
COE 205 Lab Manual Lab 7: Procedures and the Stack - Page 67

Prepared by Dr. Muhamed Mudawar © KFUPM – Revised August 2006

Lab 7: Procedures and the Stack

Contents
7.1. Runtime Stack and Stack Instructions
7.2. Defining and Using Procedures
7.3. Stack Parameters
7.4. Local Variables and Stack Frames
7.5. PROTO, PROC, INVOKE, LOCAL, and USES Directives

7.1 Runtime Stack and Stack Instructions
A stack is a LIFO structure (Last-In, First-Out), because the last value put into the stack is
always the first value taken out. The runtime stack is a memory array managed directly by
the CPU. The ESP is called the extended stack pointer register and contains the 32-bit
address of the last item that was pushed on the stack. We rarely manipulate the ESP register
directly. Instead, the PUSH, POP, CALL, and RET instructions modify the ESP register.

The .STACK directive allocates a stack in memory. By default, the assembler allocates 1KB
of memory for the stack, which is sufficient for small programs. You can also specify the size
of the stack in bytes. For example, the following directive allocates a stack of 4096 bytes.
The operating system initializes ESP register to the address of the first byte above the stack.
.STACK 4096

There are several important uses of the stack in programs:

• A stack makes a convenient temporary save area for registers when they are used for more
than one purpose. After they are modified, they can be restored to their original values.

• When the CALL instruction executes, the CPU saves the return address on the stack.

• When calling procedures, we often pass parameter values on the stack.

• Local variables inside a procedure are allocated on the stack and discarded when the
procedure ends.

7.1.1 PUSH and POP Instructions
The PUSH instruction has the following syntax: push source

The source operand can be 16-bit or 32-bit register, a word or double word in memory, or an
immediate constant. For a word-size source operand, the ESP register is decremented by 2
and the source operand is stored on the stack at the address pointed by the ESP register. For a
double word-size source operand, the ESP register is decremented by 4 and the source
operand is stored. The stack grows downwards or backwards towards lower addresses.

The POP instruction has the following syntax: pop destination

The destination operand can be a word or double word in memory, or a 16-bit or 32-bit
general purpose register. The POP instruction does the opposite job a PUSH. It copies the
word or double word on top of the stack into the destination memory or register and then
increments the ESP register. If the destination is a word then the ESP register is incremented
by 2. Otherwise, it is incremented by 4 bytes.

COE 205 Lab Manual Lab 7: Procedures and the Stack - Page 68

Prepared by Dr. Muhamed Mudawar © KFUPM – Revised August 2006

7.1.2 PUSHAD, POPAD, PUSHA, and POPA Instructions
The PUSHAD instruction pushes all of the 32-bit general-purpose registers on the stack in the
following order: EAX, ECX, EDX, EBX, ESP (original value), EBP, ESI, and EDI. The
POPAD instruction pops the same registers off the stack in reverse order. If you write a
procedure that modifies a number of 32-bit registers, then you can use the PUSHAD at the
beginning of the procedure to save all the 32-bit general-purpose registers before they are
modified, and you use the POPAD at the end of the procedure to restore their values.

Similarly, the PUSHA instruction pushes the 16-bit general-purpose registers in the following
order: AX, CX, DX, BX, SP (original value), BP, SI, and DI. The POPA instruction pops the
same registers in reverse order.

7.1.3 PUSHFD and POPFD Instructions
There are times when it is useful to save the flags so you can restore their values later. The
PUSHFD instruction pushes the 32-bit EFLAGS register on the stack, and POPFD pops the
stack into EFLAGS.

7.1.4 Lab Work: Demonstrating the Stack Instructions

TITLE Demonstrating Stack Instructions (stack.asm)

.686
.MODEL flat, stdcall
.STACK 4096
INCLUDE Irvine32.inc

.data
var1 DWORD 01234567h
var2 DWORD 89ABCDEFh

.code
main PROC
 pushad ; Save general-purpose registers

 ; PUSH and POP
 push var1
 push var2
 push 6A6A4C4Ch
 pop eax
 pop ebx
 pop cx
 pop dx

 popad ; restore general-purpose registers

 ; Exchanging 2 variables in memory
 push var1
 push var2
 pop var1
 pop var2

 exit
main ENDP
END main

COE 205 Lab Manual Lab 7: Procedures and the Stack - Page 69

Prepared by Dr. Muhamed Mudawar © KFUPM – Revised August 2006

Analyze the above program and guess the values of the eax, ebx, cx, and dx registers after
executing the pop dx instruction. Write these values in hexadecimal in the shown boxes:

