,40h 88/86
286
386
486

4
3
2
1

Flags

Encoding

Encoding

Encoding

116 OUT Output to Port

Filename: LMARFC04.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Mike Eddy
Revision #: 67 Page: 116 of 68 Printed: 10/02/00 04:15 PM

OUT Output to Port
Transfers a byte or word (or a doubleword on the 80386–80486) to a port from
the accumulator register. The port address is specified by the destination
operand, which can be DX or an 8-bit constant. In protected mode, a general-
protection fault occurs if OUT is used when the current privilege level is greater
than the value of the IOPL flag.

No change

1110011w data (1)

Syntax Examples CPU Clock Cycles

OUT
immed8,accum

out 60h,al 88/86
286
386
486

10 (88=14)
3
10,pm=4,24*
16,pm=11,31*

1110111w

Syntax Examples CPU Clock Cycles

OUT DX,accum out dx,ax
out dx,al

88/86
286
386
486

8 (88=12)
3
11,pm=5,25*
16,pm=10,30*

* First protected-mode timing: CPL < IOPL. Second timing: CPL > IOPL.

OUTS/OUTSB/OUTSW/OUTSD Output String to Port
80186–80486 Only Sends a string to a port. The string is considered the source
and must be pointed to by DS:SI (even if an operand is given). The output port
is specified in DX. For each element sent, SI is adjusted according to the size of
the operand and the status of the direction flag. SI is increased if the direction
flag has been cleared with CLD, or decreased if the direction flag has been set
with STD.

If the OUTS form of the instruction is used, an operand must be provided to
indicate the size of data elements to be sent. A segment override can be given. If
OUTSB (bytes), OUTSW (words), or OUTSD (doublewords on the 80386–
80486 only) is used, the instruction determines the size of the data elements to
be sent.

Flags

Encoding

Encoding

 POP Pop 117

Filename: LMARFC04.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Mike Eddy
Revision #: 67 Page: 117 of 69 Printed: 10/02/00 04:15 PM

OUTS and its variations are normally used with the REP prefix. Before the
instruction is executed, CX should contain the number of elements to send. In
protected mode, a general-protection fault occurs if OUTS is used when the
current privilege level is greater than the value of the IOPL flag.

No change

0110111w

Syntax Examples CPU Clock Cycles

OUTS DX, [[segreg:]] src
OUTSB [[DX, [[segreg:]] src]]
OUTSW [[DX, [[segreg:]] src]]
OUTSD [[DX, [[segreg:]] src]]

rep outs
dx,buffer
outsb
rep outsw

88/86
286
386
486

—
5
14,pm=8,28*
17,pm=10,32*

* First protected-mode timing: CPL < IOPL. Second timing: CPL > IOPL.

POP Pop
Pops the top of the stack into the destination operand. The value at SS:SP is
copied to the destination operand and SP is increased by 2. The destination
operand can be a memory location, a general-purpose 16-bit register, or any
segment register except CS. Use RET to pop CS. On the 80386–80486, 32-bit
values can be popped by giving a 32-bit operand. ESP is increased by 4 for 32-
bit pops.

No change

01011 reg

Syntax Examples CPU Clock Cycles

POP reg16
POP reg32*

pop cx 88/86
286
386
486

8 (88=12)
5
4
1

10001111 mod,000,r/m disp (2)

Syntax Examples CPU Clock Cycles

POP mem16
POP mem32*

pop param 88/86
286
386
486

17+EA (88=25+EA)
5
5
6

Flags

Encoding

Flags

Encoding

Encoding

118 POPA/POPAD Pop All

Filename: LMARFC04.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Mike Eddy
Revision #: 67 Page: 118 of 70 Printed: 10/02/00 04:15 PM

000,sreg,111

Syntax Examples CPU Clock Cycles

POP segreg pop es
pop ds
pop ss

88/86
286
386
486

8 (88=12)
5,pm=20
7,pm=21
3,pm=9

00001111 10,sreg,001

Syntax Examples CPU Clock Cycles

POP segreg* pop fs
pop gs

88/86
286
386
486

—
—
7,pm=21
3,pm=9

* 80386–80486 only.

POPA/POPAD Pop All
80186-80486 Only Pops the top 16 bytes on the stack into the eight general-
purpose registers. The registers are popped in the following order: DI, SI, BP,
SP, BX, DX, CX, AX. The value for the SP register is actually discarded rather
than copied to SP. POPA always pops into 16-bit registers. On the 80386–
80486, use POPAD to pop into 32-bit registers.

No change

01100001

Syntax Examples CPU Clock Cycles

POPA
POPAD*

popa

88/86
286
386
486

—
19
24
9

* 80386–80486 only.

Encoding

Encoding

Flags

Encoding

 PUSH/PUSHW/PUSHD Push 119

Filename: LMARFC04.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Mike Eddy
Revision #: 67 Page: 119 of 71 Printed: 10/02/00 04:15 PM

POPF/POPFD Pop Flags
Pops the value on the top of the stack into the flags register. POPF always pops
into the 16-bit flags register. On the 80386–80486, use POPFD to pop into the
32-bit flags register.

 O D I T S Z A P C
± ± ± ± ± ± ± ± ±

10011101

Syntax Examples CPU Clock Cycles

POPF
POPFD*

popf 88/86
286
386
486

8 (88=12)
5
5
9,pm=6

* 80386–80486 only.

PUSH/PUSHW/PUSHD Push
Pushes the source operand onto the stack. SP is decreased by 2 and the source
value is copied to SS:SP. The operand can be a memory location, a general-
purpose 16-bit register, or a segment register. On the 80186–80486 processors,
the operand can also be a constant. On the 80386–80486, 32-bit values can be
pushed by specifying a 32-bit operand. ESP is decreased by 4 for 32-bit pushes.
On the 8088 and 8086, PUSH SP saves the value of SP after the push. On the
80186–80486 processors, PUSH SP saves the value of SP before the push. The
PUSHW and PUSHD instructions push a word (2 bytes) and a doubleword (4
bytes), respectively.