Also guess and write the values of var1 and var2 after executing the pop var2 instruction:

7.1.5 Lab Work: Assemble and Link Program stack.asm

7.1.6 Lab Work: Trace the Execution of Program stack.exe
Run the 32-bit Windows Debugger. Open the source file stack.asm. Open a Watch window
and watch the variables var1 and var2, as well as the registers esp, eax, ebx, cx, and dx. You
should type the @ symbol before the register name to watch a register in the Watch window.
Place the cursor at the beginning of the main procedure and press F7 to start debugging it.
Observe the esp register is initialized to 0x12ffc4, or to some other value depending on the
program or the computer system. The operating system initialized the esp register at the
beginning of the program execution.

Open a Memory window to view the stack and type 12ff94 as the virtual address as shown
below. A smaller value 12ff94 is chosen than 12ffc4 because the stack grows downwards.
This will allow you to view 48 bytes of the stack (0xc4 – 0x94 = 48 bytes). Notice that the
stack is uninitialized and contains “junk” values. You can change the Display format to
‘Long Hex’ to view the stack as double words rather than bytes, and resize the window to
view 4 double words (or 16 bytes) per line.

Now press F10 to step through the program execution. The first instruction pushad will push
all the eight 32-bit general-purpose registers on the stack. Observe that the esp register has
changed to 0x12ffa4, and that the second and third rows starting at addresses 0012ffa4 and
0012ffb4 have been modified to contain a copy of the register values. Continue pressing F10
and try to anticipate the changes at each step. Check the values of the registers and variables
after executing the pop instructions, and make the necessary corrections.

7.2 Defining and Using Procedures
A procedure is declared using the PROC and ENDP directives. It must be assigned a name
and must end with a return statement. Each program we have written so far contains a
procedure called main. As programs become larger, it is important to break them down into
procedures to make them more modular and to simplify programming.

EBX (hex) =

DX (hex) =

EAX (hex) =

CX (hex) =

var2 (hex) =var1 (hex) =

COE 205 Lab Manual Lab 7: Procedures and the Stack - Page 70

Prepared by Dr. Muhamed Mudawar © KFUPM – Revised August 2006

As an example, let us write a procedure name SumOf that calculates the sum of three 32-bit
integers. We will assume that the integers are assigned to EAX, EBX, and ECX before the
procedure is called. The procedure returns the sum in EAX:
SumOf PROC
 add eax, ebx
 add eax, ecx
 ret
SumOf ENDP

7.2.1 CALL and RET Instructions
The CALL instruction calls a procedure by directing the processor to begin execution at the
first instruction inside the procedure. The procedure uses a RET instruction to return from
the procedure. This will allow the processor to continue at the instruction that appears just
after the CALL instruction where the procedure was called.

The CALL instruction works as follows:

• It pushes a return address on the stack. This is the address of the instruction appearing
after the CALL instruction. The return address tells the RET instruction where to return.

• It modifies the EIP register to contain the address of the called procedure. This is the
address of the first instruction inside the called procedure. The processor starts executing
the body of the procedure.

The RET instruction works as follows:

• It pops the return address off the stack into the instruction pointer (EIP register). The
processor will continue program execution at the instruction that appears after the CALL
instruction.

Before calling a procedure, you have to pass to it the parameters it expects. For example, the
above procedure SumOf expects three parameters in the eax, ebx, and ecx registers:
mov eax, 40000h
mov ebx, 60000h
mov ecx, 80000h
call SumOf
. . . ; result is in the EAX register

7.2.2 Demonstrating Procedures
TITLE Demonstrating Procedures (procedure.asm)

.686
.MODEL flat, stdcall
.STACK 4096
INCLUDE Irvine32.inc

.data

.code
main PROC
 mov eax, 9876
 mov ebx, 12
 mov ecx, -5
 call sort3
 exit
main ENDP

COE 205 Lab Manual Lab 7: Procedures and the Stack - Page 71

Prepared by Dr. Muhamed Mudawar © KFUPM – Revised August 2006

; Sorts 3 integers in EAX, EBX, and ECX
sort3 PROC
 cmp eax, ebx
 jle L1
 call swapAB
L1: cmp eax, ecx
 jle L2
 call swapAC
L2: cmp ebx, ecx
 jle L3
 call swapBC
L3: ret
sort3 ENDP

; Swaps the values of the EAX and EBX registers
swapAB PROC
 Push eax
 Push ebx
 Pop eax
 Pop ebx
 ret
swapAB ENDP

; Swaps the values of the EAX and ECX registers
swapAC PROC
 Push eax
 Push ecx
 Pop eax
 Pop ecx
 ret
swapAC ENDP

; Swaps the values of the EBX and ECX registers
swapBC PROC
 Push ebx
 Push ecx
 Pop ebx
 Pop ecx
 ret
swapBC ENDP
END main

The above program demonstrates the definition and use of procedures in a program. It has
five procedures: main, sort3, swapAB, swapAC, and swapBC. Program execution starts in the
main procedure. The main procedure calls the sort3 procedure, which calls the swapAB,
swapAC, and swapBC procedures, to sort the EAX, EBX, and ECX registers in ascending
order. You will now trace the execution of the above program to understand procedure call
and return, and how the return address is saved on the stack.

7.2.3 Lab Work: Assemble and Link procedure.asm

7.2.4 Lab Work: Trace the Execution of procedure.exe
Run the 32-bit Windows Debugger. Open the source file procedure.asm. Open a Register
window and view the registers esp, eax, ebx, ecx, and eip. The eip register is very important
here because it contains the address the next instruction to be executed. Place the cursor at the
beginning of the main procedure and press F7 to start debugging it. Observe that the esp
register is initialized to 12ffc4 (hexadecimal) by the operating system.

COE 205 Lab Manual Lab 7: Procedures and the Stack - Page 72

Prepared by Dr. Muhamed Mudawar © KFUPM – Revised August 2006

Open a Memory window to view the stack and type 12ffa4 as the virtual address as shown
below. Change the Display format to ‘Long Hex’ to view the stack as double words rather
than bytes, and resize the window to view 4 double words (or 16 bytes) per line.

At the call sort3 instruction, press F8 to step into the procedure call. This will take you to the
beginning of the sort3 procedure. If you press F10 at call sort3, the debugger will execute
and return from procedure sort3, without showing you the details of the procedure call and
return. Therefore, you should use the F8 key to trace procedure calls and returns.

The call instruction will push the return address on the stack, and the ret instruction will pop
it off the stack. Now answer the following as you trace the procedure calls and returns:

What is the return address of call sort3 (in hex)? ...

Where is it located on the stack (stack address)? ...

What is the return address of call swapAB (in hex)? ..

Where is it located on the stack (stack address)? ...

What is the return address of call swapAC (in hex)? ..

Where is it located on the stack (stack address)? ...

What is the return address of call swapBC (in hex)? ..

Where is it located on the stack (stack address)? ...

7.3 Stack Parameters
There are two basic ways of passing parameters to procedures. We can pass parameters in
registers or we can pass them on the stack. So far, we have demonstrated the use of register
parameters in Section 7.2. The Irvine library also uses register parameters for its procedures.
Register parameters are optimized for program execution speed.

Stack parameters are pushed on the stack before making the procedure call. The called
procedure will have to locate its parameters on the stack. Stack parameters standardizes
procedure calls. Nearly all high-level programming languages and libraries use them. If you
want to call procedures in the MS-Windows library, you have to use stack parameters.

Consider the SumOf procedure defined in Section 7.2. We now redefine it and call it
differently, passing parameters on the stack, rather than in registers as shown below:

SumOf PROC
 mov eax, [esp+4]
 add eax, [esp+8]
 add eax, [esp+12]
 ret 12
SumOf ENDP

push 80000h
push 60000h
push 40000h
call SumOf

80000h

60000h

40000h

Return address

esp+12

esp+8

esp+4

esp

pa
ra

m
et

er
s

COE 205 Lab Manual Lab 7: Procedures and the Stack - Page 73

Prepared by Dr. Muhamed Mudawar © KFUPM – Revised August 2006

When the SumOf procedure is called, the esp register is pointing at the return address on top
of the stack. The parameters can be located on the stack at addresses [esp+4], [esp+8], and
[esp+12]. Recall that the stack grows downwards towards lower addresses.