No change

01010 reg

Syntax Examples CPU Clock Cycles

PUSH reg16
PUSH reg32*
PUSHW reg16
PUSHD reg32*

push dx 88/86
286
386
486

11 (88=15)
3
2
1

Flags

Encoding

Flags

Encoding

120 PUSHA/PUSHAD Push All

Filename: LMARFC04.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Mike Eddy
Revision #: 67 Page: 120 of 72 Printed: 10/02/00 04:15 PM

11111111 mod, 110,r/m disp (2)

Syntax Examples CPU Clock Cycles

PUSH mem16
PUSH mem32*

push [di]
push fcount

88/86
286
386
486

16+EA (88=24+EA)
5
5
4

00,sreg,110

Syntax Examples CPU Clock Cycles

PUSH segreg
PUSHW segreg
PUSHD segreg*

push es
push ss
push cs

88/86
286
386
486

10 (88=14)
3
2
3

00001111 10,sreg,000

Syntax Examples CPU Clock Cycles

PUSH segreg
PUSHW segreg
PUSHD segreg*

push fs
push gs

88/86
286
386
486

—
—
2
3

011010s0 data (1 or 2)

Syntax Examples CPU Clock Cycles

PUSH immed
PUSHW immed
PUSHD immed*

push 'a'
push 15000

88/86
286
386
486

—
3
2
1

* 80386–80486 only.

PUSHA/PUSHAD Push All
80186–80486 Only Pushes the eight general-purpose registers onto the stack.
The registers are pushed in the following order: AX, CX, DX, BX, SP, BP, SI,
DI. The value pushed for SP is the value before the instruction. PUSHA always
pushes 16-bit registers. On the 80386–80486, use PUSHAD to push 32-bit
registers.

No change

Encoding

Encoding

Encoding

Encoding

Flags

 RCL/RCR/ROL/ROR Rotate 121

Filename: LMARFC04.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Mike Eddy
Revision #: 67 Page: 121 of 73 Printed: 10/02/00 04:15 PM

01100000

Syntax Examples CPU Clock Cycles

PUSHA
PUSHAD*

pusha 88/86
286
386
486

—
17
18
11

* 80386–80486 only.

PUSHF/PUSHFD Push Flags
Pushes the flags register onto the stack. PUSHF always pushes the 16-bit flags
register. On the 80386–80486, use PUSHFD to push the 32-bit flags register.

No change

10011100

Syntax Examples CPU Clock Cycles

PUSHF
PUSHFD*

pushf

88/86
286
386
486

10(88=14)
3
4
4,pm=3

* 80386–80486 only.

RCL/RCR/ROL/ROR Rotate
Rotates the bits in the destination operand the number of times specified in the
source operand. RCL and ROL rotate the bits left; RCR and ROR rotate right.

ROL and ROR rotate the number of bits in the operand. For each rotation, the
leftmost or rightmost bit is copied to the carry flag as well as rotated. RCL and
RCR rotate through the carry flag. The carry flag becomes an extension of the
operand so that a 9-bit rotation is done for 8-bit operands, or a 17-bit rotation
for 16-bit operands.

On the 8088 and 8086, the source operand can be either CL or 1. On the
80186–80486, the source operand can be CL or an 8-bit constant. On the
80186–80486, rotate counts larger than 31 are masked off, but on the 8088 and
8086, larger rotate counts are performed despite the inefficiency involved. The

Encoding

Flags

Encoding

122 RCL/RCR/ROL/ROR Rotate

Filename: LMARFC04.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Mike Eddy
Revision #: 67 Page: 122 of 74 Printed: 10/02/00 04:15 PM

overflow flag is modified only by single-bit variations of the instruction; for
multiple-bit variations, the overflow flag is undefined.

 O D I T S Z A P C
± ±

1101000w mod, TTT*,r/m disp (0, 1, or 2)

Syntax Examples CPU Clock Cycles

ROL reg,1
ROR reg,1

ror ax,1
rol dl,1

88/86
286
386
486

2
2
3
3

RCL reg,1
RCR reg,1

rcl dx,1
rcr bl,1

88/86
286
386
486

2
2
9
3

ROL mem,1
ROR mem,1

ror bits,1
rol WORD PTR [bx],1

88/86
286
386
486

15+EA (W88=23+EA)
7
7
4

RCL mem,1
RCR mem,1

rcl WORD PTR [si],1
rcr WORD PTR m32[0],1

88/86
286
386
486

15+EA (W88=23+EA
7
10
4

1101001w mod, TTT*,r/m disp (0, 1, or 2)

Syntax Examples CPU Clock Cycles

ROL reg,CL
ROR reg,CL

ror ax,cl
rol dx,cl

88/86
286
386
486

8+4n
5+n
3
3

RCL reg,CL
RCR reg,CL

rcl dx,cl
rcr bl,cl

88/86
286
386
486

8+4n
5+n
9
8–30

ROL mem,CL
ROR mem,CL

ror color,cl

rol WORD PTR [bp+6],cl

88/86

286
386
486

20+EA+4n
(W88=28+EA+4n)
8+n
7
4

Flags

Encoding

Encoding

 REP Repeat String 123

Filename: LMARFC04.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Mike Eddy
Revision #: 67 Page: 123 of 75 Printed: 10/02/00 04:15 PM

Syntax Examples CPU Clock Cycles

RCL mem,CL
RCR mem,CL

rcr WORD PTR [bx+di],cl

rcl masker

88/86

286
386
486

20+EA+4n
(W88=28+EA+4n)
8+n
10
9–31

1100000w mod,TTT*,r/m disp (0, 1, or 2) data (1)

Syntax Examples CPU Clock Cycles

ROL reg,immed8
ROR reg,immed8

rol ax,13
ror bl,3 286

88/86
286
386
486

—
5+n
3
2

RCL reg,immed8
RCR reg,immed8

rcl bx,5
rcr si,9

88/86
286
386
486

—
5+n
9
8–30

ROL mem,immed8
ROR mem,immed8

rol BYTE PTR [bx],10
ror bits,6

88/86
286
386
486

—
8+n
7
4

RCL mem,immed8
RCR mem,immed8

rcl WORD PTR [bp+8],
rcr masker,3

88/86
286
386
486

—
8+n
10
9–31

* TTT represents one of the following bit codes: 000 for ROL, 001 for ROR, 010 for RCL, or 011
for RCR.

REP Repeat String
Repeats a string instruction the number of times indicated by CX. First, CX is
compared to 0; if it equals 0, execution proceeds to the next instruction.
Otherwise, CX is decremented, the string instruction is performed, and the loop
continues. REP is used with MOVS and STOS. REP also can be used with
INS and OUTS on the 80186–80486 processors. On all processors except the
80386–80486, combining a repeat prefix with a segment override can cause
errors if an interrupt occurs.

No change

Encoding

Flags

124 REP Repeat String

Filename: LMARFC04.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Mike Eddy
Revision #: 67 Page: 124 of 76 Printed: 10/02/00 04:15 PM

11110011 1010010w
Syntax Examples CPU Clock Cycles

REP MOVS dest,src
REP MOVSB [[dest,src]]
REP MOVSW [[dest,src]]
REP MOVSD [[dest,src]]*

rep movs source,dest
rep movsw

88/86
286
386
486

9+17n (W88=9+25n)
5+4n
7+4n
12+3n#

11110011 1010101w

Syntax Examples CPU Clock Cycles

REP STOS dest
REP STOSB [[dest]]
REP STOSW [[dest]]
REP STOSD [[dest]]*

rep stosb
rep stos dest

88/86
286
386
486

9+10n (W88=9+14n)
4+3n
5+5n
7+4n†

11110011 1010101w

Syntax Examples CPU Clock Cycles

REP LODS dest
REP LODSB [[dest]]
REP LODSW [[dest]]
REP LODSD [[dest]]*

rep lodsb
rep lods dest

88/86
286
386
486

—
—
—
7+4n†

11110011 0110110w

Syntax Examples CPU Clock Cycles

REP INS dest,DX
REP INSB [[dest,DX]]
REP INSW [[dest,DX]]
REP INSD [[dest,DX]]*

rep insb
rep ins dest,dx

88/86
286
386

486

—
5+4n
13+6n,pm=(7,27)+6n§
16+8n,pm=(10,30)+8n
§

11110011 0110111w

Syntax Examples CPU Clock Cycles

REP OUTS DX,src
REP OUTSB [[src]]
REP OUTSW [[src]]
REP OUTSD [[src]]*

rep outs dx,source
rep outsw

88/86
286
386
486

—
5+4n
12+5n,pm=(6,26)+5n§
17+5n,pm=(11,31)+5n§

* 80386–80486 only.

5 if n = 0, 13 if n = 1.

† 5 if n = 0.

§ First protected-mode timing: CPL ≤ IOPL. Second timing: CPL > IOPL.

Encoding

Encoding

Encoding

Encoding

Encoding

 REPcondition Repeat String Conditionally 125

Filename: LMARFC04.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Mike Eddy
Revision #: 67 Page: 125 of 77 Printed: 10/02/00 04:15 PM

REPcondition Repeat String Conditionally
Repeats a string instruction as long as condition is true and the maximum count
has not been reached. REPE and REPZ (they are synonyms) repeat while the
zero flag is set. REPNE and REPNZ (they are synonyms) repeat while the zero
flag is cleared. The conditional-repeat prefixes should only be used with SCAS
and CMPS, since these are the only string instructions that modify the zero flag.
Before executing the instruction, CX should be set to the maximum allowable
number of repetitions. First, CX is compared to 0; if it equals 0, execution
proceeds to the next instruction. Otherwise, CX is decremented, the string
instruction is performed, and the loop continues. On all processors except the
80386–80486, combining a repeat prefix with a segment override may cause
errors if an interrupt occurs during a string operation.

 O D I T S Z A P C
 ±

11110011 1010011w

Syntax Examples CPU Clock Cycles

REPE CMPS src,dest
REPE CMPSB [[src,dest]]
REPE CMPSW [[src,dest]]
REPE CMPSD [[src,dest]]*

repz cmpsb
repe cmps
src,dest

88/86
286
386
486

9+22n (W88=9+30n)
5+9n
5+9n
7+7n#

11110011 1010111w

Syntax Examples CPU Clock Cycles

REPE SCAS dest
REPE SCASB [[dest]]
REPE SCASW [[dest]]
REPE SCASD [[dest]]*

repe scas dest
repz scasw

88/86
286
386
486

9+15n (W88=9+19n)
5+8n
5+8n
7+5n#

11110010 1010011w

Syntax Examples CPU Clock Cycles

REPNE CMPS src,dest
REPNE CMPSB [[src,dest]]
REPNE CMPSW [[src,dest]]
REPNE CMPSD [[src,dest]]*

repne cmpsw
repnz cmps
src,dest

88/86
286
386
486

9+22n (W88=9+30n)
5+9n
5+9n
7+7n#

Flags

Encoding

Encoding

Encoding

126 RET/RETN/RETF Return from Procedure

Filename: LMARFC04.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Mike Eddy
Revision #: 67 Page: 126 of 78 Printed: 10/02/00 04:15 PM

11110010 1010111w

Syntax Examples CPU Clock Cycles

REPNE SCAS des
REPNE SCASB [[dest]]
REPNE SCASW [[dest]]
REPNE SCASD [[dest]]*

repne scas dest
repnz scasb

88/86
286
386
486

9+15n (W88=9+19n)
5+8n
5+8n
7+5n*

* 80386–80486 only.

5 if n=0.