7.3.1 Cleaning up the Stack Parameters with the RET Instruction
When parameters are pushed on the stack, it is important to clean up the stack upon returning
from a procedure. The ret instruction can specify an extra integer constant to clean up the
parameters on the stack. In the above SumOf procedure, 12 bytes are pushed on the stack for
three parameters. The ret 12 instruction is used to increment the esp register by 12 bytes, in
addition to the 4 bytes for popping the return address.

7.3.2 Saving and Restoring Registers
A procedure might need to use some general-purpose registers to carry its computation. To
preserve the values of these registers across a procedure call, it is important to push their
values at the beginning of the procedure and pop them at the end, so that the caller program
can be sure that none of its own register values are overwritten.

7.3.3 The EBP Register
The esp register can be used in simple procedures, like the above SumOf, to access
parameters on the stack. However, in complex procedures, the esp register might change. The
ebp register can be used instead as a base register for accessing parameters on the stack.

7.3.4 Example: Summing an Integer Array
The following procedure computes the sum of an array of integers. The first two instructions
save the old value of ebp and assign the value of esp to ebp. These two instructions are
commonly used in procedures that have their parameters on the stack. The ebp register is
used to access the parameters. The first parameter is located at address [ebp + 8] and the
second parameter is at address [ebp + 12]. This is because 8 bytes are allocated on the stack
for the return address and the ebp register.

The ArraySum procedure uses the esi register to address the integer array and the ecx register
to count the number of elements. Since these two registers are modified by ArraySum, their
values have to be preserved. This is why, the esi and ecx registers are pushed at the beginning
and popped at the end, but in reverse order.
ArraySum PROC
 push ebp ; save old value of EBP
 mov ebp, esp ; EBP locates parameters
 push esi ; save old value of ESI
 push ecx ; save old value of ECX
 mov esi, [ebp+8] ; ESI = array address
 mov ecx, [ebp+12] ; ECX = number of elements
 mov eax, 0 ; initialize the sum to 0
 jecxz L2
L1:
 add eax, [esi] ; add each element to sum
 add esi, 4 ; point to next element
 loop L1 ; sum is in eax register
L2:
 pop ecx ; restore value of ECX
 pop esi ; restore value of ESI
 pop ebp ; restore value of EBP
 ret 8 ; Return and clean up the parameters
ArraySum ENDP

esp

ebp + 8

ebp + 12

ebp + 4

ebp

return address

array address

element count

old ebp value

old esi value

old ecx value

pa
ra

m
et

er
s

sa
ve

d
re

gi
st

er
s

stack grows
downwards

COE 205 Lab Manual Lab 7: Procedures and the Stack - Page 74

Prepared by Dr. Muhamed Mudawar © KFUPM – Revised August 2006

The ArraySum procedure also uses the eax register to accumulate the sum and to hold the
result of the procedure. Since the result is returned in the eax register, its value should not be
preserved by the procedure.

7.3.5 Passing Parameters by Value and by Reference
The ArraySum procedure receives two parameters on the stack. The first parameter is the
array address and the second parameter is the count of the number of elements. Rather than
passing the entire array on the stack, the address is passed only. This is called pass by
reference because the procedure uses the array address to access the array elements. It is also
possible to use the array address to modify the array elements. For example, a procedure that
reads an array of integers can use the array address to store the read values. On the other
hand, the second parameter, which is the element count, is passed by value on the stack.

7.3.6 Lab Work: Complete the ReadIntArray Procedure
Open the ArraySum.asm file and complete the writing of the ReadIntArray procedure.
Assemble, link, run, and debug the program to make sure it is working correctly.

7.4 Local Variables and Stack Frames
Procedures use local variables to carry the computation. If only few simple local variables are
needed, then registers can be used. However, if registers are not enough, then local variables
are allocated on the stack when the procedure is called, and freed when the procedure returns.

7.4.1 Example: Taking the Sum of the Digits in a String
SumDigits PROC
 push ebp ; save old EBP value
 mov ebp, esp ; new value of EBP
 sub esp, 20 ; allocate 20 bytes for local string variable
 pushad ; save general-purpose registers

 lea edx, prompt ; write prompt string
 call WriteString
 lea edx, [ebp-20] ; EDX = local string address
 mov ecx, 20 ; maximum chars to read
 call ReadString ; string is stored on the stack
 mov ecx, eax ; save number of chars in ECX

 mov eax, 0 ; EAX = used to accumulate sum of digits
 mov ebx, 0 ; BL part of EBX stores one digit
L1: mov bl, [edx] ; move one character into BL
 sub bl, '0' ; convert character to a number
 cmp bl, 9 ; check if BL is a digit
 ja L2 ; skip next instruction if BL is a non-digit
 add eax, ebx ; accumulate sum in eax
L2: inc edx ; point to next character
 loop L1

 mov ebx, [ebp+8] ; EBX = parameter = address of sum
 mov [ebx], eax ; store sum indirectly
 popad ; pop general-purpose registers
 mov esp, ebp ; free local string variable
 pop ebp ; restore EBP register
 ret 4 ; return and clean the parameter's 4 bytes

 prompt BYTE "Enter a string of (max 19) digits: ",0
SumDigits ENDP

COE 205 Lab Manual Lab 7: Procedures and the Stack - Page 75

Prepared by Dr. Muhamed Mudawar © KFUPM – Revised August 2006

parameter

return address

saved
registers

(32 bytes)

local string
variable

(20 bytes)

ebp + 8

ebp + 4

ebp

esp

st
ac

k
fra

m
e

saved EBP register

ebp – 20

The SumDigits procedure inputs a string of digits and then computes and returns the sum of
the string digits. The input string is a local variable stored on the stack.

7.4.2 Stack Frame
The SumDigits procedure receives one parameter on the
stack. This parameter is the address of the sum variable.
After saving the old ebp value on the stack and setting
the value of ebp register, the 3rd instruction sub esp, 20
allocates 20 bytes for the local string variable on the stack.
To allocate space for local variables on the stack, we simply
decrease the value of the esp register by the size of the
variables in bytes. One sub instruction is sufficient to
allocate space for all the local variables on the stack.

The pushad instruction then saves all the general-purpose
registers on the stack to preserve their values. Since
many of these registers are used, it is convenient to save
all of them at the beginning of the procedure and restore all of them at the end.

The area of the stack, which is allocated for a procedure’s parameters, return address, saved
registers, and local variables is called a stack frame. It is created by the following steps:

• Caller pushes parameters on the stack.
• Procedure is called, the return address is pushed on the stack.
• Procedure saves old EBP value on the stack and sets new EBP equal to ESP.
• A value is subtracted from ESP to create space for the local variables.
• Some or all the general-purpose registers are saved on the stack.

7.4.3 Returning the Result of a Procedure
We have shown you two ways to return the result of a procedure. The first choice is to use
one (or more) register to hold the result. For example, we have used the eax register to hold
the result of the ArraySum procedure. The second choice is to use pass by reference to store
indirectly the result, as in the SumDigits procedure. The mov [ebx], eax instruction saves the
accumulated sum at the address which was passed as a parameter on the stack.

A final remark about the SumDigits procedure is that the prompt string is defined at the end
of the procedure. The prompt string characters are stored after the procedure code, but they
will never be executed because they appear after the ret instruction.

7.4.4 Lab Work: Assemble, Link, and Trace Program SumDigits.asm
Run the 32-bit Windows Debugger to trace the execution of the SumDigits procedure. Open a
Register window to view the registers and a Memory window to view the stack. Now answer
the following just after executing the pushad instruction in the SumDigits procedure:

What is the value of the parameter on the stack (in hex)? ...

What is the value of the return address on the stack (in hex)? ..

What is the value of the ebp register (in hex)? ..

What is the value of the esp register (in hex)? ...

How many bytes are allocated for the stack frame? ...

COE 205 Lab Manual Lab 7: Procedures and the Stack - Page 76

Prepared by Dr. Muhamed Mudawar © KFUPM – Revised August 2006

7.5 PROTO, PROC, INVOKE, LOCAL, and USES Directives
MASM defines a number of directives to simplify the writing of procedures.