RET/RETN/RETF Return from Procedure
Returns from a procedure by transferring control to an address popped from the
top of the stack. A constant operand can be given indicating the number of
additional bytes to release. The constant is normally used to adjust the stack for
arguments pushed before the procedure was called. The size of a return (near or
far) is the size of the procedure in which the RET is defined with the PROC
directive. RETN can be used to specify a near return; RETF can specify a far
return. A near return pops a word into IP. A far return pops a word into IP and
then pops a word into CS. After the return, the number of bytes given in the
operand (if any) is added to SP.

No change

11000011

Syntax Examples CPU Clock Cycles

RET
RETN

ret
retn

88/86
286
386
486

16 (88=20)
11+m
10+m
5

11000010 data (2)

Syntax Examples CPU Clock Cycles

RET immed16
RETN immed16

ret 2
retn 8

88/86
286
386
486

20 (88=24)
11+m
10+m
5

Encoding

Flags

Encoding

Encoding

 SAHF Store AH into Flags 127

Filename: LMARFC04.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Mike Eddy
Revision #: 67 Page: 127 of 79 Printed: 10/02/00 04:15 PM

11001011

Syntax Examples CPU Clock Cycles

RET
RETF

ret
retf

88/86
286
386
486

26 (88=34)
15+m,pm=25+m,55*
18+m,pm=32+m,62*
13,pm=18,33*

11001010 data (2)

Syntax Examples CPU Clock Cycles

RET immed16
RETF immed16

ret 8
retf 32

88/86
286
386
486

25 (88=33)
15+m,pm=25+m,55*
18+m,pm=32+m,68*
14,pm=17,33*

* The first protected-mode timing is for a return to the same privilege level; the second is for a return
to a lesser privilege level.

ROL/ROR Rotate
See RCL/RCR.

SAHF Store AH into Flags
Transfers AH into bits 0 to 7 of the flags register. This includes the carry, parity,
auxiliary carry, zero, and sign flags, but not the trap, interrupt, direction, or
overflow flags.

 O D I T S Z A P C
 ± ± ± ± ±

10011110

Syntax Examples CPU Clock Cycles

SAHF sahf 88/86
286
386
486

4
2
3
2

Encoding

Encoding

Flags

Encoding

128 SAL/SAR Shift

Filename: LMARFC04.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Mike Eddy
Revision #: 67 Page: 128 of 80 Printed: 10/02/00 04:15 PM

SAL/SAR Shift
See SHL/SHR/SAL/SAR.

SBB Subtract with Borrow
Adds the carry flag to the second operand, then subtracts that value from the
first operand. The result is assigned to the first operand. SBB is used to subtract
the least significant portions of numbers that must be processed in multiple
registers.

 O D I T S Z A P C
± ± ± ± ± ±

000110dw mod, reg, r/m disp (0, 1, or 2)

Syntax Examples CPU Clock Cycles

SBB reg,reg sbb dx,cx 88/86
286
386
486

3
2
2
1

SBB mem,reg sbb WORD PTR m32[2],dx 88/86
286
386
486

16+EA (W88=24+EA)
7
6
3

SBB reg,mem sbb dx,WORD PTR m32[2] 88/86
286
386
486

9+EA (W88=13+EA)
7
7
2

100000sw mod,011, r/m disp (0, 1, or 2) data (1 or 2)

Syntax Examples CPU Clock Cycles

SBB reg,immed sbb dx,45 88/86
286
386
486

4
3
2
1

SBB mem,immed sbb WORD PTR m32[2],40 88/86
286
386
486

17+EA (W88=25+EA)
7
7
3

Flags

Encoding

Encoding

 SCAS/SCASB/SCASW/SCASD Scan String Flags 129

Filename: LMARFC04.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Mike Eddy
Revision #: 67 Page: 129 of 81 Printed: 10/02/00 04:15 PM

0001110w data (1 or 2)

Syntax Examples CPU Clock Cycles

SBB accum,immed sbb ax,320 88/86 4
86
386
486

3
2
1

SCAS/SCASB/SCASW/SCASD Scan String Flags
Scans a string to find a value specified in the accumulator register. The string to
be scanned is considered the destination. ES:DI must point to that string, even if
an operand is specified. For each element, the destination element is subtracted
from the accumulator value and the flags are updated to reflect the result
(although the result is not stored). DI is adjusted according to the size of the
operands and the status of the direction flag. DI is increased if the direction flag
has been cleared with CLD, or decreased if the direction flag has been set with
STD.

If the SCAS form of the instruction is used, an operand must be provided to
indicate the size of the data elements to be processed. No segment override is
allowed. If SCASB (bytes), SCASW (words), or SCASD (doublewords on the
80386–80486 only) is used, the instruction determines the size of the data
elements to be processed and whether the element scanned for is in AL, AX, or
EAX.

SCAS and its variations are normally used with repeat prefixes. REPNE (or
REPNZ) is used to find the first element in a string that matches the value in the
accumulator register. REPE (or REPZ) is used to find the first mismatch.
Before the scan, CX should contain the maximum number of elements to scan.
After a REPNE SCAS, the zero flag is clear if the string does not contain the
accumulator value. After a REPE SCAS, the zero flag is set if the string
contains nothing but the accumulator value.

When the instruction finishes, ES:DI points to the element that follows (if the
direction flag is clear) or precedes (if the direction flag is set) the match or
mismatch. If CX decrements to 0, ES:DI points to the element that follows or
precedes the last comparison. The zero flag is set or clear according to the result
of the last comparison, not according to the value of CX.

 O D I T S Z A P C
± ± ± ± ± ±

Encoding

Flags

130 SETcondition Set Conditionally

Filename: LMARFC04.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Mike Eddy
Revision #: 67 Page: 130 of 82 Printed: 10/02/00 04:15 PM

1010111w

Syntax Examples CPU Clock Cycles

SCAS [[ES:]] dest
SCASB [[[[ES:]] dest]]
SCASW [[[[ES:]] dest]]
SCASD [[[[ES:]] dest]]*

repne scasw
repe scasb
scas es:destin

88/86
286
386
486

15 (W88=19)
7
7
6

* 80386–80486 only

SETcondition Set Conditionally
80386–80486 Only Sets the byte specified in the operand to 1 if condition is
true or to 0 if condition is false. The condition is tested by checking the flags
shown in the table on the following page. The instruction is used to set Boolean
flags conditionally.

No change

00001111 1001cond mod,000,r/m

Syntax Examples CPU Clock Cycles

SETcondition reg8 setc dh
setz al
setae bl

88/86
286
386
486

—
—
4
true=4, false=3

SETcondition mem8 seto BTYE PTR [ebx]
setle flag
sete Booleans[di]

88/86
286
386
486

—
—
5
true=3, false=4

Opcode Mnemonic Flags Checked Description

10010010 SETB/SETNAE CF=1 Set if below/not above or equal
(unsigned comparisons)

10010011 SETAE/SETNB CF=0 Set if above or equal/not below
(unsigned comparisons)

10010110 SETBE/SETNA CF=1 or ZF=1 Set if below or equal/not above
(unsigned comparisons)

10010111 SETA/SETNBE CF=0 and ZF=0 Set if above/not below or equal
(unsigned comparisons)

10010100 SETE/SETZ ZF=1 Set if equal/zero

10010101 SETNE/SETNZ ZF=0 Set if not equal/not zero

Opcode Mnemonic Flags Checked Description

Encoding

Flags

Encoding

Set Conditions

 SGDT/SIDT/SLDT Store Descriptor Table 131

Filename: LMARFC04.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Mike Eddy
Revision #: 67 Page: 131 of 83 Printed: 10/02/00 04:15 PM

10011100 SETL/SETNGE SF_OF Set if less/not greater or equal
(signed comparisons)

10011101 SETGE/SETNL SF=OF Set if greater or equal/not less
(signed comparisons)

10011110 SETLE/SETNG ZF=1 or SF_OF Set if less or equal/not greater or
equal (signed comparisons)

10011111 SETG/SETNLE ZF=0 and
SF=OF

Set if greater/not less or equal
(signed comparisons)

10011000 SETS SF=1 Set if sign

10011001 SETNS SF=0 Set if not sign

10010010 SETC F=1 Set if carry

10010011 SETNC CF=0 Set if not carry

10010000 SETO OF=1 Set if overflow

10010001 SETNO OF=0 Set if not overflow

10011010 SETP/SETPE PF=1 Set if parity/parity even

10011011 SETNP/SETPO PF=0 Set if no parity/parity odd

SGDT/SIDT/SLDT Store Descriptor Table
80286-80486 Only Stores a descriptor table register into a specified operand.
SGDT stores the Global Descriptor Table; SIDT, the Interrupt Vector Table;
and SLDT, the Local Descriptor Table. These instructions are generally useful
only in privileged mode. See Intel documentation for details on descriptor tables
and other protected-mode concepts.

No change

00001111 00000001 mod,000,r/m disp (2)

Syntax Examples CPU Clock Cycles

SGDT mem48 sgdt descriptor 88/86
286
386
486

—
11
9
10

Flags

Encoding

132 SHL/SHR/SAL/SAR Shift

Filename: LMARFC04.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Mike Eddy
Revision #: 67 Page: 132 of 84 Printed: 10/02/00 04:15 PM

00001111 00000001 mod,001,r/m disp (2)

Syntax Examples CPU Clock Cycles

SIDT mem48 sidt descriptor 88/86
286
386
486

—
12
9
10

00001111 00000000 mod, 000,r/m disp (0, 1, or 2)

Syntax Examples CPU Clock Cycles

SLDT reg16 sldt ax 88/86
286
386
486

—
2
2
2

SLDT mem16 sldt selector 88/86
286
386
486

—
3
2
3

SHL/SHR/SAL/SAR Shift
Shifts the bits in the destination operand the number of times specified by the
source operand. SAL and SHL shift the bits left; SAR and SHR shift right.

With SHL, SAL, and SHR, the bit shifted off the end of the operand is copied
into the carry flag, and the leftmost or rightmost bit opened by the shift is set to
0. With SAR, the bit shifted off the end of the operand is copied into the carry
flag, and the leftmost bit opened by the shift retains its previous value (thus
preserving the sign of the operand). SAL and SHL are synonyms.

On the 8088 and 8086, the source operand can be either CL or 1. On the
80186–80486 processors, the source operand can be CL or an 8-bit constant.
On the 80186–80486 processors, shift counts larger than 31 are masked off, but
on the 8088 and 8086, larger shift counts are performed despite the inefficiency.
Only single-bit variations of the instruction modify the overflow flag; for
multiple-bit variations, the overflow flag is undefined.

 O D I T S Z A P C
± ± ± ? ± ±

Encoding

Encoding

Flags

 SHL/SHR/SAL/SAR Shift 133

Filename: LMARFC04.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Mike Eddy
Revision #: 67 Page: 133 of 85 Printed: 10/02/00 04:15 PM

1101000w mod,TTT*,r/m disp (0, 1, or 2)

Syntax Examples CPU Clock Cycles

SAR reg,1 sar di,1
sar cl,1

88/86
286
386
486

2
2
3
3

SAL reg,1
SHL reg,1
SHR reg,1
SAR mem,1

shr dh,1
shl si,1
sal bx,1
sar count,1

88/86
286
386
486

2
2
3
3

 88/86
286
386
486

15+EA (W88=23+EA)
7
7
4

SAL mem,1
SHL mem,1
SHR mem,1

sal WORD PTR m32[0],1
shl index,1
shr unsign[di],1

88/86
286
386
486

15+EA (W88=23+EA)
7
7
4

1101001w mod,TTT*,r/m disp (0, 1, or 2)