7.5.1 PROTO and PROC Directives
The PROTO directive declares a prototype for an existing procedure. A prototype specifies a
procedure’s name and parameter list. It allows you to call a procedure before defining it.
MASM requires a prototype for each procedure called by an INVOKE statement. Consider
the SumDigits procedure, you can write a prototype for it as follows:
SumDigits PROTO sumaddr:PTR DWORD

The SumDigits prototype specifies one parameter sumaddr which is of type PTR DWORD.
Once you have defined a prototype for a procedure, MASM requires that you define the
procedure to match its prototype as follows:
SumDigits PROC sumaddr:PTR DWORD
...
ret

SumDigits ENDP

When you specify the parameters of a procedure, the assembler will automatically generate
the first two instructions: push epb and mov ebp, esp. So, there is no need to write them. The
assembler will also insert a leave instruction just before the ret instruction. The leave
instruction is equivalent to two instructions: move esp, ebp and pop ebp. So, there is no need
to write them either. The assembler will also replace the ret instruction with ret n, where n is
equal to the size of the parameters in bytes, so there is no need to specify n. You can also
refer to a parameter by name, rather than by its address inside the procedure (e.g., you can
replace [ebp+8] by sumaddr). The assembler will replace the parameter name by its address.

7.5.2 INVOKE Directive
The INVOKE directive simplifies a procedure call by allowing you to pass parameters to a
procedure in a single statement. You can invoke SumDigits as follows:
INVOKE SumDigits, ADDR sum

The MASM assembler will generate the following equivalent instructions:
push OFFSET sum
call SumDigits

If there are multiple parameters, the last parameter is pushed first on the stack and the first
parameter is pushed last. This is in accordance to the stdcall language specifier.

7.5.3 LOCAL Directive
The LOCAL directive allows you to declare one or more local variables inside a procedure. It
must be placed on the line immediately following the PROC directive, as follows:
SumDigits PROC sumaddr:PTR DWORD
LOCAL s[20]:BYTE
...
ret

SumDigits ENDP

The assembler will compute the total number of bytes occupied by the local variables and
will generate the add esp, – n instruction to allocate n bytes on the stack. You can refer to
local variables declared by the LOCAL directive by name rather than by address inside a
procedure. The assembler will substitute the name with its corresponding address.

COE 205 Lab Manual Lab 7: Procedures and the Stack - Page 77

Prepared by Dr. Muhamed Mudawar © KFUPM – Revised August 2006

7.5.4 USES Directive
The USES directive lets you list the names of the all the registers that you want to preserve
within a procedure. This directive tells the assembler to generate push instructions to save
these registers at the beginning, and to generate pop instructions that restore these registers at
the end of the procedure. You can couple USES with the PROC directive as follows:
SumDigits PROC USES eax ebx ecx edx, sumaddr:PTR DWORD

7.5.5 Lab Work: Examining the Code Generated by the Assembler
The SumDigits2.asm program is a modified version of SumDigits.asm that uses assembler
directives to simplify the writing of a procedure. Assemble and link SumDigits2.asm. Open
the SumDigits2.lst file and examine the instructions marked with * inserted by the assembler
at the beginning and end of the SumDigits procedure. Write down these instructions:

Review Questions
1. (True/False) The push instruction decreases the esp register and pop increases it.
2. How does the call instruction work?
3. How does the ret n instruction work (where n is an integer constant)?
4. Why is it better to use the ebp than the esp register to locate parameters on the stack?
5. Which instruction should be used to allocate local variables on the stack?
6. How does the leave instruction work?
7. What is the use of an INVOKE directive, and how is it translated?
8. What is the use of a LOCAL directive, and how is it translated?
9. What is the use of a USES directive and how is it translated?

Programming Exercises
1. Write a procedure that fills an array with random integers in the range 0 to 999. The

procedure should receive two parameters: the address of the array to be filled in the EAX
register, and the count of the elements in the ECX register. Test this procedure separately
by calling it from the main procedure.

2. Write a procedure to display an array of integers. The procedure should receive two
parameters on the stack: the array address and the count of the elements to be displayed.
Test this procedure separately by calling it from the main procedure.

3. Write a procedure to sort an array of integers. The procedure should receive two
parameters on the stack: the array address and the count of its elements. To test this
procedure, call the array fill procedure (exercise 1) to generate a random array of integers
and then call the sort procedure to sort it. Any sorting algorithm may be used.

Instructions inserted at the beginning Instructions inserted at the end