Syntax Examples CPU Clock Cycles

SAR reg,CL sar bx,cl
sar dx,cl

88/86
286
386
486

8+4n
5+n
3
3

SAL reg,CL
SHL reg,CL
SHR reg,CL

shr dx,cl
shl di,cl
sal ah,cl

88/86
286
386
486

8+4n
5+n
3
3

SAR mem,CL sar sign,cl

sar WORD PTR [bp+8],cl

88/86

286
386
486

20+EA+4n
(W88=28+EA+4n)
8+n
7
4

SAL mem,CL
SHL mem,CL
SHR mem,CL

shr WORD PTR m32[2],cl
sal BYTE PTR [di],cl
shl index,cl

88/86

286
386
486

20+EA+4n
(W88=28+EA+4n)
8+n
7
4

Encoding

Encoding

134 SHLD/SHRD Double Precision Shift

Filename: LMARFC04.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Mike Eddy
Revision #: 67 Page: 134 of 86 Printed: 10/02/00 04:15 PM

1100000w mod,TTT*,r/m disp (0, 1, or 2) data (1)

Syntax Examples CPU Clock Cycles

SAR reg,immed8 sar bx,5
sar cl,5

88/86
286
386
486

—
5+n
3
2

SAL reg,immed8
SHL reg,immed8
SHR reg,immed8

sal cx,6
shl di,2
shr bx,8

88/86
286
386
486

—
5+n
3
2

SAR mem,immed8 sar sign_count,3
sar WORD PTR [bx],5

88/86
286
386
486

—
8+n
7
4

SAL reg,immed8
SHL reg,immed8
SHR reg,immed8

shr mem16,11
shl unsign,4
sal array[bx+di],14

88/86
286
386
486

—
8+n
7
4

* TTT represents one of the following bit codes: 100 for SHL or SAL, 101 for SHR, or 111 for
SAR.

SHLD/SHRD Double Precision Shift
80386–80486 Only Shifts the bits of the second operand into the first operand.
The number of bits shifted is specified by the third operand. SHLD shifts the
first operand to the left by the number of positions specified in the count. The
positions opened by the shift are filled by the most significant bits of the second
operand. SHRD shifts the first operand to the right by the number of positions
specified in the count. The positions opened by the shift are filled by the least
significant bits of the second operand. The count operand can be either CL or
an 8-bit constant. If a shift count larger than 31 is given, it is adjusted by using
the remainder (modulo) of a division by 32.

 O D I T S Z A P C
? ± ± ? ± ±

Encoding

Flags

 SHLD/SHRD Double Precision Shift 135

Filename: LMARFC04.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Mike Eddy
Revision #: 67 Page: 135 of 87 Printed: 10/02/00 04:15 PM

00001111 10100100 mod,reg,r/m disp (0, 1, or 2) data (1)

Syntax Examples CPU Clock Cycles

SHLD reg16,reg16,immed8
SHLD reg32,reg32,immed8

shld ax,dx,10 88/86
286
386
486

—
—
3
2

SHLD mem16,reg16,immed8
SHLD mem32,reg32,immed8

shld bits,cx,5 88/86
286
386
486

—
—
7
3

00001111 10101100 mod,reg,r/m disp (0, 1, or 2) data (1)

Syntax Examples CPU Clock Cycles

SHRD reg16,reg16,immed8
SHRD reg32,reg32,immed8

shrd cx,si,3 88/86
286
386
486

—
—
3
2

SHRD mem16,reg16,immed8
SHRD mem32,reg32,immed8

shrd [di],dx,13 88/86
286
386
486

—
—
7
3

00001111 10100101 mod,reg,r/m disp (0, 1, or 2)

Syntax Examples CPU Clock Cycles

SHLD reg16,reg16,CL
SHLD reg32,reg32,CL

shld ax,dx,cl 88/86
286
386
486

—
—
3
3

SHLD mem16,reg16,CL
SHLD mem32,reg32,CL

shld
masker,ax,cl

88/86
286
386
486

—
—
7
4

Encoding

Encoding

Encoding

136 SMSW Store Machine Status Word

Filename: LMARFC04.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Mike Eddy
Revision #: 67 Page: 136 of 88 Printed: 10/02/00 04:15 PM

00001111 10101101 mod,reg,r/m disp (0, 1, or 2)

Syntax Examples CPU Clock Cycles

SHRD reg16,reg16,CL
SHRD reg32,reg32,CL

shrd bx,dx,cl 88/86
286
386
486

—
—
3
3

SHRD mem16,reg16,CL
SHRD mem32,reg32,CL

shrd [bx],dx,cl 88/86
286
386
486

—
—
7
4

SMSW Store Machine Status Word
80286-80486 Only Stores the Machine Status Word (MSW) into a specified
memory operand. SMSW is generally useful only in protected mode. See Intel
documentation for details on the MSW and other protected-mode concepts.

No change

00001111 00000001 mod,100,r/m disp (0, 1, or 2)

Syntax Examples CPU Clock Cycles

SMSW reg16 smsw ax 88/86
286
386
486

—
2
2
2

SMSW mem16 smsw machine 88/86
286
386
486

—
3
3
3

Encoding

Flags

Encoding

 STI Set Interrupt Flag 137

Filename: LMARFC04.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Mike Eddy
Revision #: 67 Page: 137 of 89 Printed: 10/02/00 04:15 PM

STC Set Carry Flag
Sets the carry flag.

 O D I T S Z A P C
 1

11111001

Syntax Examples CPU Clock Cycles

STC stc 88/86
286
386
486

2
2
2
2

STD Set Direction Flag
Sets the direction flag. All subsequent string instructions will process down
(from high addresses to low addresses).

 O D I T S Z A P C
 1

11111101

Syntax Examples CPU Clock Cycles

STD std 88/86
286
386
486

2
2
2
2

STI Set Interrupt Flag
Sets the interrupt flag. When the interrupt flag is set, maskable interrupts are
recognized. If interrupts were disabled by a previous CLI instruction, pending
interrupts will not be executed immediately; they will be executed after the
instruction following STI.

 O D I T S Z A P C
 1

Flags

Encoding

Flags

Encoding

Flags

138 STOS/STOSB/STOSW/STOSD Store String Data

Filename: LMARFC04.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Mike Eddy
Revision #: 67 Page: 138 of 90 Printed: 10/02/00 04:15 PM

11111011

Syntax Examples CPU Clock Cycles

STI sti 88/86
286
386
486

2
2
3
5

STOS/STOSB/STOSW/STOSD Store String Data
Stores the value of the accumulator in a string. The string is the destination and
must be pointed to by ES:DI, even if an operand is given. For each source
element loaded, DI is adjusted according to the size of the operand and the
status of the direction flag. DI is incremented if the direction flag has been
cleared with CLD or decremented if the direction flag has been set with STD.

If the STOS form of the instruction is used, an operand must be provided to
indicate the size of the data elements to be processed. No segment override is
allowed. If STOSB (bytes), STOSW (words), or STOSD (doublewords on the
80386–80486 only) is used, the instruction determines the size of the data
elements to be processed and whether the element comes from AL, AX, or
EAX.

STOS and its variations are often used with the REP prefix to fill a string with a
repeated value. Before the repeated instruction is executed, CX should contain
the number of elements to store.

No change

1010101w

Syntax Examples CPU Clock Cycles

STOS [[ES:]] dest
STOSB [[[[ES:]] dest]]
STOSW [[[[ES:]] dest]]
STOSD [[[[ES:]] dest]]*

stos es:dstring
rep stosw
rep stosb

88/86
286
386
486

11 (W88=15)
3
4
5

* 80386–80486 only

Encoding

Flags

Encoding

 SUB Subtract 139

Filename: LMARFC04.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Mike Eddy
Revision #: 67 Page: 139 of 91 Printed: 10/02/00 04:15 PM

STR Store Task Register
80286-80486 Only Stores the current task register to the specified operand. This
instruction is generally useful only in privileged mode. See Intel documentation
for details on task registers and other protected-mode concepts.

No change

00001111 00000000 mod, 001, reg disp (0, 1, or 2)

Syntax Examples CPU Clock Cycles

STR reg16 str cx 88/86
286
386
486

—
2
2
2

STR mem16 str taskreg 88/86
286
386
486

—
3
2
3

SUB Subtract
Subtracts the source operand from the destination operand and stores the result
in the destination operand.

 O D I T S Z A P C
± ± ± ± ± ±

001010dw mod, reg, r/m disp (0, 1, or 2)

Syntax Examples CPU Clock Cycles

SUB reg,reg sub ax,bx
sub bh,dh

88/86
286
386
486

3
2
2
1

SUB mem,reg sub tally,bx
sub array[di],bl

88/86
286
386
486

16+EA (W88=24+EA)
7
6
3

Flags

Encoding

Flags

Encoding

140 TEST Logical Compare

Filename: LMARFC04.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Mike Eddy
Revision #: 67 Page: 140 of 92 Printed: 10/02/00 04:15 PM

Syntax Examples CPU Clock Cycles

SUB reg,mem sub cx,discard
sub al,[bx]

88/86
286
386
486

9+EA (W88=13+EA)
7
7
2

100000sw mod,101,r/m disp (0, 1, or 2) data (1 or 2)

Syntax Examples CPU Clock Cycles

SUB reg,immed sub dx,45
sub bl,7

88/86
286
386
486

4
3
2
1

SUB mem,immed sub total,4000
sub BYTE PTR [bx+di],2

88/86
286
386
486

17+EA (W88=25+EA)
7
7
3

0010110w data (1 or 2)

Syntax Examples CPU Clock Cycles

SUB accum,immed sub ax,32000 88/86
286
386
486

4
3
2
1

TEST Logical Compare
Tests specified bits of an operand and sets the flags for a subsequent conditional
jump or set instruction. One of the operands contains the value to be tested. The
other contains a bit mask indicating the bits to be tested. TEST works by doing a
bitwise AND operation on the source and destination operands. The flags are
modified according to the result, but the destination operand is not changed.
This instruction is the same as the AND instruction, except the result is not
stored.

 O D I T S Z A P C
0 ± ± ? ± 0

Encoding

Encoding

Flags

 VERR/VERW Verify Read or Write 141

Filename: LMARFC04.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Mike Eddy
Revision #: 67 Page: 141 of 93 Printed: 10/02/00 04:15 PM

1000010w mod, reg, r/m disp (0, 1, or 2)

Syntax Examples CPU Clock Cycles

TEST reg,reg test dx,bx
test bl,ch

88/86
286
386
486

3
2
2
1

TEST mem,reg
TEST reg,mem*

test dx,flags
test bl,bitarray[bx]

88/86
286
386
486

9+EA (W88=13+EA)
6
5
2

1111011w mod,000,r/m disp (0, 1, or 2) data (1 or 2)

Syntax Examples CPU Clock Cycles

TEST reg,immed test cx,30h
test cl,1011b

88/86
286
386
486

5
3
2
1

TEST mem,immed test masker,1
test BYTE PTR [bx],03h

88/86
286
386
486

11+EA
6
5
2

1010100w data (1 or 2)

Syntax Examples CPU Clock Cycles

TEST
accum,immed

test ax,90h 88/86
286
386
486

4
3
2
1

* MASM transposes TEST reg,mem; that is, it is encoded as TEST mem,reg.

VERR/VERW Verify Read or Write
80286-80486 Protected Only Verifies that a specified segment selector is valid
and can be read or written to at the current privilege level. VERR verifies that
the selector is readable. VERW verifies that the selector can be written to. If the
segment is verified, the zero flag is set. Otherwise, the zero flag is cleared.

 O D I T S Z A P C
 ±

Encoding

Encoding

Encoding

Flags

142 WAIT Wait

Filename: LMARFC04.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Mike Eddy
Revision #: 67 Page: 142 of 94 Printed: 10/02/00 04:15 PM

00001111 00000000 mod, 100,r/m disp (0, 1, or 2)

Syntax Examples CPU Clock Cycles

VERR reg16 verr ax 88/86
286
386
486

—
14
10
11

VERR mem16 verr selector 88/86
286
386
486

—
16
11
11

00001111 00000000 mod, 101,r/m disp (0, 1, or 2)

Syntax Examples CPU Clock Cycles

VERW reg16 verw cx 88/86
286
386
486

—
14
15
11

VERW mem16 verw selector 88/86
286
386
486

—
16
16
11

WAIT Wait
Suspends processor execution until the processor receives a signal that a
coprocessor has finished a simultaneous operation. It should be used to prevent
a coprocessor instruction from modifying a memory location that is being
modified simultaneously by a processor instruction. WAIT is the same as the
coprocessor FWAIT instruction.

No change

10011011

Syntax Examples CPU Clock Cycles

WAIT wait 88/86
286
386
486

4
3
6
1–3

Encoding

Encoding

Flags

Encoding

 XADD Exchange and Add 143

Filename: LMARFC04.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Mike Eddy
Revision #: 67 Page: 143 of 95 Printed: 10/02/00 04:15 PM

WBINVD Write Back and Invalidate Data Cache
80486 Only Empties the contents of the current data cache after writing
changes to memory. Proper use of this instruction requires knowledge of how
contents are placed in the cache. WBINVD is intended primarily for system
programming. See Intel documentation for details.

No change

00001111 00001001
Syntax Examples CPU Clock Cycles

WBINVD wbinvd 88/86
286
386
486

—
—
—
5

XADD Exchange and Add
80486 Only Adds the source and destination operands and stores the sum in the
destination; simultaneously, the original value of the destination is moved to the
source. The instruction sets flags according to the result of the addition.

 O D I T S Z A P C
± ± ± ± ± ±

00001111 1100000b mod, reg, r/m disp (0, 1, or 2)

Syntax Examples CPU Clock Cycles

XADD mem,reg xadd warr[bx],ax
xadd string,bl

88/86
286
386
486

—
—
—
4

XADD reg,reg xadd dl,al
xadd bx,dx

88/86
286
386
486

—
—
—
3

Flags

Encoding

Flags

Encoding

144 XCHG Exchange

Filename: LMARFC04.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Mike Eddy
Revision #: 67 Page: 144 of 96 Printed: 10/02/00 04:15 PM

XCHG Exchange
Exchanges the values of the source and destination operands.

No change

1000011w mod,reg,r/m disp (0, 1, or 2)

Syntax Examples CPU Clock Cycles

XCHG reg,reg xchg cx,dx
xchg bl,dh
xchg al,ah

88/86
286
386
486

4
3
3
3

XCHG reg,mem
XCHG mem,reg

xchg [bx],ax
xchg bx,pointer

88/86
286
386
486

17+EA (W88=25+EA)
5
5
5

10010 reg

Syntax Examples CPU Clock Cycles

XCHG accum,reg16*
XCHG reg16,accum*

xchg ax,cx
xchg cx,ax

88/86
286
386
486

3
3
3
3

* On the 80386–80486, the accumulator may also be exchanged with a 32-bit register.

XLAT/XLATB Translate
Translates a value from one coding system to another by looking up the value to
be translated in a table stored in memory. Before the instruction is executed, BX
should point to a table in memory and AL should contain the unsigned position
of the value to be translated from the table. After the instruction, AL contains
the table value at the specified position. No operand is required, but one can be
given to specify a segment override. DS is assumed unless a segment override is
given. XLATB is a synonym for XLAT. Either version allows an operand, but
neither requires one.

Flags

Encoding

Encoding

 XOR Exclusive OR 145

Filename: LMARFC04.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Mike Eddy
Revision #: 67 Page: 145 of 97 Printed: 10/02/00 04:15 PM

No change

11010111

Syntax Examples CPU Clock Cycles

XLAT [[[[segreg:]] mem]]
XLATB [[[[segreg:]] mem]]

xlat
xlatb es:table

88/86
286
386
486

11
5
5
4

XOR Exclusive OR
Performs a bitwise exclusive OR operation on the source and destination
operands and stores the result in the destination. For each bit position in the
operands, if both bits are set or if both bits are cleared, the corresponding bit of
the result is cleared. Otherwise, the corresponding bit of the result is set.

 O D I T S Z A P C
0 ± ± ? ± 0

001100dw mod, reg, r/m disp (0, 1, or 2)

Syntax Examples CPU Clock Cycles

XOR reg,reg xor cx,bx
xor ah,al

88/86
286
386
486

3
2
2
1

XOR mem,reg xor [bp+10],cx
xor masked,bx

88/86
286
386
486

16+EA (W88=24+EA)
7
6
3

XOR reg,mem xor cx,flags
xor bl,bitarray[di]

88/86
286
386
486

9+EA (W88=13+EA)
7
7
2

Flags

Encoding

Flags

Encoding

146 XOR Exclusive OR

Filename: LMARFC04.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Mike Eddy
Revision #: 67 Page: 146 of 98 Printed: 10/02/00 04:15 PM

100000sw mod,110,r/m disp (0, 1, or 2) data (1 or 2)

Syntax Examples CPU Clock Cycles

XOR reg,immed xor bx,10h
xor bl,1

88/86
286
386
486

4
3
2
1

XOR mem,immed xor Boolean,1
xor switches[bx],101b

88/86
286
386
486

17+EA (W88=25+EA)
7
7
3

0011010w data (1 or 2)

Syntax Examples CPU Clock Cycles

XOR accum,immed xor ax,01010101b 88/86
286
386
486

4
3
2
1

Encoding

Encoding

 XOR Exclusive OR 147

Filename: LMARFC04.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Mike Eddy
Revision #: 67 Page: 147 of 99 Printed: 10/02/00 04:15 PM

